aboutsummaryrefslogtreecommitdiffhomepage
path: root/src/effects/SkLightingShader.cpp
blob: 7b55626f55a3d5ae5e6b287b5fe74c17be40b65d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592

/*
 * Copyright 2015 Google Inc.
 *
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */

#include "SkBitmapProcState.h"
#include "SkColor.h"
#include "SkEmptyShader.h"
#include "SkErrorInternals.h"
#include "SkLightingShader.h"
#include "SkMathPriv.h"
#include "SkReadBuffer.h"
#include "SkWriteBuffer.h"

////////////////////////////////////////////////////////////////////////////

/*
   SkLightingShader TODOs:
        support other than clamp mode
        allow 'diffuse' & 'normal' to be of different dimensions?
        support different light types
        support multiple lights
        enforce normal map is 4 channel
        use SkImages instead if SkBitmaps
        vec3 for ambient and light-color
        add dox for both lighting equation, and how we compute normal from bitmap

    To Test:
        non-opaque diffuse textures
        A8 diffuse textures
        down & upsampled draws
*/



/** \class SkLightingShaderImpl
    This subclass of shader applies lighting.
*/
class SK_API SkLightingShaderImpl : public SkShader {
public:

    /** Create a new lighting shader that use the provided normal map, light
        and ambient color to light the diffuse bitmap.
        @param diffuse the diffuse bitmap
        @param normal  the normal map
        @param light   the light applied to the normal map
        @param ambient the linear (unpremul) ambient light color
    */
    SkLightingShaderImpl(const SkBitmap& diffuse, const SkBitmap& normal,
                         const SkLightingShader::Light& light,
                         const SkColor ambient, const SkMatrix* localMatrix) 
        : INHERITED(localMatrix)
        , fDiffuseMap(diffuse)
        , fNormalMap(normal)
        , fLight(light)
        , fAmbientColor(ambient) {
        if (!fLight.fDirection.normalize()) {
            fLight.fDirection = SkPoint3::Make(0.0f, 0.0f, 1.0f);
        }
        SkColorSetA(fLight.fColor, 0xFF);
        SkColorSetA(fAmbientColor, 0xFF);
    }

    bool isOpaque() const override;

    bool asFragmentProcessor(GrContext*, const SkPaint& paint, const SkMatrix& viewM,
                             const SkMatrix* localMatrix, GrColor* color,
                             GrProcessorDataManager*, GrFragmentProcessor** fp) const override;

    size_t contextSize() const override;

    class LightingShaderContext : public SkShader::Context {
    public:
        // The context takes ownership of the states. It will call their destructors
        // but will NOT free the memory.
        LightingShaderContext(const SkLightingShaderImpl&, const ContextRec&,
                              SkBitmapProcState* diffuseState, SkBitmapProcState* normalState);
        ~LightingShaderContext() override;

        void shadeSpan(int x, int y, SkPMColor[], int count) override;

        uint32_t getFlags() const override { return fFlags; }

    private:
        SkBitmapProcState* fDiffuseState;
        SkBitmapProcState* fNormalState;
        uint32_t           fFlags;

        typedef SkShader::Context INHERITED;
    };

    SK_TO_STRING_OVERRIDE()
    SK_DECLARE_PUBLIC_FLATTENABLE_DESERIALIZATION_PROCS(SkLightingShaderImpl)

protected:
    void flatten(SkWriteBuffer&) const override;
    Context* onCreateContext(const ContextRec&, void*) const override;

private:
    SkBitmap                fDiffuseMap;
    SkBitmap                fNormalMap;
    SkLightingShader::Light fLight;
    SkColor                 fAmbientColor;  // linear (unpremul) color

    friend class SkLightingShader;

    typedef SkShader INHERITED;
};

