1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
|
/*
* Copyright 2012 The Android Open Source Project
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkMatrixConvolutionImageFilter.h"
#include "SkBitmap.h"
#include "SkColorPriv.h"
#include "SkFlattenableBuffers.h"
#include "SkRect.h"
#include "SkUnPreMultiply.h"
#if SK_SUPPORT_GPU
#include "gl/GrGLEffect.h"
#include "gl/GrGLEffectMatrix.h"
#include "effects/GrSingleTextureEffect.h"
#include "GrTBackendEffectFactory.h"
#include "GrTexture.h"
#include "SkMatrix.h"
#endif
SkMatrixConvolutionImageFilter::SkMatrixConvolutionImageFilter(const SkISize& kernelSize, const SkScalar* kernel, SkScalar gain, SkScalar bias, const SkIPoint& target, TileMode tileMode, bool convolveAlpha, SkImageFilter* input)
: INHERITED(input),
fKernelSize(kernelSize),
fGain(gain),
fBias(bias),
fTarget(target),
fTileMode(tileMode),
fConvolveAlpha(convolveAlpha) {
uint32_t size = fKernelSize.fWidth * fKernelSize.fHeight;
fKernel = SkNEW_ARRAY(SkScalar, size);
memcpy(fKernel, kernel, size * sizeof(SkScalar));
SkASSERT(kernelSize.fWidth >= 1 && kernelSize.fHeight >= 1);
SkASSERT(target.fX >= 0 && target.fX < kernelSize.fWidth);
SkASSERT(target.fY >= 0 && target.fY < kernelSize.fHeight);
}
SkMatrixConvolutionImageFilter::SkMatrixConvolutionImageFilter(SkFlattenableReadBuffer& buffer) : INHERITED(buffer) {
fKernelSize.fWidth = buffer.readInt();
fKernelSize.fHeight = buffer.readInt();
uint32_t size = fKernelSize.fWidth * fKernelSize.fHeight;
fKernel = SkNEW_ARRAY(SkScalar, size);
SkDEBUGCODE(uint32_t readSize = )buffer.readScalarArray(fKernel);
SkASSERT(readSize == size);
fGain = buffer.readScalar();
fBias = buffer.readScalar();
fTarget.fX = buffer.readInt();
fTarget.fY = buffer.readInt();
fTileMode = (TileMode) buffer.readInt();
fConvolveAlpha = buffer.readBool();
}
void SkMatrixConvolutionImageFilter::flatten(SkFlattenableWriteBuffer& buffer) const {
this->INHERITED::flatten(buffer);
buffer.writeInt(fKernelSize.fWidth);
buffer.writeInt(fKernelSize.fHeight);
buffer.writeScalarArray(fKernel, fKernelSize.fWidth * fKernelSize.fHeight);
buffer.writeScalar(fGain);
buffer.writeScalar(fBias);
buffer.writeInt(fTarget.fX);
buffer.writeInt(fTarget.fY);
buffer.writeInt((int) fTileMode);
buffer.writeBool(fConvolveAlpha);
}
SkMatrixConvolutionImageFilter::~SkMatrixConvolutionImageFilter() {
delete[] fKernel;
}
class UncheckedPixelFetcher {
public:
static inline SkPMColor fetch(const SkBitmap& src, int x, int y) {
return *src.getAddr32(x, y);
}
};
class ClampPixelFetcher {
public:
static inline SkPMColor fetch(const SkBitmap& src, int x, int y) {
x = SkClampMax(x, src.width() - 1);
y = SkClampMax(y, src.height() - 1);
return *src.getAddr32(x, y);
}
};
class RepeatPixelFetcher {
public:
static inline SkPMColor fetch(const SkBitmap& src, int x, int y) {
x %= src.width();
y %= src.height();
if (x < 0) {
x += src.width();
}
if (y < 0) {
y += src.height();
}
return *src.getAddr32(x, y);
}
};
