1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
|
/*
* Copyright 2006 The Android Open Source Project
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkDashPathEffect.h"
#include "SkDashImpl.h"
#include "SkDashPathPriv.h"
#include "SkFlattenablePriv.h"
#include "SkReadBuffer.h"
#include "SkStrokeRec.h"
#include "SkTo.h"
#include "SkWriteBuffer.h"
SkDashImpl::SkDashImpl(const SkScalar intervals[], int count, SkScalar phase)
: fPhase(0)
, fInitialDashLength(-1)
, fInitialDashIndex(0)
, fIntervalLength(0) {
SkASSERT(intervals);
SkASSERT(count > 1 && SkIsAlign2(count));
fIntervals = (SkScalar*)sk_malloc_throw(sizeof(SkScalar) * count);
fCount = count;
for (int i = 0; i < count; i++) {
fIntervals[i] = intervals[i];
}
// set the internal data members
SkDashPath::CalcDashParameters(phase, fIntervals, fCount,
&fInitialDashLength, &fInitialDashIndex, &fIntervalLength, &fPhase);
}
SkDashImpl::~SkDashImpl() {
sk_free(fIntervals);
}
bool SkDashImpl::filterPath(SkPath* dst, const SkPath& src, SkStrokeRec* rec,
const SkRect* cullRect) const {
return SkDashPath::InternalFilter(dst, src, rec, cullRect, fIntervals, fCount,
fInitialDashLength, fInitialDashIndex, fIntervalLength);
}
static void outset_for_stroke(SkRect* rect, const SkStrokeRec& rec) {
SkScalar radius = SkScalarHalf(rec.getWidth());
if (0 == radius) {
radius = SK_Scalar1; // hairlines
}
if (SkPaint::kMiter_Join == rec.getJoin()) {
radius *= rec.getMiter();
}
rect->outset(radius, radius);
}
// Attempt to trim the line to minimally cover the cull rect (currently
// only works for horizontal and vertical lines).
// Return true if processing should continue; false otherwise.
static bool cull_line(SkPoint* pts, const SkStrokeRec& rec,
const SkMatrix& ctm, const SkRect* cullRect,
const SkScalar intervalLength) {
if (nullptr == cullRect) {
SkASSERT(false); // Shouldn't ever occur in practice
return false;
}
SkScalar dx = pts[1].x() - pts[0].x();
SkScalar dy = pts[1].y() - pts[0].y();
if ((dx && dy) || (!dx && !dy)) {
return false;
}
SkRect bounds = *cullRect;
outset_for_stroke(&bounds, rec);
// cullRect is in device space while pts are in the local coordinate system
// defined by the ctm. We want our answer in the local coordinate system.
SkASSERT(ctm.rectStaysRect());
SkMatrix inv;
if (!ctm.invert(&inv)) {
return false;
}
inv.mapRect(&bounds);
if (dx) {
SkASSERT(dx && !dy);
SkScalar minX = pts[0].fX;
SkScalar maxX = pts[1].fX;
if (dx < 0) {
SkTSwap(minX, maxX);
}
SkASSERT(minX < maxX);
if (maxX <= bounds.fLeft || minX >= bounds.fRight) {
return false;
}
// Now we actually perform the chop, removing the excess to the left and
// right of the bounds (keeping our new line "in phase" with the dash,
// hence the (mod intervalLength).
if (minX < bounds.fLeft) {
minX = bounds.fLeft - SkScalarMod(bounds.fLeft - minX, intervalLength);
}
if (maxX > bounds.fRight) {
maxX = bounds.fRight + SkScalarMod(maxX - bounds.fRight, intervalLength);
}
SkASSERT(maxX > minX);
if (dx < 0) {
SkTSwap(minX, maxX);
}
pts[0].fX = minX;
pts[1].fX = maxX;
} else {
SkASSERT(dy && !dx);
SkScalar minY = pts[0].fY;
SkScalar maxY = pts[1].fY;
if (dy < 0) {
SkTSwap(minY, maxY);
}
SkASSERT(minY < maxY);
if (maxY <= bounds.fTop || minY >= bounds.fBottom) {
return false;
}
// Now we actually perform the chop, removing the excess to the top and
// bottom of the bounds (keeping our new line "in phase" with the dash,
// hence the (mod intervalLength).