////////////////////////////////////////////////////////////////////////////

#if SK_SUPPORT_GPU

#include "GrCoordTransform.h"
#include "GrFragmentProcessor.h"
#include "GrTextureAccess.h"
#include "gl/GrGLProcessor.h"
#include "gl/builders/GrGLProgramBuilder.h"
#include "SkGr.h"

class LightingFP : public GrFragmentProcessor {
public:
    LightingFP(GrTexture* diffuse, GrTexture* normal, const SkMatrix& matrix,
               SkVector3 lightDir, GrColor lightColor, GrColor ambientColor)
        : fDeviceTransform(kDevice_GrCoordSet, matrix)
        , fDiffuseTextureAccess(diffuse)
        , fNormalTextureAccess(normal)
        , fLightDir(lightDir)
        , fLightColor(lightColor)
        , fAmbientColor(ambientColor) {
        this->addCoordTransform(&fDeviceTransform);
        this->addTextureAccess(&fDiffuseTextureAccess);
        this->addTextureAccess(&fNormalTextureAccess);

        this->initClassID<LightingFP>();
    }

    class LightingGLFP : public GrGLFragmentProcessor {
    public:
        LightingGLFP() : fLightColor(GrColor_ILLEGAL), fAmbientColor(GrColor_ILLEGAL) {
            fLightDir.fX = 10000.0f;
        }

        void emitCode(EmitArgs& args) override {

            GrGLFragmentBuilder* fpb = args.fBuilder->getFragmentShaderBuilder();

            // add uniforms
            const char* lightDirUniName = NULL;
            fLightDirUni = args.fBuilder->addUniform(GrGLProgramBuilder::kFragment_Visibility,
                                                     kVec3f_GrSLType, kDefault_GrSLPrecision,
                                                     "LightDir", &lightDirUniName);

            const char* lightColorUniName = NULL;
            fLightColorUni = args.fBuilder->addUniform(GrGLProgramBuilder::kFragment_Visibility,
                                                       kVec4f_GrSLType, kDefault_GrSLPrecision,
                                                       "LightColor", &lightColorUniName);

            const char* ambientColorUniName = NULL;
            fAmbientColorUni = args.fBuilder->addUniform(GrGLProgramBuilder::kFragment_Visibility,
                                                         kVec4f_GrSLType, kDefault_GrSLPrecision,
                                                         "AmbientColor", &ambientColorUniName);

            fpb->codeAppend("vec4 diffuseColor = ");
            fpb->appendTextureLookupAndModulate(args.fInputColor, args.fSamplers[0], 
                                                args.fCoords[0].c_str(), 
                                                args.fCoords[0].getType());
            fpb->codeAppend(";");

            fpb->codeAppend("vec4 normalColor = ");
            fpb->appendTextureLookup(args.fSamplers[1],
                                     args.fCoords[0].c_str(), 
                                     args.fCoords[0].getType());
            fpb->codeAppend(";");

            fpb->codeAppend("vec3 normal = normalize(normalColor.rgb - vec3(0.5));");
            fpb->codeAppendf("vec3 lightDir = normalize(%s);", lightDirUniName);
            fpb->codeAppend("float NdotL = dot(normal, lightDir);");
            // diffuse light
            fpb->codeAppendf("vec3 result = %s.rgb*diffuseColor.rgb*NdotL;", lightColorUniName);
            // ambient light
            fpb->codeAppendf("result += %s.rgb;", ambientColorUniName);
            fpb->codeAppendf("%s = vec4(result.rgb, diffuseColor.a);", args.fOutputColor);
        }

        void setData(const GrGLProgramDataManager& pdman, const GrProcessor& proc) override {
            const LightingFP& lightingFP = proc.cast<LightingFP>();

            SkVector3 lightDir = lightingFP.lightDir();
            if (lightDir != fLightDir) {
                pdman.set3fv(fLightDirUni, 1, &lightDir.fX);
                fLightDir = lightDir;
            }

            GrColor lightColor = lightingFP.lightColor();
            if (lightColor != fLightColor) {
                GrGLfloat c[4];
                GrColorToRGBAFloat(lightColor, c);
                pdman.set4fv(fLightColorUni, 1, c);
                fLightColor = lightColor;
            }

