aboutsummaryrefslogtreecommitdiffhomepage
path: root/src/effects/SkColorMatrixFilter.cpp
blob: 319617016c20dec09b32edd773d75747d435458a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
/*
 * Copyright 2011 Google Inc.
 *
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */

#include "SkColorMatrixFilter.h"
#include "SkColorMatrix.h"
#include "SkColorPriv.h"
#include "SkPMFloat.h"
#include "SkReadBuffer.h"
#include "SkWriteBuffer.h"
#include "SkUnPreMultiply.h"
#include "SkString.h"

#define SK_PMORDER_INDEX_A  (SK_A32_SHIFT / 8)
#define SK_PMORDER_INDEX_R  (SK_R32_SHIFT / 8)
#define SK_PMORDER_INDEX_G  (SK_G32_SHIFT / 8)
#define SK_PMORDER_INDEX_B  (SK_B32_SHIFT / 8)

static void transpose_to_pmorder(float dst[20], const float src[20]) {
    const float* srcR = src + 0;
    const float* srcG = src + 5;
    const float* srcB = src + 10;
    const float* srcA = src + 15;

    for (int i = 0; i < 20; i += 4) {
        dst[i + SK_PMORDER_INDEX_A] = *srcA++;
        dst[i + SK_PMORDER_INDEX_R] = *srcR++;
        dst[i + SK_PMORDER_INDEX_G] = *srcG++;
        dst[i + SK_PMORDER_INDEX_B] = *srcB++;
    }
}

static int32_t rowmul4(const int32_t array[], unsigned r, unsigned g,
                          unsigned b, unsigned a) {
    return array[0] * r + array[1] * g  + array[2] * b + array[3] * a + array[4];
}

static int32_t rowmul3(const int32_t array[], unsigned r, unsigned g,
                       unsigned b) {
    return array[0] * r + array[1] * g  + array[2] * b + array[4];
}

static void General(const SkColorMatrixFilter::State& state,
                    unsigned r, unsigned g, unsigned b, unsigned a,
                    int32_t* SK_RESTRICT result) {
    const int32_t* SK_RESTRICT array = state.fArray;
    const int shift = state.fShift;

    result[0] = rowmul4(&array[0], r, g, b, a) >> shift;
    result[1] = rowmul4(&array[5], r, g, b, a) >> shift;
    result[2] = rowmul4(&array[10], r, g, b, a) >> shift;
    result[3] = rowmul4(&array[15], r, g, b, a) >> shift;
}

static void General16(const SkColorMatrixFilter::State& state,
                      unsigned r, unsigned g, unsigned b, unsigned a,
                      int32_t* SK_RESTRICT result) {
    const int32_t* SK_RESTRICT array = state.fArray;

    result[0] = rowmul4(&array[0], r, g, b, a) >> 16;
    result[1] = rowmul4(&array[5], r, g, b, a) >> 16;
    result[2] = rowmul4(&array[10], r, g, b, a) >> 16;
    result[3] = rowmul4(&array[15], r, g, b, a) >> 16;
}

static void AffineAdd(const SkColorMatrixFilter::State& state,
                      unsigned r, unsigned g, unsigned b, unsigned a,
                      int32_t* SK_RESTRICT result) {
    const int32_t* SK_RESTRICT array = state.fArray;
    const int shift = state.fShift;

    result[0] = rowmul3(&array[0], r, g, b) >> shift;
    result[1] = rowmul3(&array[5], r, g, b) >> shift;
    result[2] = rowmul3(&array[10], r, g, b) >> shift;
    result[3] = a;
}

static void AffineAdd16(const SkColorMatrixFilter::State& state,
                        unsigned r, unsigned g, unsigned b, unsigned a,
                        int32_t* SK_RESTRICT result) {
    const int32_t* SK_RESTRICT array = state.fArray;

    result[0] = rowmul3(&array[0], r, g, b) >> 16;
    result[1] = rowmul3(&array[5], r, g, b) >> 16;
    result[2] = rowmul3(&array[10], r, g, b) >> 16;
    result[3] = a;
}

static void ScaleAdd(const SkColorMatrixFilter::State& state,
                     unsigned r, unsigned g, unsigned b, unsigned a,
                     int32_t* SK_RESTRICT result) {
    const int32_t* SK_RESTRICT array = state.fArray;
    const int shift = state.fShift;