if (minY < bounds.fTop) {
minY = bounds.fTop - SkScalarMod(bounds.fTop - minY, intervalLength);
}
if (maxY > bounds.fBottom) {
maxY = bounds.fBottom + SkScalarMod(maxY - bounds.fBottom, intervalLength);
}
SkASSERT(maxY > minY);
if (dy < 0) {
SkTSwap(minY, maxY);
}
pts[0].fY = minY;
pts[1].fY = maxY;
}
return true;
}
// Currently asPoints is more restrictive then it needs to be. In the future
// we need to:
// allow kRound_Cap capping (could allow rotations in the matrix with this)
// allow paths to be returned
bool SkDashImpl::asPoints(PointData* results, const SkPath& src, const SkStrokeRec& rec,
const SkMatrix& matrix, const SkRect* cullRect) const {
// width < 0 -> fill && width == 0 -> hairline so requiring width > 0 rules both out
if (0 >= rec.getWidth()) {
return false;
}
// TODO: this next test could be eased up. We could allow any number of
// intervals as long as all the ons match and all the offs match.
// Additionally, they do not necessarily need to be integers.
// We cannot allow arbitrary intervals since we want the returned points
// to be uniformly sized.
if (fCount != 2 ||
!SkScalarNearlyEqual(fIntervals[0], fIntervals[1]) ||
!SkScalarIsInt(fIntervals[0]) ||
!SkScalarIsInt(fIntervals[1])) {
return false;
}
SkPoint pts[2];
if (!src.isLine(pts)) {
return false;
}
// TODO: this test could be eased up to allow circles
if (SkPaint::kButt_Cap != rec.getCap()) {
return false;
}
// TODO: this test could be eased up for circles. Rotations could be allowed.
if (!matrix.rectStaysRect()) {
return false;
}
// See if the line can be limited to something plausible.
if (!cull_line(pts, rec, matrix, cullRect, fIntervalLength)) {
return false;
}
SkScalar length = SkPoint::Distance(pts[1], pts[0]);
SkVector tangent = pts[1] - pts[0];
if (tangent.isZero()) {
return false;
}
tangent.scale(SkScalarInvert(length));
// TODO: make this test for horizontal & vertical lines more robust
bool isXAxis = true;
if (SkScalarNearlyEqual(SK_Scalar1, tangent.fX) ||
SkScalarNearlyEqual(-SK_Scalar1, tangent.fX)) {
results->fSize.set(SkScalarHalf(fIntervals[0]), SkScalarHalf(rec.getWidth()));
} else if (SkScalarNearlyEqual(SK_Scalar1, tangent.fY) ||
SkScalarNearlyEqual(-SK_Scalar1, tangent.fY)) {
results->fSize.set(SkScalarHalf(rec.getWidth()), SkScalarHalf(fIntervals[0]));
isXAxis = false;
} else if (SkPaint::kRound_Cap != rec.getCap()) {
// Angled lines don't have axis-aligned boxes.
return false;
}
if (results) {
results->fFlags = 0;
SkScalar clampedInitialDashLength = SkMinScalar(length, fInitialDashLength);
if (SkPaint::kRound_Cap == rec.getCap()) {
results->fFlags |= PointData::kCircles_PointFlag;
}
results->fNumPoints = 0;
SkScalar len2 = length;
if (clampedInitialDashLength > 0 || 0 == fInitialDashIndex) {
SkASSERT(len2 >= clampedInitialDashLength);
if (0 == fInitialDashIndex) {
if (clampedInitialDashLength > 0) {
if (clampedInitialDashLength >= fIntervals[0]) {
++results->fNumPoints; // partial first dash
}
len2 -= clampedInitialDashLength;
}
len2 -= fIntervals[1]; // also skip first space
if (len2 < 0) {
len2 = 0;
}
} else {
len2 -= clampedInitialDashLength; // skip initial partial empty
}
}
// Too many midpoints can cause results->fNumPoints to overflow or
// otherwise cause the results->fPoints allocation below to OOM.
// Cap it to a sane value.