class ClampToBlackPixelFetcher {
public:
static inline SkPMColor fetch(const SkBitmap& src, int x, int y) {
if (x < 0 || x >= src.width() || y < 0 || y >= src.height()) {
return 0;
} else {
return *src.getAddr32(x, y);
}
}
};
template<class PixelFetcher, bool convolveAlpha>
void SkMatrixConvolutionImageFilter::filterPixels(const SkBitmap& src, SkBitmap* result, const SkIRect& rect) {
for (int y = rect.fTop; y < rect.fBottom; ++y) {
SkPMColor* dptr = result->getAddr32(rect.fLeft, y);
for (int x = rect.fLeft; x < rect.fRight; ++x) {
SkScalar sumA = 0, sumR = 0, sumG = 0, sumB = 0;
for (int cy = 0; cy < fKernelSize.fHeight; cy++) {
for (int cx = 0; cx < fKernelSize.fWidth; cx++) {
SkPMColor s = PixelFetcher::fetch(src, x + cx - fTarget.fX, y + cy - fTarget.fY);
SkScalar k = fKernel[cy * fKernelSize.fWidth + cx];
if (convolveAlpha) {
sumA += SkScalarMul(SkIntToScalar(SkGetPackedA32(s)), k);
}
sumR += SkScalarMul(SkIntToScalar(SkGetPackedR32(s)), k);
sumG += SkScalarMul(SkIntToScalar(SkGetPackedG32(s)), k);
sumB += SkScalarMul(SkIntToScalar(SkGetPackedB32(s)), k);
}
}
int a = convolveAlpha
? SkClampMax(SkScalarFloorToInt(SkScalarMul(sumA, fGain) + fBias), 255)
: 255;
int r = SkClampMax(SkScalarFloorToInt(SkScalarMul(sumR, fGain) + fBias), a);
int g = SkClampMax(SkScalarFloorToInt(SkScalarMul(sumG, fGain) + fBias), a);
int b = SkClampMax(SkScalarFloorToInt(SkScalarMul(sumB, fGain) + fBias), a);
if (!convolveAlpha) {
a = SkGetPackedA32(PixelFetcher::fetch(src, x, y));
*dptr++ = SkPreMultiplyARGB(a, r, g, b);
} else {
*dptr++ = SkPackARGB32(a, r, g, b);
}
}
}
}
template<class PixelFetcher>
void SkMatrixConvolutionImageFilter::filterPixels(const SkBitmap& src, SkBitmap* result, const SkIRect& rect) {
if (fConvolveAlpha) {
filterPixels<PixelFetcher, true>(src, result, rect);
} else {
filterPixels<PixelFetcher, false>(src, result, rect);
}
}
void SkMatrixConvolutionImageFilter::filterInteriorPixels(const SkBitmap& src, SkBitmap* result, const SkIRect& rect) {
filterPixels<UncheckedPixelFetcher>(src, result, rect);
}
void SkMatrixConvolutionImageFilter::filterBorderPixels(const SkBitmap& src, SkBitmap* result, const SkIRect& rect) {
switch (fTileMode) {
case kClamp_TileMode:
filterPixels<ClampPixelFetcher>(src, result, rect);
break;
case kRepeat_TileMode:
filterPixels<RepeatPixelFetcher>(src, result, rect);
break;
case kClampToBlack_TileMode:
filterPixels<ClampToBlackPixelFetcher>(src, result, rect);
break;
}
}
// FIXME: This should be refactored to SkSingleInputImageFilter for
// use by other filters. For now, we assume the input is always
// premultiplied and unpremultiply it
static SkBitmap unpremultiplyBitmap(const SkBitmap& src)
{
SkAutoLockPixels alp(src);
if (!src.getPixels()) {
return SkBitmap();
}
SkBitmap result;
result.setConfig(src.config(), src.width(), src.height());
result.allocPixels();
if (!result.getPixels()) {
return SkBitmap();
}
for (int y = 0; y < src.height(); ++y) {
const uint32_t* srcRow = src.getAddr32(0, y);
