1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
|
/*
* Copyright 2012 The Android Open Source Project
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkMatrixConvolutionImageFilter.h"
#include "SkBitmap.h"
#include "SkColorData.h"
#include "SkColorSpaceXformer.h"
#include "SkFlattenablePriv.h"
#include "SkImageFilterPriv.h"
#include "SkReadBuffer.h"
#include "SkSpecialImage.h"
#include "SkWriteBuffer.h"
#include "SkRect.h"
#include "SkUnPreMultiply.h"
#if SK_SUPPORT_GPU
#include "GrContext.h"
#include "GrTextureProxy.h"
#include "effects/GrMatrixConvolutionEffect.h"
#endif
// We need to be able to read at most SK_MaxS32 bytes, so divide that
// by the size of a scalar to know how many scalars we can read.
static const int32_t gMaxKernelSize = SK_MaxS32 / sizeof(SkScalar);
SkMatrixConvolutionImageFilter::SkMatrixConvolutionImageFilter(const SkISize& kernelSize,
const SkScalar* kernel,
SkScalar gain,
SkScalar bias,
const SkIPoint& kernelOffset,
TileMode tileMode,
bool convolveAlpha,
sk_sp<SkImageFilter> input,
const CropRect* cropRect)
: INHERITED(&input, 1, cropRect)
, fKernelSize(kernelSize)
, fGain(gain)
, fBias(bias)
, fKernelOffset(kernelOffset)
, fTileMode(tileMode)
, fConvolveAlpha(convolveAlpha) {
size_t size = (size_t) sk_64_mul(fKernelSize.width(), fKernelSize.height());
fKernel = new SkScalar[size];
memcpy(fKernel, kernel, size * sizeof(SkScalar));
SkASSERT(kernelSize.fWidth >= 1 && kernelSize.fHeight >= 1);
SkASSERT(kernelOffset.fX >= 0 && kernelOffset.fX < kernelSize.fWidth);
SkASSERT(kernelOffset.fY >= 0 && kernelOffset.fY < kernelSize.fHeight);
}
sk_sp<SkImageFilter> SkMatrixConvolutionImageFilter::Make(const SkISize& kernelSize,
const SkScalar* kernel,
SkScalar gain,
SkScalar bias,
const SkIPoint& kernelOffset,
TileMode tileMode,
bool convolveAlpha,
sk_sp<SkImageFilter> input,
const CropRect* cropRect) {
if (kernelSize.width() < 1 || kernelSize.height() < 1) {
return nullptr;
}
if (gMaxKernelSize / kernelSize.fWidth < kernelSize.fHeight) {
return nullptr;
}
if (!kernel) {
return nullptr;
}
if ((kernelOffset.fX < 0) || (kernelOffset.fX >= kernelSize.fWidth) ||
(kernelOffset.fY < 0) || (kernelOffset.fY >= kernelSize.fHeight)) {
return nullptr;
}
return sk_sp<SkImageFilter>(new SkMatrixConvolutionImageFilter(kernelSize, kernel, gain,
bias, kernelOffset,
tileMode, convolveAlpha,
std::move(input), cropRect));
}
sk_sp<SkFlattenable> SkMatrixConvolutionImageFilter::CreateProc(SkReadBuffer& buffer) {
SK_IMAGEFILTER_UNFLATTEN_COMMON(common, 1);
SkISize kernelSize;
kernelSize.fWidth = buffer.readInt();
kernelSize.fHeight = buffer.readInt();
const int count = buffer.getArrayCount();
const int64_t kernelArea = sk_64_mul(kernelSize.width(), kernelSize.height());
if (!buffer.validate(kernelArea == count)) {
return nullptr;
}
if (!buffer.validateCanReadN<SkScalar>(count)) {
return nullptr;
}
SkAutoSTArray<16, SkScalar> kernel(count);
if (!buffer.readScalarArray(kernel.get(), count)) {
return nullptr;
}
SkScalar gain = buffer.readScalar();
SkScalar bias = buffer.readScalar();
SkIPoint kernelOffset;
kernelOffset.fX = buffer.readInt();
kernelOffset.fY = buffer.readInt();
TileMode tileMode = buffer.read32LE(kLast_TileMode);
bool convolveAlpha = buffer.readBool();
if (!buffer.isValid()) {
return nullptr;
}
return Make(kernelSize, kernel.get(), gain, bias, kernelOffset, tileMode,
convolveAlpha, common.getInput(0), &common.cropRect());
}
void SkMatrixConvolutionImageFilter::flatten(SkWriteBuffer& buffer) const {