            GrColor ambientColor = lightingFP.ambientColor();
            if (ambientColor != fAmbientColor) {
                GrGLfloat c[4];
                GrColorToRGBAFloat(ambientColor, c);
                pdman.set4fv(fAmbientColorUni, 1, c);
                fAmbientColor = ambientColor;
            }
        }

        static void GenKey(const GrProcessor& proc, const GrGLSLCaps&,
                           GrProcessorKeyBuilder* b) {
//            const LightingFP& lightingFP = proc.cast<LightingFP>();
            // only one shader generated currently
            b->add32(0x0);
        }

    private:
        SkVector3 fLightDir;
        GrGLProgramDataManager::UniformHandle fLightDirUni;

        GrColor fLightColor;
        GrGLProgramDataManager::UniformHandle fLightColorUni;

        GrColor fAmbientColor;
        GrGLProgramDataManager::UniformHandle fAmbientColorUni;
    };

    GrGLFragmentProcessor* createGLInstance() const override { return SkNEW(LightingGLFP); }

    void getGLProcessorKey(const GrGLSLCaps& caps, GrProcessorKeyBuilder* b) const override {
        LightingGLFP::GenKey(*this, caps, b);
    }

    const char* name() const override { return "LightingFP"; }

    void onComputeInvariantOutput(GrInvariantOutput* inout) const override {
        inout->mulByUnknownFourComponents();
    }

    SkVector3 lightDir() const { return fLightDir; }
    GrColor lightColor() const { return fLightColor; }
    GrColor ambientColor() const { return fAmbientColor; }

private:
    bool onIsEqual(const GrFragmentProcessor& proc) const override { 
        const LightingFP& lightingFP = proc.cast<LightingFP>();
        return fDeviceTransform == lightingFP.fDeviceTransform &&
               fDiffuseTextureAccess == lightingFP.fDiffuseTextureAccess &&
               fNormalTextureAccess == lightingFP.fNormalTextureAccess &&
               fLightDir == lightingFP.fLightDir &&
               fLightColor == lightingFP.fLightColor &&
               fAmbientColor == lightingFP.fAmbientColor;
    }

    GrCoordTransform fDeviceTransform;
    GrTextureAccess  fDiffuseTextureAccess;
    GrTextureAccess  fNormalTextureAccess;
    SkVector3        fLightDir;
    GrColor          fLightColor;
    GrColor          fAmbientColor;
};

////////////////////////////////////////////////////////////////////////////

bool SkLightingShaderImpl::asFragmentProcessor(GrContext* context, const SkPaint& paint, 
                                               const SkMatrix& viewM, const SkMatrix* localMatrix, 
                                               GrColor* color, GrProcessorDataManager*,
                                               GrFragmentProcessor** fp) const {
    // we assume diffuse and normal maps have same width and height
    // TODO: support different sizes
    SkASSERT(fDiffuseMap.width() == fNormalMap.width() &&
             fDiffuseMap.height() == fNormalMap.height());
    SkMatrix matrix;
    matrix.setIDiv(fDiffuseMap.width(), fDiffuseMap.height());

    SkMatrix lmInverse;
    if (!this->getLocalMatrix().invert(&lmInverse)) {
        return false;
    }
    if (localMatrix) {
        SkMatrix inv;
        if (!localMatrix->invert(&inv)) {
            return false;
        }
        lmInverse.postConcat(inv);
    }
    matrix.preConcat(lmInverse);