    // cast to (int) to keep the expression signed for the shift
    result[0] = (array[SkColorMatrix::kR_Scale] * (int)r + array[4]) >> shift;
    result[1] = (array[SkColorMatrix::kG_Scale] * (int)g + array[9]) >> shift;
    result[2] = (array[SkColorMatrix::kB_Scale] * (int)b + array[14]) >> shift;
    result[3] = a;
}

static void ScaleAdd16(const SkColorMatrixFilter::State& state,
                       unsigned r, unsigned g, unsigned b, unsigned a,
                       int32_t* SK_RESTRICT result) {
    const int32_t* SK_RESTRICT array = state.fArray;

    // cast to (int) to keep the expression signed for the shift
    result[0] = (array[SkColorMatrix::kR_Scale] * (int)r + array[4]) >> 16;
    result[1] = (array[SkColorMatrix::kG_Scale] * (int)g + array[9]) >> 16;
    result[2] = (array[SkColorMatrix::kB_Scale] * (int)b + array[14]) >> 16;
    result[3] = a;
}

static void Add(const SkColorMatrixFilter::State& state,
                unsigned r, unsigned g, unsigned b, unsigned a,
                int32_t* SK_RESTRICT result) {
    const int32_t* SK_RESTRICT array = state.fArray;
    const int shift = state.fShift;

    result[0] = r + (array[SkColorMatrix::kR_Trans] >> shift);
    result[1] = g + (array[SkColorMatrix::kG_Trans] >> shift);
    result[2] = b + (array[SkColorMatrix::kB_Trans] >> shift);
    result[3] = a;
}

static void Add16(const SkColorMatrixFilter::State& state,
                  unsigned r, unsigned g, unsigned b, unsigned a,
                  int32_t* SK_RESTRICT result) {
    const int32_t* SK_RESTRICT array = state.fArray;

    result[0] = r + (array[SkColorMatrix::kR_Trans] >> 16);
    result[1] = g + (array[SkColorMatrix::kG_Trans] >> 16);
    result[2] = b + (array[SkColorMatrix::kB_Trans] >> 16);
    result[3] = a;
}

// src is [20] but some compilers won't accept __restrict__ on anything
// but an raw pointer or reference
void SkColorMatrixFilter::initState(const SkScalar* SK_RESTRICT src) {
    transpose_to_pmorder(fTranspose, src);

    int32_t* array = fState.fArray;
    SkFixed max = 0;
    for (int i = 0; i < 20; i++) {
        SkFixed value = SkScalarToFixed(src[i]);
        array[i] = value;
        value = SkAbs32(value);
        max = SkMax32(max, value);
    }

    /*  All of fArray[] values must fit in 23 bits, to safely allow me to
        multiply them by 8bit unsigned values, and get a signed answer without
        overflow. This means clz needs to be 9 or bigger
    */
    int bits = SkCLZ(max);
    int32_t one = SK_Fixed1;

    fState.fShift = 16; // we are starting out as fixed 16.16
    if (bits < 9) {
        bits = 9 - bits;
        fState.fShift -= bits;
        for (int i = 0; i < 20; i++) {
            array[i] >>= bits;
        }
        one >>= bits;
    }