this->INHERITED::flatten(buffer);
buffer.writeInt(fKernelSize.fWidth);
buffer.writeInt(fKernelSize.fHeight);
buffer.writeScalarArray(fKernel, fKernelSize.fWidth * fKernelSize.fHeight);
buffer.writeScalar(fGain);
buffer.writeScalar(fBias);
buffer.writeInt(fKernelOffset.fX);
buffer.writeInt(fKernelOffset.fY);
buffer.writeInt((int) fTileMode);
buffer.writeBool(fConvolveAlpha);
}
SkMatrixConvolutionImageFilter::~SkMatrixConvolutionImageFilter() {
delete[] fKernel;
}
class UncheckedPixelFetcher {
public:
static inline SkPMColor fetch(const SkBitmap& src, int x, int y, const SkIRect& bounds) {
return *src.getAddr32(x, y);
}
};
class ClampPixelFetcher {
public:
static inline SkPMColor fetch(const SkBitmap& src, int x, int y, const SkIRect& bounds) {
x = SkTPin(x, bounds.fLeft, bounds.fRight - 1);
y = SkTPin(y, bounds.fTop, bounds.fBottom - 1);
return *src.getAddr32(x, y);
}
};
class RepeatPixelFetcher {
public:
static inline SkPMColor fetch(const SkBitmap& src, int x, int y, const SkIRect& bounds) {
x = (x - bounds.left()) % bounds.width() + bounds.left();
y = (y - bounds.top()) % bounds.height() + bounds.top();
if (x < bounds.left()) {
x += bounds.width();
}
if (y < bounds.top()) {
y += bounds.height();
}
return *src.getAddr32(x, y);
}
};
class ClampToBlackPixelFetcher {
public:
static inline SkPMColor fetch(const SkBitmap& src, int x, int y, const SkIRect& bounds) {
if (x < bounds.fLeft || x >= bounds.fRight || y < bounds.fTop || y >= bounds.fBottom) {
return 0;
} else {
return *src.getAddr32(x, y);
}
}
};
template<class PixelFetcher, bool convolveAlpha>
void SkMatrixConvolutionImageFilter::filterPixels(const SkBitmap& src,
SkBitmap* result,
SkIVector& offset,
const SkIRect& r,
const SkIRect& bounds) const {
SkIRect rect(r);
if (!rect.intersect(bounds)) {
return;
}
for (int y = rect.fTop; y < rect.fBottom; ++y) {
SkPMColor* dptr = result->getAddr32(rect.fLeft - offset.fX, y - offset.fY);
for (int x = rect.fLeft; x < rect.fRight; ++x) {
SkScalar sumA = 0, sumR = 0, sumG = 0, sumB = 0;
for (int cy = 0; cy < fKernelSize.fHeight; cy++) {
for (int cx = 0; cx < fKernelSize.fWidth; cx++) {
SkPMColor s = PixelFetcher::fetch(src,
x + cx - fKernelOffset.fX,
y + cy - fKernelOffset.fY,
bounds);
SkScalar k = fKernel[cy * fKernelSize.fWidth + cx];
if (convolveAlpha) {
sumA += SkGetPackedA32(s) * k;
}
sumR += SkGetPackedR32(s) * k;
sumG += SkGetPackedG32(s) * k;
sumB += SkGetPackedB32(s) * k;
}
}
int a = convolveAlpha
? SkClampMax(SkScalarFloorToInt(sumA * fGain + fBias), 255)
: 255;
int r = SkClampMax(SkScalarFloorToInt(sumR * fGain + fBias), a);
int g = SkClampMax(SkScalarFloorToInt(sumG * fGain + fBias), a);
int b = SkClampMax(SkScalarFloorToInt(sumB * fGain + fBias), a);
if (!convolveAlpha) {
a = SkGetPackedA32(PixelFetcher::fetch(src, x, y, bounds));
*dptr++ = SkPreMultiplyARGB(a, r, g, b);
} else {
*dptr++ = SkPackARGB32(a, r, g, b);
}
}
}
}
template<class PixelFetcher>
void SkMatrixConvolutionImageFilter::filterPixels(const SkBitmap& src,
SkBitmap* result,
SkIVector& offset,
const SkIRect& rect,
const SkIRect& bounds) const {
if (fConvolveAlpha) {
filterPixels<PixelFetcher, true>(src, result, offset, rect, bounds);
} else {
filterPixels<PixelFetcher, false>(src, result, offset, rect, bounds);
}
}
void SkMatrixConvolutionImageFilter::filterInteriorPixels(const SkBitmap& src,
SkBitmap* result,
SkIVector& offset,
const SkIRect& rect,
const SkIRect& bounds) const {
