1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
|
/*
* Copyright 2006 The Android Open Source Project
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkCornerPathEffect.h"
#include "SkPath.h"
#include "SkPoint.h"
#include "SkFlattenableBuffers.h"
SkCornerPathEffect::SkCornerPathEffect(SkScalar radius) : fRadius(radius) {}
SkCornerPathEffect::~SkCornerPathEffect() {}
static bool ComputeStep(const SkPoint& a, const SkPoint& b, SkScalar radius,
SkPoint* step) {
SkScalar dist = SkPoint::Distance(a, b);
step->set(b.fX - a.fX, b.fY - a.fY);
if (dist <= radius * 2) {
step->scale(SK_ScalarHalf);
return false;
} else {
step->scale(SkScalarDiv(radius, dist));
return true;
}
}
bool SkCornerPathEffect::filterPath(SkPath* dst, const SkPath& src,
SkStrokeRec*, const SkRect*) const {
if (0 == fRadius) {
return false;
}
SkPath::Iter iter(src, false);
SkPath::Verb verb, prevVerb = (SkPath::Verb)-1;
SkPoint pts[4];
bool closed;
SkPoint moveTo, lastCorner;
SkVector firstStep, step;
bool prevIsValid = true;
// to avoid warnings
moveTo.set(0, 0);
firstStep.set(0, 0);
lastCorner.set(0, 0);
for (;;) {
switch (verb = iter.next(pts, false)) {
case SkPath::kMove_Verb:
// close out the previous (open) contour
if (SkPath::kLine_Verb == prevVerb) {
dst->lineTo(lastCorner);
}
closed = iter.isClosedContour();
if (closed) {
moveTo = pts[0];
prevIsValid = false;
} else {
dst->moveTo(pts[0]);
prevIsValid = true;
}
break;
case SkPath::kLine_Verb: {
bool drawSegment = ComputeStep(pts[0], pts[1], fRadius, &step);
// prev corner
if (!prevIsValid) {
dst->moveTo(moveTo + step);
prevIsValid = true;
} else {
dst->quadTo(pts[0].fX, pts[0].fY, pts[0].fX + step.fX,
pts[0].fY + step.fY);
}
if (drawSegment) {
dst->lineTo(pts[1].fX - step.fX, pts[1].fY - step.fY);
}
lastCorner = pts[1];
prevIsValid = true;
break;
}
case SkPath::kQuad_Verb:
// TBD - just replicate the curve for now
if (!prevIsValid) {
dst->moveTo(pts[0]);
prevIsValid = true;
}
dst->quadTo(pts[1], pts[2]);
lastCorner = pts[2];
firstStep.set(0, 0);
break;
case SkPath::kCubic_Verb:
if (!prevIsValid) {
dst->moveTo(pts[0]);
prevIsValid = true;
}
// TBD - just replicate the curve for now
dst->cubicTo(pts[1], pts[2], pts[3]);
lastCorner = pts[3];
firstStep.set(0, 0);
break;
case SkPath::kClose_Verb:
if (firstStep.fX || firstStep.fY) {
dst->quadTo(lastCorner.fX, lastCorner.fY,
lastCorner.fX + firstStep.fX,
lastCorner.fY + firstStep.fY);
}
dst->close();
break;
case SkPath::kConic_Verb:
SkASSERT(0);
break;
case SkPath::kDone_Verb:
goto DONE;
}
if (SkPath::kMove_Verb == prevVerb) {
firstStep = step;
}
prevVerb = verb;
}
DONE:
return true;
}
void SkCornerPathEffect::flatten(SkFlattenableWriteBuffer& buffer) const {
this->INHERITED::flatten(buffer);
buffer.writeScalar(fRadius);
}
SkCornerPathEffect::SkCornerPathEffect(SkFlattenableReadBuffer& buffer) {
fRadius = buffer.readScalar();
}
|