    // check if we have to munge Alpha
    int32_t changesAlpha = (array[15] | array[16] | array[17] |
                            (array[18] - one) | array[19]);
    int32_t usesAlpha = (array[3] | array[8] | array[13]);
    bool shiftIs16 = (16 == fState.fShift);

    if (changesAlpha | usesAlpha) {
        fProc = shiftIs16 ? General16 : General;
        fFlags = changesAlpha ? 0 : SkColorFilter::kAlphaUnchanged_Flag;
    } else {
        fFlags = SkColorFilter::kAlphaUnchanged_Flag;

        int32_t needsScale = (array[SkColorMatrix::kR_Scale] - one) |
                             (array[SkColorMatrix::kG_Scale] - one) |
                             (array[SkColorMatrix::kB_Scale] - one);

        int32_t needs3x3 =  array[1] | array[2] |     // red off-axis
                            array[5] | array[7] |     // green off-axis
                            array[10] | array[11];    // blue off-axis

        if (needs3x3) {
            fProc = shiftIs16 ? AffineAdd16 : AffineAdd;
        } else if (needsScale) {
            fProc = shiftIs16 ? ScaleAdd16 : ScaleAdd;
        } else if (array[SkColorMatrix::kR_Trans] |
                   array[SkColorMatrix::kG_Trans] |
                   array[SkColorMatrix::kB_Trans]) {
            fProc = shiftIs16 ? Add16 : Add;
        } else {
            fProc = NULL;   // identity
        }
    }

    /*  preround our add values so we get a rounded shift. We do this after we
        analyze the array, so we don't miss the case where the caller has zeros
        which could make us accidentally take the General or Add case.
    */
    if (fProc) {
        int32_t add = 1 << (fState.fShift - 1);
        array[4] += add;
        array[9] += add;
        array[14] += add;
        array[19] += add;
    }
}

///////////////////////////////////////////////////////////////////////////////

static int32_t pin(int32_t value, int32_t max) {
    if (value < 0) {
        value = 0;
    }
    if (value > max) {
        value = max;
    }
    return value;
}

SkColorMatrixFilter::SkColorMatrixFilter(const SkColorMatrix& cm) : fMatrix(cm) {
    this->initState(cm.fMat);
}

SkColorMatrixFilter::SkColorMatrixFilter(const SkScalar array[20]) {
    memcpy(fMatrix.fMat, array, 20 * sizeof(SkScalar));
    this->initState(array);
}

uint32_t SkColorMatrixFilter::getFlags() const {
    return this->INHERITED::getFlags() | fFlags;
}

/**
 *  Need inv255 = 1 / 255 as a constant, so when we premul a SkPMFloat, we can do this
 *
 *      new_red = old_red * alpha * inv255
 *
 *  instead of (much slower)
 *
 *      new_red = old_red * alpha / 255
 *
 *  However, 1.0f/255 comes to (in hex) 0x3B808081, which is slightly bigger than the "actual"
 *  value of 0x3B808080(repeat 80)... This slightly too-big value can cause us to compute
 *  new_red > alpha, which is a problem (for valid premul). To fix this, we use a
 *  hand-computed value of 0x3B808080, 1 ULP smaller. This keeps our colors valid.
 */
static const float gInv255 = 0.0039215683f; //  (1.0f / 255) - ULP == SkBits2Float(0x3B808080)

static Sk4f premul(const Sk4f& x) {
    float scale = SkPMFloat(x).a() * gInv255;
    Sk4f pm = x * Sk4f(scale, scale, scale, 1);

#ifdef SK_DEBUG
    SkPMFloat pmf(pm);
    SkASSERT(pmf.isValid());
#endif

    return pm;
}

static Sk4f unpremul(const SkPMFloat& pm) {
    float scale = 255 / pm.a(); // candidate for fast/approx invert?
    return Sk4f(pm) * Sk4f(scale, scale, scale, 1);
}

void SkColorMatrixFilter::filterSpan(const SkPMColor src[], int count, SkPMColor dst[]) const {
    Proc proc = fProc;
    if (NULL == proc) {
        if (src != dst) {
            memcpy(dst, src, count * sizeof(SkPMColor));
        }
        return;
    }

#ifdef SK_SUPPORT_LEGACY_INT_COLORMATRIX
    const bool use_floats = false;
#else
    const bool use_floats = true;
#endif

    if (use_floats) {
        const Sk4f c0 = Sk4f::Load(fTranspose + 0);
        const Sk4f c1 = Sk4f::Load(fTranspose + 4);
        const Sk4f c2 = Sk4f::Load(fTranspose + 8);
        const Sk4f c3 = Sk4f::Load(fTranspose + 12);
        const Sk4f c4 = Sk4f::Load(fTranspose + 16);  // translates