switch (fTileMode) {
case kRepeat_TileMode:
// In repeat mode, we still need to wrap the samples around the src
filterPixels<RepeatPixelFetcher>(src, result, offset, rect, bounds);
break;
case kClamp_TileMode:
case kClampToBlack_TileMode:
filterPixels<UncheckedPixelFetcher>(src, result, offset, rect, bounds);
break;
}
}
void SkMatrixConvolutionImageFilter::filterBorderPixels(const SkBitmap& src,
SkBitmap* result,
SkIVector& offset,
const SkIRect& rect,
const SkIRect& srcBounds) const {
switch (fTileMode) {
case kClamp_TileMode:
filterPixels<ClampPixelFetcher>(src, result, offset, rect, srcBounds);
break;
case kRepeat_TileMode:
filterPixels<RepeatPixelFetcher>(src, result, offset, rect, srcBounds);
break;
case kClampToBlack_TileMode:
filterPixels<ClampToBlackPixelFetcher>(src, result, offset, rect, srcBounds);
break;
}
}
// FIXME: This should be refactored to SkImageFilterUtils for
// use by other filters. For now, we assume the input is always
// premultiplied and unpremultiply it
static SkBitmap unpremultiply_bitmap(const SkBitmap& src) {
if (!src.getPixels()) {
return SkBitmap();
}
const SkImageInfo info = SkImageInfo::MakeN32(src.width(), src.height(), src.alphaType());
SkBitmap result;
if (!result.tryAllocPixels(info)) {
return SkBitmap();
}
for (int y = 0; y < src.height(); ++y) {
const uint32_t* srcRow = src.getAddr32(0, y);
uint32_t* dstRow = result.getAddr32(0, y);
for (int x = 0; x < src.width(); ++x) {
dstRow[x] = SkUnPreMultiply::PMColorToColor(srcRow[x]);
}
}
return result;
}
#if SK_SUPPORT_GPU
static GrTextureDomain::Mode convert_tilemodes(SkMatrixConvolutionImageFilter::TileMode tileMode) {
switch (tileMode) {
case SkMatrixConvolutionImageFilter::kClamp_TileMode:
return GrTextureDomain::kClamp_Mode;
case SkMatrixConvolutionImageFilter::kRepeat_TileMode:
return GrTextureDomain::kRepeat_Mode;
case SkMatrixConvolutionImageFilter::kClampToBlack_TileMode:
return GrTextureDomain::kDecal_Mode;
default:
SkASSERT(false);
}
return GrTextureDomain::kIgnore_Mode;
}
#endif
sk_sp<SkSpecialImage> SkMatrixConvolutionImageFilter::onFilterImage(SkSpecialImage* source,
const Context& ctx,
SkIPoint* offset) const {
SkIPoint inputOffset = SkIPoint::Make(0, 0);
sk_sp<SkSpecialImage> input(this->filterInput(0, source, ctx, &inputOffset));
if (!input) {
return nullptr;
}
SkIRect dstBounds;
input = this->applyCropRectAndPad(this->mapContext(ctx), input.get(), &inputOffset, &dstBounds);
if (!input) {
return nullptr;
}
const SkIRect originalSrcBounds = SkIRect::MakeXYWH(inputOffset.fX, inputOffset.fY,
input->width(), input->height());
SkIRect srcBounds = this->onFilterNodeBounds(dstBounds, ctx.ctm(), kReverse_MapDirection,
&originalSrcBounds);
if (kRepeat_TileMode == fTileMode) {
srcBounds = DetermineRepeatedSrcBound(srcBounds, fKernelOffset,
fKernelSize, originalSrcBounds);
} else {
if (!srcBounds.intersect(dstBounds)) {
return nullptr;
}
}
#if SK_SUPPORT_GPU
// Note: if the kernel is too big, the GPU path falls back to SW
if (source->isTextureBacked() &&
fKernelSize.width() * fKernelSize.height() <= MAX_KERNEL_SIZE) {
GrContext* context = source->getContext();
// Ensure the input is in the destination color space. Typically applyCropRect will have
// called pad_image to account for our dilation of bounds, so the result will already be
// moved to the destination color space. If a filter DAG avoids that, then we use this
// fall-back, which saves us from having to do the xform during the filter itself.