uint32_t* dstRow = result.getAddr32(0, y);
for (int x = 0; x < src.width(); ++x) {
dstRow[x] = SkUnPreMultiply::PMColorToColor(srcRow[x]);
}
}
return result;
}
bool SkMatrixConvolutionImageFilter::onFilterImage(Proxy* proxy,
const SkBitmap& source,
const SkMatrix& matrix,
SkBitmap* result,
SkIPoint* loc) {
SkBitmap src = this->getInputResult(proxy, source, matrix, loc);
if (src.config() != SkBitmap::kARGB_8888_Config) {
return false;
}
if (!fConvolveAlpha && !src.isOpaque()) {
src = unpremultiplyBitmap(src);
}
SkAutoLockPixels alp(src);
if (!src.getPixels()) {
return false;
}
result->setConfig(src.config(), src.width(), src.height());
result->allocPixels();
SkIRect interior = SkIRect::MakeXYWH(fTarget.fX, fTarget.fY,
src.width() - fKernelSize.fWidth + 1,
src.height() - fKernelSize.fHeight + 1);
SkIRect top = SkIRect::MakeWH(src.width(), fTarget.fY);
SkIRect bottom = SkIRect::MakeLTRB(0, interior.bottom(),
src.width(), src.height());
SkIRect left = SkIRect::MakeXYWH(0, interior.top(),
fTarget.fX, interior.height());
SkIRect right = SkIRect::MakeLTRB(interior.right(), interior.top(),
src.width(), interior.bottom());
filterBorderPixels(src, result, top);
filterBorderPixels(src, result, left);
filterInteriorPixels(src, result, interior);
filterBorderPixels(src, result, right);
filterBorderPixels(src, result, bottom);
return true;
}
#if SK_SUPPORT_GPU
///////////////////////////////////////////////////////////////////////////////
class GrGLMatrixConvolutionEffect;
class GrMatrixConvolutionEffect : public GrSingleTextureEffect {
public:
typedef SkMatrixConvolutionImageFilter::TileMode TileMode;
GrMatrixConvolutionEffect(GrTexture*,
const SkISize& kernelSize,
const SkScalar* kernel,
SkScalar gain,
SkScalar bias,
const SkIPoint& target,
TileMode tileMode,
bool convolveAlpha);
virtual ~GrMatrixConvolutionEffect();
static const char* Name() { return "MatrixConvolution"; }
const SkISize& kernelSize() const { return fKernelSize; }
const float* target() const { return fTarget; }
const float* kernel() const { return fKernel; }
float gain() const { return fGain; }
float bias() const { return fBias; }
TileMode tileMode() const { return fTileMode; }
bool convolveAlpha() const { return fConvolveAlpha; }
typedef GrGLMatrixConvolutionEffect GLEffect;
virtual const GrBackendEffectFactory& getFactory() const SK_OVERRIDE;
virtual bool isEqual(const GrEffect&) const SK_OVERRIDE;
private:
SkISize fKernelSize;
float *fKernel;
float fGain;
float fBias;
float fTarget[2];
TileMode fTileMode;
bool fConvolveAlpha;
GR_DECLARE_EFFECT_TEST;
typedef GrSingleTextureEffect INHERITED;
};
class GrGLMatrixConvolutionEffect : public GrGLEffect {
public:
GrGLMatrixConvolutionEffect(const GrBackendEffectFactory& factory,
const GrEffect& effect);
virtual void emitCode(GrGLShaderBuilder*,
const GrEffectStage&,
EffectKey,
const char* vertexCoords,
const char* outputColor,
const char* inputColor,
const TextureSamplerArray&) SK_OVERRIDE;