    // Must set wrap and filter on the sampler before requesting a texture. In two places below
    // we check the matrix scale factors to determine how to interpret the filter quality setting.
    // This completely ignores the complexity of the drawVertices case where explicit local coords
    // are provided by the caller.
    GrTextureParams::FilterMode textureFilterMode = GrTextureParams::kBilerp_FilterMode;
    switch (paint.getFilterQuality()) {
    case kNone_SkFilterQuality:
        textureFilterMode = GrTextureParams::kNone_FilterMode;
        break;
    case kLow_SkFilterQuality:
        textureFilterMode = GrTextureParams::kBilerp_FilterMode;
        break;
    case kMedium_SkFilterQuality:{                          
        SkMatrix matrix;
        matrix.setConcat(viewM, this->getLocalMatrix());
        if (matrix.getMinScale() < SK_Scalar1) {
            textureFilterMode = GrTextureParams::kMipMap_FilterMode;
        } else {
            // Don't trigger MIP level generation unnecessarily.
            textureFilterMode = GrTextureParams::kBilerp_FilterMode;
        }
        break;
    }
    case kHigh_SkFilterQuality:
    default:
        SkErrorInternals::SetError(kInvalidPaint_SkError,
            "Sorry, I don't understand the filtering "
            "mode you asked for.  Falling back to "
            "MIPMaps.");
        textureFilterMode = GrTextureParams::kMipMap_FilterMode;
        break;

    }

    // TODO: support other tile modes
    GrTextureParams params(kClamp_TileMode, textureFilterMode);
    SkAutoTUnref<GrTexture> diffuseTexture(GrRefCachedBitmapTexture(context, fDiffuseMap, &params));
    if (!diffuseTexture) {
        SkErrorInternals::SetError(kInternalError_SkError,
            "Couldn't convert bitmap to texture.");
        return false;
    }

    SkAutoTUnref<GrTexture> normalTexture(GrRefCachedBitmapTexture(context, fNormalMap, &params));
    if (!normalTexture) {
        SkErrorInternals::SetError(kInternalError_SkError,
            "Couldn't convert bitmap to texture.");
        return false;
    }

    GrColor lightColor = GrColorPackRGBA(SkColorGetR(fLight.fColor), SkColorGetG(fLight.fColor),
                                         SkColorGetB(fLight.fColor), SkColorGetA(fLight.fColor));
    GrColor ambientColor = GrColorPackRGBA(SkColorGetR(fAmbientColor), SkColorGetG(fAmbientColor),
                                           SkColorGetB(fAmbientColor), SkColorGetA(fAmbientColor));

    *fp = SkNEW_ARGS(LightingFP, (diffuseTexture, normalTexture, matrix,
                                  fLight.fDirection, lightColor, ambientColor));
    *color = GrColorPackA4(paint.getAlpha());
    return true;
}
#else

bool SkLightingShaderImpl::asFragmentProcessor(GrContext* context, const SkPaint& paint, 
                                               const SkMatrix& viewM, const SkMatrix* localMatrix, 
                                               GrColor* color, GrProcessorDataManager*,
                                               GrFragmentProcessor** fp) const {
    SkDEBUGFAIL("Should not call in GPU-less build");
    return false;
}

#endif

////////////////////////////////////////////////////////////////////////////

bool SkLightingShaderImpl::isOpaque() const {
    return fDiffuseMap.isOpaque();
}

size_t SkLightingShaderImpl::contextSize() const {
    return 2 * sizeof(SkBitmapProcState) + sizeof(LightingShaderContext);
}

SkLightingShaderImpl::LightingShaderContext::LightingShaderContext(const SkLightingShaderImpl& shader,
                                                                   const ContextRec& rec,
                                                                   SkBitmapProcState* diffuseState,
                                                                   SkBitmapProcState* normalState)
    : INHERITED(shader, rec)
    , fDiffuseState(diffuseState)
    , fNormalState(normalState)
{
    const SkPixmap& pixmap = fDiffuseState->fPixmap;
    bool isOpaque = pixmap.isOpaque();

    // update fFlags
    uint32_t flags = 0;
    if (isOpaque && (255 == this->getPaintAlpha())) {
        flags |= kOpaqueAlpha_Flag;
    }

    fFlags = flags;
}

SkLightingShaderImpl::LightingShaderContext::~LightingShaderContext() {
    // The bitmap proc states have been created outside of the context on memory that will be freed
    // elsewhere. Call the destructors but leave the freeing of the memory to the caller.
    fDiffuseState->~SkBitmapProcState();
    fNormalState->~SkBitmapProcState();
}

static inline int light(int light, int diff, SkScalar NdotL, int ambient) {
    int color = int(light * diff * NdotL + 255 * ambient);
    if (color <= 0) {
        return 0;
    } else if (color >= 255*255) {
        return 255;
    } else {
        return SkDiv255Round(color);
    }
}