        SkPMColor matrix_translate_pmcolor = SkPMFloat(premul(c4)).clamped();

        for (int i = 0; i < count; i++) {
            const SkPMColor src_c = src[i];
            if (0 == src_c) {
                dst[i] = matrix_translate_pmcolor;
                continue;
            }

            SkPMFloat srcf(src_c);

            if (0xFF != SkGetPackedA32(src_c)) {
                srcf = unpremul(srcf);
            }

            Sk4f r4 = Sk4f(srcf.r());
            Sk4f g4 = Sk4f(srcf.g());
            Sk4f b4 = Sk4f(srcf.b());
            Sk4f a4 = Sk4f(srcf.a());

            // apply matrix
            Sk4f dst4 = c0 * r4 + c1 * g4 + c2 * b4 + c3 * a4 + c4;

            // pin before re-premul (convention for color-matrix???)
            dst4 = Sk4f::Max(Sk4f(0), Sk4f::Min(Sk4f(255), dst4));

            // re-premul and write
            dst[i] = SkPMFloat(premul(dst4)).get();
        }
    } else {
        const State& state = fState;
        int32_t result[4];
        const SkUnPreMultiply::Scale* table = SkUnPreMultiply::GetScaleTable();

        for (int i = 0; i < count; i++) {
            SkPMColor c = src[i];

            unsigned r = SkGetPackedR32(c);
            unsigned g = SkGetPackedG32(c);
            unsigned b = SkGetPackedB32(c);
            unsigned a = SkGetPackedA32(c);

            // need our components to be un-premultiplied
            if (255 != a) {
                SkUnPreMultiply::Scale scale = table[a];
                r = SkUnPreMultiply::ApplyScale(scale, r);
                g = SkUnPreMultiply::ApplyScale(scale, g);
                b = SkUnPreMultiply::ApplyScale(scale, b);

                SkASSERT(r <= 255);
                SkASSERT(g <= 255);
                SkASSERT(b <= 255);
            }

            proc(state, r, g, b, a, result);

            r = pin(result[0], SK_R32_MASK);
            g = pin(result[1], SK_G32_MASK);
            b = pin(result[2], SK_B32_MASK);
            a = pin(result[3], SK_A32_MASK);
            // re-prepremultiply if needed
            dst[i] = SkPremultiplyARGBInline(a, r, g, b);
        }
    }
}

///////////////////////////////////////////////////////////////////////////////

void SkColorMatrixFilter::flatten(SkWriteBuffer& buffer) const {
    SkASSERT(sizeof(fMatrix.fMat)/sizeof(SkScalar) == 20);
    buffer.writeScalarArray(fMatrix.fMat, 20);
}

SkFlattenable* SkColorMatrixFilter::CreateProc(SkReadBuffer& buffer) {
    SkColorMatrix matrix;
    if (buffer.readScalarArray(matrix.fMat, 20)) {
        return Create(matrix);
    }
    return NULL;
}

bool SkColorMatrixFilter::asColorMatrix(SkScalar matrix[20]) const {
    if (matrix) {
        memcpy(matrix, fMatrix.fMat, 20 * sizeof(SkScalar));
    }
    return true;
}

SkColorFilter* SkColorMatrixFilter::newComposed(const SkColorFilter* innerFilter) const {
    SkScalar innerMatrix[20];
    if (innerFilter->asColorMatrix(innerMatrix) && !SkColorMatrix::NeedsClamping(innerMatrix)) {
        SkScalar concat[20];
        SkColorMatrix::SetConcat(concat, fMatrix.fMat, innerMatrix);
        return SkColorMatrixFilter::Create(concat);
    }
    return NULL;
}