static inline EffectKey GenKey(const GrEffectStage&, const GrGLCaps&);
virtual void setData(const GrGLUniformManager&, const GrEffectStage&) SK_OVERRIDE;
private:
typedef GrGLUniformManager::UniformHandle UniformHandle;
typedef SkMatrixConvolutionImageFilter::TileMode TileMode;
SkISize fKernelSize;
TileMode fTileMode;
bool fConvolveAlpha;
UniformHandle fKernelUni;
UniformHandle fImageIncrementUni;
UniformHandle fTargetUni;
UniformHandle fGainUni;
UniformHandle fBiasUni;
GrGLEffectMatrix fEffectMatrix;
typedef GrGLEffect INHERITED;
};
GrGLMatrixConvolutionEffect::GrGLMatrixConvolutionEffect(const GrBackendEffectFactory& factory,
const GrEffect& effect)
: INHERITED(factory)
, fKernelUni(GrGLUniformManager::kInvalidUniformHandle)
, fImageIncrementUni(GrGLUniformManager::kInvalidUniformHandle)
, fTargetUni(GrGLUniformManager::kInvalidUniformHandle)
, fGainUni(GrGLUniformManager::kInvalidUniformHandle)
, fBiasUni(GrGLUniformManager::kInvalidUniformHandle) {
const GrMatrixConvolutionEffect& m = static_cast<const GrMatrixConvolutionEffect&>(effect);
fKernelSize = m.kernelSize();
fTileMode = m.tileMode();
fConvolveAlpha = m.convolveAlpha();
}
static void appendTextureLookup(GrGLShaderBuilder* builder,
const GrGLShaderBuilder::TextureSampler& sampler,
const char* coord,
SkMatrixConvolutionImageFilter::TileMode tileMode) {
SkString* code = &builder->fFSCode;
SkString clampedCoord;
switch (tileMode) {
case SkMatrixConvolutionImageFilter::kClamp_TileMode:
clampedCoord.printf("clamp(%s, 0.0, 1.0)", coord);
coord = clampedCoord.c_str();
break;
case SkMatrixConvolutionImageFilter::kRepeat_TileMode:
clampedCoord.printf("fract(%s)", coord);
coord = clampedCoord.c_str();
break;
case SkMatrixConvolutionImageFilter::kClampToBlack_TileMode:
code->appendf("clamp(%s, 0.0, 1.0) != %s ? vec4(0, 0, 0, 0) : ", coord, coord);
break;
}
builder->appendTextureLookup(code, sampler, coord);
}
void GrGLMatrixConvolutionEffect::emitCode(GrGLShaderBuilder* builder,
const GrEffectStage&,
EffectKey key,
const char* vertexCoords,
const char* outputColor,
const char* inputColor,
const TextureSamplerArray& samplers) {
const char* coords;
fEffectMatrix.emitCodeMakeFSCoords2D(builder, key, vertexCoords, &coords);
fImageIncrementUni = builder->addUniform(GrGLShaderBuilder::kFragment_ShaderType,
kVec2f_GrSLType, "ImageIncrement");
fKernelUni = builder->addUniformArray(GrGLShaderBuilder::kFragment_ShaderType,
kFloat_GrSLType, "Kernel", fKernelSize.width() * fKernelSize.height());
fTargetUni = builder->addUniform(GrGLShaderBuilder::kFragment_ShaderType,
kVec2f_GrSLType, "Target");
fGainUni = builder->addUniform(GrGLShaderBuilder::kFragment_ShaderType,
kFloat_GrSLType, "Gain");
fBiasUni = builder->addUniform(GrGLShaderBuilder::kFragment_ShaderType,
kFloat_GrSLType, "Bias");
SkString* code = &builder->fFSCode;
const char* target = builder->getUniformCStr(fTargetUni);
const char* imgInc = builder->getUniformCStr(fImageIncrementUni);