input = ImageToColorSpace(input.get(), ctx.outputProperties());
sk_sp<GrTextureProxy> inputProxy(input->asTextureProxyRef(context));
SkASSERT(inputProxy);
offset->fX = dstBounds.left();
offset->fY = dstBounds.top();
dstBounds.offset(-inputOffset);
srcBounds.offset(-inputOffset);
auto fp = GrMatrixConvolutionEffect::Make(std::move(inputProxy),
srcBounds,
fKernelSize,
fKernel,
fGain,
fBias,
fKernelOffset,
convert_tilemodes(fTileMode),
fConvolveAlpha);
if (!fp) {
return nullptr;
}
return DrawWithFP(context, std::move(fp), dstBounds, ctx.outputProperties());
}
#endif
SkBitmap inputBM;
if (!input->getROPixels(&inputBM)) {
return nullptr;
}
if (inputBM.colorType() != kN32_SkColorType) {
return nullptr;
}
if (!fConvolveAlpha && !inputBM.isOpaque()) {
inputBM = unpremultiply_bitmap(inputBM);
}
if (!inputBM.getPixels()) {
return nullptr;
}
const SkImageInfo info = SkImageInfo::MakeN32(dstBounds.width(), dstBounds.height(),
inputBM.alphaType());
SkBitmap dst;
if (!dst.tryAllocPixels(info)) {
return nullptr;
}
offset->fX = dstBounds.fLeft;
offset->fY = dstBounds.fTop;
dstBounds.offset(-inputOffset);
srcBounds.offset(-inputOffset);
SkIRect interior;
if (kRepeat_TileMode == fTileMode) {
// In repeat mode, the filterPixels calls will wrap around
// so we just need to render 'dstBounds'
interior = dstBounds;
} else {
interior = SkIRect::MakeXYWH(dstBounds.left() + fKernelOffset.fX,
dstBounds.top() + fKernelOffset.fY,
dstBounds.width() - fKernelSize.fWidth + 1,
dstBounds.height() - fKernelSize.fHeight + 1);
}
SkIRect top = SkIRect::MakeLTRB(dstBounds.left(), dstBounds.top(),
dstBounds.right(), interior.top());
SkIRect bottom = SkIRect::MakeLTRB(dstBounds.left(), interior.bottom(),
dstBounds.right(), dstBounds.bottom());
SkIRect left = SkIRect::MakeLTRB(dstBounds.left(), interior.top(),
interior.left(), interior.bottom());
SkIRect right = SkIRect::MakeLTRB(interior.right(), interior.top(),
dstBounds.right(), interior.bottom());
SkIVector dstContentOffset = { offset->fX - inputOffset.fX, offset->fY - inputOffset.fY };
this->filterBorderPixels(inputBM, &dst, dstContentOffset, top, srcBounds);
this->filterBorderPixels(inputBM, &dst, dstContentOffset, left, srcBounds);
this->filterInteriorPixels(inputBM, &dst, dstContentOffset, interior, srcBounds);
this->filterBorderPixels(inputBM, &dst, dstContentOffset, right, srcBounds);
this->filterBorderPixels(inputBM, &dst, dstContentOffset, bottom, srcBounds);
return SkSpecialImage::MakeFromRaster(SkIRect::MakeWH(dstBounds.width(), dstBounds.height()),
dst);
}
sk_sp<SkImageFilter> SkMatrixConvolutionImageFilter::onMakeColorSpace(SkColorSpaceXformer* xformer)
const {
SkASSERT(1 == this->countInputs());
sk_sp<SkImageFilter> input = xformer->apply(this->getInput(0));
if (input.get() != this->getInput(0)) {
return SkMatrixConvolutionImageFilter::Make(fKernelSize, fKernel, fGain, fBias,
fKernelOffset, fTileMode, fConvolveAlpha,
std::move(input), this->getCropRectIfSet());
}
return this->refMe();
}
SkIRect SkMatrixConvolutionImageFilter::onFilterNodeBounds(const SkIRect& src, const SkMatrix& ctm,
MapDirection dir,
const SkIRect* inputRect) const {
if (kReverse_MapDirection == dir && kRepeat_TileMode == fTileMode && inputRect) {
SkASSERT(inputRect);
return DetermineRepeatedSrcBound(src, fKernelOffset, fKernelSize, *inputRect);
}
SkIRect dst = src;
int w = fKernelSize.width() - 1, h = fKernelSize.height() - 1;
if (kReverse_MapDirection == dir) {
dst.adjust(-fKernelOffset.fX, -fKernelOffset.fY,
w - fKernelOffset.fX, h - fKernelOffset.fY);
} else {
dst.adjust(fKernelOffset.fX - w, fKernelOffset.fY - h, fKernelOffset.fX, fKernelOffset.fY);
}
return dst;
}
bool SkMatrixConvolutionImageFilter::affectsTransparentBlack() const {
// It seems that the only rational way for repeat sample mode to work is if the caller
// explicitly restricts the input in which case the input range is explicitly known and
// specified.
// TODO: is seems that this should be true for clamp mode too.
// For the other modes, because the kernel is applied in device-space, we have no idea what
// pixels it will affect in object-space.
return kRepeat_TileMode != fTileMode;
}
|