#if SK_SUPPORT_GPU
#include "GrFragmentProcessor.h"
#include "GrInvariantOutput.h"
#include "gl/GrGLProcessor.h"
#include "gl/builders/GrGLProgramBuilder.h"

class ColorMatrixEffect : public GrFragmentProcessor {
public:
    static GrFragmentProcessor* Create(const SkColorMatrix& matrix) {
        return SkNEW_ARGS(ColorMatrixEffect, (matrix));
    }

    const char* name() const SK_OVERRIDE { return "Color Matrix"; }

    virtual void getGLProcessorKey(const GrGLCaps& caps,
                                   GrProcessorKeyBuilder* b) const SK_OVERRIDE {
        GLProcessor::GenKey(*this, caps, b);
    }

    GrGLFragmentProcessor* createGLInstance() const SK_OVERRIDE {
        return SkNEW_ARGS(GLProcessor, (*this));
    }


    GR_DECLARE_FRAGMENT_PROCESSOR_TEST;

    class GLProcessor : public GrGLFragmentProcessor {
    public:
        // this class always generates the same code.
        static void GenKey(const GrProcessor&, const GrGLCaps&, GrProcessorKeyBuilder* b) {}

        GLProcessor(const GrProcessor&) {}

        virtual void emitCode(GrGLFPBuilder* builder,
                              const GrFragmentProcessor&,
                              const char* outputColor,
                              const char* inputColor,
                              const TransformedCoordsArray&,
                              const TextureSamplerArray&) SK_OVERRIDE {
            fMatrixHandle = builder->addUniform(GrGLProgramBuilder::kFragment_Visibility,
                                                kMat44f_GrSLType, kDefault_GrSLPrecision,
                                                "ColorMatrix");
            fVectorHandle = builder->addUniform(GrGLProgramBuilder::kFragment_Visibility,
                                                kVec4f_GrSLType, kDefault_GrSLPrecision,
                                                "ColorMatrixVector");

            if (NULL == inputColor) {
                // could optimize this case, but we aren't for now.
                inputColor = "vec4(1)";
            }
            GrGLFPFragmentBuilder* fsBuilder = builder->getFragmentShaderBuilder();
            // The max() is to guard against 0 / 0 during unpremul when the incoming color is
            // transparent black.
            fsBuilder->codeAppendf("\tfloat nonZeroAlpha = max(%s.a, 0.00001);\n", inputColor);
            fsBuilder->codeAppendf("\t%s = %s * vec4(%s.rgb / nonZeroAlpha, nonZeroAlpha) + %s;\n",
                                   outputColor,
                                   builder->getUniformCStr(fMatrixHandle),
                                   inputColor,
                                   builder->getUniformCStr(fVectorHandle));
            fsBuilder->codeAppendf("\t%s = clamp(%s, 0.0, 1.0);\n", outputColor, outputColor);
            fsBuilder->codeAppendf("\t%s.rgb *= %s.a;\n", outputColor, outputColor);
        }

        virtual void setData(const GrGLProgramDataManager& uniManager,
                             const GrProcessor& proc) SK_OVERRIDE {
            const ColorMatrixEffect& cme = proc.cast<ColorMatrixEffect>();
            const float* m = cme.fMatrix.fMat;
            // The GL matrix is transposed from SkColorMatrix.
            GrGLfloat mt[]  = {
                m[0], m[5], m[10], m[15],
                m[1], m[6], m[11], m[16],
                m[2], m[7], m[12], m[17],
                m[3], m[8], m[13], m[18],
            };
            static const float kScale = 1.0f / 255.0f;
            GrGLfloat vec[] = {
                m[4] * kScale, m[9] * kScale, m[14] * kScale, m[19] * kScale,
            };
            uniManager.setMatrix4fv(fMatrixHandle, 1, mt);
            uniManager.set4fv(fVectorHandle, 1, vec);
        }

    private:
        GrGLProgramDataManager::UniformHandle fMatrixHandle;
        GrGLProgramDataManager::UniformHandle fVectorHandle;

        typedef GrGLFragmentProcessor INHERITED;
    };