// larger is better (fewer times we have to loop), but we shouldn't
// take up too much stack-space (each could here costs 16 bytes)
#define TMP_COUNT     16

void SkLightingShaderImpl::LightingShaderContext::shadeSpan(int x, int y,
                                                            SkPMColor result[], int count) {
    const SkLightingShaderImpl& lightShader = static_cast<const SkLightingShaderImpl&>(fShader);

    SkPMColor   tmpColor[TMP_COUNT], tmpColor2[TMP_COUNT];
    SkPMColor   tmpNormal[TMP_COUNT], tmpNormal2[TMP_COUNT];

    SkBitmapProcState::MatrixProc   diffMProc = fDiffuseState->getMatrixProc();
    SkBitmapProcState::SampleProc32 diffSProc = fDiffuseState->getSampleProc32();

    SkBitmapProcState::MatrixProc   normalMProc = fNormalState->getMatrixProc();
    SkBitmapProcState::SampleProc32 normalSProc = fNormalState->getSampleProc32();

    SkASSERT(fDiffuseState->fPixmap.addr());
    SkASSERT(fNormalState->fPixmap.addr());

    SkPoint3 norm;
    SkScalar NdotL;
    int r, g, b;

    do {
        int n = count;
        if (n > TMP_COUNT) {
            n = TMP_COUNT;
        }

        diffMProc(*fDiffuseState, tmpColor, n, x, y);
        diffSProc(*fDiffuseState, tmpColor, n, tmpColor2);

        normalMProc(*fNormalState, tmpNormal, n, x, y);
        normalSProc(*fNormalState, tmpNormal, n, tmpNormal2);

        for (int i = 0; i < n; ++i) {
            SkASSERT(0xFF == SkColorGetA(tmpNormal2[i]));  // opaque -> unpremul
            norm.set(SkIntToScalar(SkGetPackedR32(tmpNormal2[i]))-127.0f,
                     SkIntToScalar(SkGetPackedG32(tmpNormal2[i]))-127.0f,
                     SkIntToScalar(SkGetPackedB32(tmpNormal2[i]))-127.0f);
            norm.normalize();

            SkColor diffColor = SkUnPreMultiply::PMColorToColor(tmpColor2[i]);
            NdotL = norm.dot(lightShader.fLight.fDirection);

            // This is all done in linear unpremul color space
            r = light(SkColorGetR(lightShader.fLight.fColor), SkColorGetR(diffColor), NdotL, 
                      SkColorGetR(lightShader.fAmbientColor));
            g = light(SkColorGetG(lightShader.fLight.fColor), SkColorGetG(diffColor), NdotL, 
                      SkColorGetG(lightShader.fAmbientColor));
            b = light(SkColorGetB(lightShader.fLight.fColor), SkColorGetB(diffColor), NdotL, 
                      SkColorGetB(lightShader.fAmbientColor));

            result[i] = SkPreMultiplyARGB(SkColorGetA(diffColor), r, g, b);
        }

        result += n;
        x += n;
        count -= n;
    } while (count > 0);
}

////////////////////////////////////////////////////////////////////////////

#ifndef SK_IGNORE_TO_STRING
void SkLightingShaderImpl::toString(SkString* str) const {
    str->appendf("LightingShader: ()");
}
#endif

SkFlattenable* SkLightingShaderImpl::CreateProc(SkReadBuffer& buf) {
    SkMatrix localMatrix;
    buf.readMatrix(&localMatrix);

    SkBitmap diffuse;
    if (!buf.readBitmap(&diffuse)) {
        return NULL;
    }
    diffuse.setImmutable();

    SkBitmap normal;
    if (!buf.readBitmap(&normal)) {
        return NULL;
    }
    normal.setImmutable();