const char* kernel = builder->getUniformCStr(fKernelUni);
const char* gain = builder->getUniformCStr(fGainUni);
const char* bias = builder->getUniformCStr(fBiasUni);
int kWidth = fKernelSize.width();
int kHeight = fKernelSize.height();
code->appendf("\t\tvec4 sum = vec4(0, 0, 0, 0);\n");
code->appendf("\t\tvec2 coord = %s - %s * %s;\n", coords, target, imgInc);
code->appendf("\t\tfor (int y = 0; y < %d; y++) {\n", kHeight);
code->appendf("\t\t\tfor (int x = 0; x < %d; x++) {\n", kWidth);
code->appendf("\t\t\t\tfloat k = %s[y * %d + x];\n", kernel, kWidth);
code->appendf("\t\t\t\tvec2 coord2 = coord + vec2(x, y) * %s;\n", imgInc);
code->appendf("\t\t\t\tvec4 c = ");
appendTextureLookup(builder, samplers[0], "coord2", fTileMode);
code->appendf(";\n");
if (!fConvolveAlpha) {
code->appendf("\t\t\t\tc.rgb /= c.a;\n");
}
code->appendf("\t\t\t\tsum += c * k;\n");
code->appendf("\t\t\t}\n");
code->appendf("\t\t}\n");
if (fConvolveAlpha) {
code->appendf("\t\t%s = sum * %s + %s;\n", outputColor, gain, bias);
code->appendf("\t\t%s.rgb = clamp(%s.rgb, 0.0, %s.a);\n", outputColor, outputColor, outputColor);
} else {
code->appendf("\t\tvec4 c = ");
appendTextureLookup(builder, samplers[0], coords, fTileMode);
code->appendf(";\n");
code->appendf("\t\t%s.a = c.a;\n", outputColor);
code->appendf("\t\t%s.rgb = sum.rgb * %s + %s;\n", outputColor, gain, bias);
code->appendf("\t\t%s.rgb *= %s.a;\n", outputColor, outputColor);
}
}
namespace {
int encodeXY(int x, int y) {
SkASSERT(x >= 1 && y >= 1 && x * y <= 32);
if (y < x)
return 0x40 | encodeXY(y, x);
else
return (0x40 >> x) | (y - x);
}
};
GrGLEffect::EffectKey GrGLMatrixConvolutionEffect::GenKey(const GrEffectStage& s, const GrGLCaps&) {
const GrMatrixConvolutionEffect& m =
static_cast<const GrMatrixConvolutionEffect&>(*s.getEffect());
EffectKey key = encodeXY(m.kernelSize().width(), m.kernelSize().height());
key |= m.tileMode() << 7;
key |= m.convolveAlpha() ? 1 << 9 : 0;
key <<= GrGLEffectMatrix::kKeyBits;
EffectKey matrixKey = GrGLEffectMatrix::GenKey(m.getMatrix(),
s.getCoordChangeMatrix(),
m.texture(0));
return key | matrixKey;
}
void GrGLMatrixConvolutionEffect::setData(const GrGLUniformManager& uman,
const GrEffectStage& stage) {
const GrMatrixConvolutionEffect& effect =
static_cast<const GrMatrixConvolutionEffect&>(*stage.getEffect());
GrTexture& texture = *effect.texture(0);
// the code we generated was for a specific kernel size
GrAssert(effect.kernelSize() == fKernelSize);
GrAssert(effect.tileMode() == fTileMode);
float imageIncrement[2];
imageIncrement[0] = 1.0f / texture.width();
imageIncrement[1] = 1.0f / texture.height();
uman.set2fv(fImageIncrementUni, 0, 1, imageIncrement);
uman.set2fv(fTargetUni, 0, 1, effect.target());
uman.set1fv(fKernelUni, 0, fKernelSize.width() * fKernelSize.height(), effect.kernel());
uman.set1f(fGainUni, effect.gain());
uman.set1f(fBiasUni, effect.bias());
fEffectMatrix.setData(uman,
effect.getMatrix(),
stage.getCoordChangeMatrix(),
effect.texture(0));
}