private:
    ColorMatrixEffect(const SkColorMatrix& matrix) : fMatrix(matrix) {
        this->initClassID<ColorMatrixEffect>();
    }

    bool onIsEqual(const GrFragmentProcessor& s) const SK_OVERRIDE {
        const ColorMatrixEffect& cme = s.cast<ColorMatrixEffect>();
        return cme.fMatrix == fMatrix;
    }

    void onComputeInvariantOutput(GrInvariantOutput* inout) const SK_OVERRIDE {
        // We only bother to check whether the alpha channel will be constant. If SkColorMatrix had
        // type flags it might be worth checking the other components.

        // The matrix is defined such the 4th row determines the output alpha. The first four
        // columns of that row multiply the input r, g, b, and a, respectively, and the last column
        // is the "translation".
        static const uint32_t kRGBAFlags[] = {
            kR_GrColorComponentFlag,
            kG_GrColorComponentFlag,
            kB_GrColorComponentFlag,
            kA_GrColorComponentFlag
        };
        static const int kShifts[] = {
            GrColor_SHIFT_R, GrColor_SHIFT_G, GrColor_SHIFT_B, GrColor_SHIFT_A,
        };
        enum {
            kAlphaRowStartIdx = 15,
            kAlphaRowTranslateIdx = 19,
        };

        SkScalar outputA = 0;
        for (int i = 0; i < 4; ++i) {
            // If any relevant component of the color to be passed through the matrix is non-const
            // then we can't know the final result.
            if (0 != fMatrix.fMat[kAlphaRowStartIdx + i]) {
                if (!(inout->validFlags() & kRGBAFlags[i])) {
                    inout->setToUnknown(GrInvariantOutput::kWill_ReadInput);
                    return;
                } else {
                    uint32_t component = (inout->color() >> kShifts[i]) & 0xFF;
                    outputA += fMatrix.fMat[kAlphaRowStartIdx + i] * component;
                }
            }
        }
        outputA += fMatrix.fMat[kAlphaRowTranslateIdx];
        // We pin the color to [0,1]. This would happen to the *final* color output from the frag
        // shader but currently the effect does not pin its own output. So in the case of over/
        // underflow this may deviate from the actual result. Maybe the effect should pin its
        // result if the matrix could over/underflow for any component?
        inout->setToOther(kA_GrColorComponentFlag,
                          static_cast<uint8_t>(SkScalarPin(outputA, 0, 255)) << GrColor_SHIFT_A,
                          GrInvariantOutput::kWill_ReadInput);
    }

    SkColorMatrix fMatrix;

    typedef GrFragmentProcessor INHERITED;
};

GR_DEFINE_FRAGMENT_PROCESSOR_TEST(ColorMatrixEffect);

GrFragmentProcessor* ColorMatrixEffect::TestCreate(SkRandom* random,
                                                   GrContext*,
                                                   const GrDrawTargetCaps&,
                                                   GrTexture* dummyTextures[2]) {
    SkColorMatrix colorMatrix;
    for (size_t i = 0; i < SK_ARRAY_COUNT(colorMatrix.fMat); ++i) {
        colorMatrix.fMat[i] = random->nextSScalar1();
    }
    return ColorMatrixEffect::Create(colorMatrix);
}

bool SkColorMatrixFilter::asFragmentProcessors(GrContext*,
                                               SkTDArray<GrFragmentProcessor*>* array) const {
    GrFragmentProcessor* frag = ColorMatrixEffect::Create(fMatrix);
    if (frag) {
        if (array) {
            *array->append() = frag;
        }
        return true;
    }
    return false;
}

#endif

#ifndef SK_IGNORE_TO_STRING
void SkColorMatrixFilter::toString(SkString* str) const {
    str->append("SkColorMatrixFilter: ");

    str->append("matrix: (");
    for (int i = 0; i < 20; ++i) {
        str->appendScalar(fMatrix.fMat[i]);
        if (i < 19) {
            str->append(", ");
        }
    }
    str->append(")");
}
#endif