    SkLightingShader::Light light;
    if (!buf.readScalarArray(&light.fDirection.fX, 3)) {
        return NULL;
    }
    light.fColor = buf.readColor();

    SkColor ambient = buf.readColor();

    return SkNEW_ARGS(SkLightingShaderImpl, (diffuse, normal, light, ambient, &localMatrix));
}

void SkLightingShaderImpl::flatten(SkWriteBuffer& buf) const {
    buf.writeMatrix(this->getLocalMatrix());

    buf.writeBitmap(fDiffuseMap);
    buf.writeBitmap(fNormalMap);
    buf.writeScalarArray(&fLight.fDirection.fX, 3);
    buf.writeColor(fLight.fColor);
    buf.writeColor(fAmbientColor);
}

SkShader::Context* SkLightingShaderImpl::onCreateContext(const ContextRec& rec,
                                                         void* storage) const {

    SkMatrix totalInverse;
    // Do this first, so we know the matrix can be inverted.
    if (!this->computeTotalInverse(rec, &totalInverse)) {
        return NULL;
    }

    void* diffuseStateStorage = (char*)storage + sizeof(LightingShaderContext);
    SkBitmapProcState* diffuseState = SkNEW_PLACEMENT(diffuseStateStorage, SkBitmapProcState);
    SkASSERT(diffuseState);

    diffuseState->fTileModeX = SkShader::kClamp_TileMode;
    diffuseState->fTileModeY = SkShader::kClamp_TileMode;
    diffuseState->fOrigBitmap = fDiffuseMap;
    if (!diffuseState->chooseProcs(totalInverse, *rec.fPaint)) {
        diffuseState->~SkBitmapProcState();
        return NULL;
    }

    void* normalStateStorage = (char*)storage + sizeof(LightingShaderContext) + sizeof(SkBitmapProcState);
    SkBitmapProcState* normalState = SkNEW_PLACEMENT(normalStateStorage, SkBitmapProcState);
    SkASSERT(normalState);

    normalState->fTileModeX = SkShader::kClamp_TileMode;
    normalState->fTileModeY = SkShader::kClamp_TileMode;
    normalState->fOrigBitmap = fNormalMap;
    if (!normalState->chooseProcs(totalInverse, *rec.fPaint)) {
        diffuseState->~SkBitmapProcState();
        normalState->~SkBitmapProcState();
        return NULL;
    }

    return SkNEW_PLACEMENT_ARGS(storage, LightingShaderContext, (*this, rec,
                                                                 diffuseState, normalState));
}

///////////////////////////////////////////////////////////////////////////////

static bool bitmap_is_too_big(const SkBitmap& bm) {
    // SkBitmapProcShader stores bitmap coordinates in a 16bit buffer, as it
    // communicates between its matrix-proc and its sampler-proc. Until we can
    // widen that, we have to reject bitmaps that are larger.
    //
    static const int kMaxSize = 65535;

    return bm.width() > kMaxSize || bm.height() > kMaxSize;
}

SkShader* SkLightingShader::Create(const SkBitmap& diffuse, const SkBitmap& normal,
                                   const SkLightingShader::Light& light,
                                   const SkColor ambient,
                                   const SkMatrix* localMatrix) {
    if (diffuse.isNull() || bitmap_is_too_big(diffuse) ||
        normal.isNull() || bitmap_is_too_big(normal) ||
        diffuse.width() != normal.width() ||
        diffuse.height() != normal.height()) {
        return nullptr;
    }

    return SkNEW_ARGS(SkLightingShaderImpl, (diffuse, normal, light, ambient, localMatrix));
}

///////////////////////////////////////////////////////////////////////////////

SK_DEFINE_FLATTENABLE_REGISTRAR_GROUP_START(SkLightingShader)
    SK_DEFINE_FLATTENABLE_REGISTRAR_ENTRY(SkLightingShaderImpl)
SK_DEFINE_FLATTENABLE_REGISTRAR_GROUP_END

///////////////////////////////////////////////////////////////////////////////