GrMatrixConvolutionEffect::GrMatrixConvolutionEffect(GrTexture* texture,
const SkISize& kernelSize,
const SkScalar* kernel,
SkScalar gain,
SkScalar bias,
const SkIPoint& target,
TileMode tileMode,
bool convolveAlpha)
: INHERITED(texture, MakeDivByTextureWHMatrix(texture)),
fKernelSize(kernelSize),
fGain(SkScalarToFloat(gain)),
fBias(SkScalarToFloat(bias) / 255.0f),
fTileMode(tileMode),
fConvolveAlpha(convolveAlpha) {
fKernel = new float[kernelSize.width() * kernelSize.height()];
for (int i = 0; i < kernelSize.width() * kernelSize.height(); i++) {
fKernel[i] = SkScalarToFloat(kernel[i]);
}
fTarget[0] = static_cast<float>(target.x());
fTarget[1] = static_cast<float>(target.y());
}
GrMatrixConvolutionEffect::~GrMatrixConvolutionEffect() {
delete[] fKernel;
}
const GrBackendEffectFactory& GrMatrixConvolutionEffect::getFactory() const {
return GrTBackendEffectFactory<GrMatrixConvolutionEffect>::getInstance();
}
bool GrMatrixConvolutionEffect::isEqual(const GrEffect& sBase) const {
const GrMatrixConvolutionEffect& s =
static_cast<const GrMatrixConvolutionEffect&>(sBase);
return INHERITED::isEqual(sBase) &&
fKernelSize == s.kernelSize() &&
!memcmp(fKernel, s.kernel(), fKernelSize.width() * fKernelSize.height() * sizeof(float)) &&
fGain == s.gain() &&
fBias == s.bias() &&
fTarget == s.target() &&
fTileMode == s.tileMode() &&
fConvolveAlpha == s.convolveAlpha();
}
GR_DEFINE_EFFECT_TEST(GrMatrixConvolutionEffect);
// A little bit less than the minimum # uniforms required by DX9SM2 (32).
// Allows for a 5x5 kernel (or 25x1, for that matter).
#define MAX_KERNEL_SIZE 25
GrEffect* GrMatrixConvolutionEffect::TestCreate(SkRandom* random,
GrContext* context,
GrTexture* textures[]) {
int texIdx = random->nextBool() ? GrEffectUnitTest::kSkiaPMTextureIdx :
GrEffectUnitTest::kAlphaTextureIdx;
int width = random->nextRangeU(1, MAX_KERNEL_SIZE);
int height = random->nextRangeU(1, MAX_KERNEL_SIZE / width);
SkISize kernelSize = SkISize::Make(width, height);
SkScalar* kernel = new SkScalar[width * height];
for (int i = 0; i < width * height; i++) {
kernel[i] = random->nextSScalar1();
}
SkScalar gain = random->nextSScalar1();
SkScalar bias = random->nextSScalar1();
SkIPoint target = SkIPoint::Make(random->nextRangeU(0, kernelSize.width()),
random->nextRangeU(0, kernelSize.height()));
TileMode tileMode = static_cast<TileMode>(random->nextRangeU(0, 2));
bool convolveAlpha = random->nextBool();
return SkNEW_ARGS(GrMatrixConvolutionEffect, (textures[texIdx],
kernelSize,
kernel,
gain,
bias,
target,
tileMode,
convolveAlpha));
}
bool SkMatrixConvolutionImageFilter::asNewEffect(GrEffect** effect,
GrTexture* texture) const {
bool ok = fKernelSize.width() * fKernelSize.height() <= MAX_KERNEL_SIZE;
if (ok && effect) {
*effect = SkNEW_ARGS(GrMatrixConvolutionEffect, (texture,
fKernelSize,
fKernel,
fGain,
fBias,
fTarget,
fTileMode,
fConvolveAlpha));
}
return ok;
}
///////////////////////////////////////////////////////////////////////////////
#endif
|