SkScalar numIntervals = len2 / fIntervalLength;
if (!SkScalarIsFinite(numIntervals) || numIntervals > SkDashPath::kMaxDashCount) {
return false;
}
int numMidPoints = SkScalarFloorToInt(numIntervals);
results->fNumPoints += numMidPoints;
len2 -= numMidPoints * fIntervalLength;
bool partialLast = false;
if (len2 > 0) {
if (len2 < fIntervals[0]) {
partialLast = true;
} else {
++numMidPoints;
++results->fNumPoints;
}
}
results->fPoints = new SkPoint[results->fNumPoints];
SkScalar distance = 0;
int curPt = 0;
if (clampedInitialDashLength > 0 || 0 == fInitialDashIndex) {
SkASSERT(clampedInitialDashLength <= length);
if (0 == fInitialDashIndex) {
if (clampedInitialDashLength > 0) {
// partial first block
SkASSERT(SkPaint::kRound_Cap != rec.getCap()); // can't handle partial circles
SkScalar x = pts[0].fX + tangent.fX * SkScalarHalf(clampedInitialDashLength);
SkScalar y = pts[0].fY + tangent.fY * SkScalarHalf(clampedInitialDashLength);
SkScalar halfWidth, halfHeight;
if (isXAxis) {
halfWidth = SkScalarHalf(clampedInitialDashLength);
halfHeight = SkScalarHalf(rec.getWidth());
} else {
halfWidth = SkScalarHalf(rec.getWidth());
halfHeight = SkScalarHalf(clampedInitialDashLength);
}
if (clampedInitialDashLength < fIntervals[0]) {
// This one will not be like the others
results->fFirst.addRect(x - halfWidth, y - halfHeight,
x + halfWidth, y + halfHeight);
} else {
SkASSERT(curPt < results->fNumPoints);
results->fPoints[curPt].set(x, y);
++curPt;
}
distance += clampedInitialDashLength;
}
distance += fIntervals[1]; // skip over the next blank block too
} else {
distance += clampedInitialDashLength;
}
}
if (0 != numMidPoints) {
distance += SkScalarHalf(fIntervals[0]);
for (int i = 0; i < numMidPoints; ++i) {
SkScalar x = pts[0].fX + tangent.fX * distance;
SkScalar y = pts[0].fY + tangent.fY * distance;
SkASSERT(curPt < results->fNumPoints);
results->fPoints[curPt].set(x, y);
++curPt;
distance += fIntervalLength;
}
distance -= SkScalarHalf(fIntervals[0]);
}
if (partialLast) {
// partial final block
SkASSERT(SkPaint::kRound_Cap != rec.getCap()); // can't handle partial circles
SkScalar temp = length - distance;
SkASSERT(temp < fIntervals[0]);
SkScalar x = pts[0].fX + tangent.fX * (distance + SkScalarHalf(temp));
SkScalar y = pts[0].fY + tangent.fY * (distance + SkScalarHalf(temp));
SkScalar halfWidth, halfHeight;
if (isXAxis) {
halfWidth = SkScalarHalf(temp);
halfHeight = SkScalarHalf(rec.getWidth());
} else {
halfWidth = SkScalarHalf(rec.getWidth());
halfHeight = SkScalarHalf(temp);
}
results->fLast.addRect(x - halfWidth, y - halfHeight,
x + halfWidth, y + halfHeight);
}
SkASSERT(curPt == results->fNumPoints);
}
return true;
}
SkPathEffect::DashType SkDashImpl::asADash(DashInfo* info) const {
if (info) {
if (info->fCount >= fCount && info->fIntervals) {
memcpy(info->fIntervals, fIntervals, fCount * sizeof(SkScalar));
}
info->fCount = fCount;
info->fPhase = fPhase;
}
return kDash_DashType;
}
void SkDashImpl::flatten(SkWriteBuffer& buffer) const {
buffer.writeScalar(fPhase);
buffer.writeScalarArray(fIntervals, fCount);
}
sk_sp<SkFlattenable> SkDashImpl::CreateProc(SkReadBuffer& buffer) {
const SkScalar phase = buffer.readScalar();
uint32_t count = buffer.getArrayCount();
// Don't allocate gigantic buffers if there's not data for them.
if (!buffer.validateCanReadN<SkScalar>(count)) {
return nullptr;
}
SkAutoSTArray<32, SkScalar> intervals(count);
if (buffer.readScalarArray(intervals.get(), count)) {
return SkDashPathEffect::Make(intervals.get(), SkToInt(count), phase);
}
return nullptr;
}
//////////////////////////////////////////////////////////////////////////////////////////////////
sk_sp<SkPathEffect> SkDashPathEffect::Make(const SkScalar intervals[], int count, SkScalar phase) {
if (!SkDashPath::ValidDashPath(phase, intervals, count)) {
return nullptr;
}
return sk_sp<SkPathEffect>(new SkDashImpl(intervals, count, phase));
}
|