aboutsummaryrefslogtreecommitdiffhomepage
path: root/src/effects/SkColorCubeFilter.cpp
blob: e2aade75e551bed39458775883d61cab26dfcb55 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
/*
 * Copyright 2014 Google Inc.
 *
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */

#include "SkColorCubeFilter.h"
#include "SkColorPriv.h"
#include "SkOnce.h"
#include "SkReadBuffer.h"
#include "SkUnPreMultiply.h"
#include "SkWriteBuffer.h"
#if SK_SUPPORT_GPU
#include "GrContext.h"
#include "GrCoordTransform.h"
#include "GrInvariantOutput.h"
#include "GrTexturePriv.h"
#include "SkGr.h"
#include "gl/GrGLProcessor.h"
#include "gl/builders/GrGLProgramBuilder.h"
#endif

///////////////////////////////////////////////////////////////////////////////
namespace {

int32_t SkNextColorCubeUniqueID() {
    static int32_t gColorCubeUniqueID;
    // do a loop in case our global wraps around, as we never want to return a 0
    int32_t genID;
    do {
        genID = sk_atomic_inc(&gColorCubeUniqueID) + 1;
    } while (0 == genID);
    return genID;
}

} // end namespace

static const int MIN_CUBE_SIZE = 4;
static const int MAX_CUBE_SIZE = 64;

static bool is_valid_3D_lut(SkData* cubeData, int cubeDimension) {
    size_t minMemorySize = sizeof(uint8_t) * 4 * cubeDimension * cubeDimension * cubeDimension;
    return (cubeDimension >= MIN_CUBE_SIZE) && (cubeDimension <= MAX_CUBE_SIZE) &&
           (NULL != cubeData) && (cubeData->size() >= minMemorySize);
}

SkColorFilter* SkColorCubeFilter::Create(SkData* cubeData, int cubeDimension) {
    if (!is_valid_3D_lut(cubeData, cubeDimension)) {
        return NULL;
    }

    return SkNEW_ARGS(SkColorCubeFilter, (cubeData, cubeDimension));
}

SkColorCubeFilter::SkColorCubeFilter(SkData* cubeData, int cubeDimension)
  : fCubeData(SkRef(cubeData))
  , fUniqueID(SkNextColorCubeUniqueID())
  , fCache(cubeDimension) {
}

uint32_t SkColorCubeFilter::getFlags() const {
    return this->INHERITED::getFlags() | kAlphaUnchanged_Flag;
}

SkColorCubeFilter::ColorCubeProcesingCache::ColorCubeProcesingCache(int cubeDimension)
  : fCubeDimension(cubeDimension)
  , fLutsInited(false) {
    fColorToIndex[0] = fColorToIndex[1] = NULL;
    fColorToFactors[0] = fColorToFactors[1] = NULL;
    fColorToScalar = NULL;
}

void SkColorCubeFilter::ColorCubeProcesingCache::getProcessingLuts(
    const int* (*colorToIndex)[2], const SkScalar* (*colorToFactors)[2],
    const SkScalar** colorToScalar) {
    SkOnce(&fLutsInited, &fLutsMutex,
           SkColorCubeFilter::ColorCubeProcesingCache::initProcessingLuts, this);
    SkASSERT((fColorToIndex[0] != NULL) &&
             (fColorToIndex[1] != NULL) &&
             (fColorToFactors[0] != NULL) &&
             (fColorToFactors[1] != NULL) &&
             (fColorToScalar != NULL));
    (*colorToIndex)[0] = fColorToIndex[0];
    (*colorToIndex)[1] = fColorToIndex[1];
    (*colorToFactors)[0] = fColorToFactors[0];
    (*colorToFactors)[1] = fColorToFactors[1];
    (*colorToScalar) = fColorToScalar;
}

void SkColorCubeFilter::ColorCubeProcesingCache::initProcessingLuts(
    SkColorCubeFilter::ColorCubeProcesingCache* cache) {
    static const SkScalar inv8bit = SkScalarInvert(SkIntToScalar(255));

    // We need 256 int * 2 for fColorToIndex, so a total of 512 int.
    // We need 256 SkScalar * 2 for fColorToFactors and 256 SkScalar
    // for fColorToScalar, so a total of 768 SkScalar.
    cache->fLutStorage.reset(512 * sizeof(int) + 768 * sizeof(SkScalar));
    uint8_t* storage = (uint8_t*)cache->fLutStorage.get();
    cache->fColorToIndex[0] = (int*)storage;
    cache->fColorToIndex[1] = cache->fColorToIndex[0] + 256;
    cache->fColorToFactors[0] = (SkScalar*)(storage + (512 * sizeof(int)));
    cache->fColorToFactors[1] = cache->fColorToFactors[0] + 256;
    cache->fColorToScalar = cache->fColorToFactors[1] + 256;

    SkScalar size = SkIntToScalar(cache->fCubeDimension);
    SkScalar scale = (size - SK_Scalar1) * inv8bit;

    for (int i = 0; i < 256; ++i) {
        SkScalar index = scale * i;
        cache->fColorToIndex[0][i] = SkScalarFloorToInt(index);
        cache->fColorToIndex[1][i] = cache->fColorToIndex[0][i] + 1;
        cache->fColorToScalar[i] = inv8bit * i;
        if (cache->fColorToIndex[1][i] < cache->fCubeDimension) {
            cache->fColorToFactors[1][i] = index - SkIntToScalar(cache->fColorToIndex[0][i]);
            cache->fColorToFactors[0][i] = SK_Scalar1 - cache->fColorToFactors[1][i];
        } else {
            cache->fColorToIndex[1][i] = cache->fColorToIndex[0][i];
            cache->fColorToFactors[0][i] = SK_Scalar1;
            cache->fColorToFactors[1][i] = 0;
        }
    }
}

void SkColorCubeFilter::filterSpan(const SkPMColor src[], int count, SkPMColor dst[]) const {
    const int* colorToIndex[2];
    const SkScalar* colorToFactors[2];
    const SkScalar* colorToScalar;
    fCache.getProcessingLuts(&colorToIndex, &colorToFactors, &colorToScalar);

    const int dim = fCache.cubeDimension();
    SkColor* colorCube = (SkColor*)fCubeData->data();
    for (int i = 0; i < count; ++i) {
        SkColor inputColor = SkUnPreMultiply::PMColorToColor(src[i]);
        uint8_t r = SkColorGetR(inputColor);
        uint8_t g = SkColorGetG(inputColor);
        uint8_t b = SkColorGetB(inputColor);
        uint8_t a = SkColorGetA(inputColor);
        SkScalar rOut(0), gOut(0), bOut(0);
        for (int x = 0; x < 2; ++x) {
            for (int y = 0; y < 2; ++y) {
                for (int z = 0; z < 2; ++z) {
                    SkColor lutColor = colorCube[colorToIndex[x][r] +
                                                (colorToIndex[y][g] +
                                                 colorToIndex[z][b] * dim) * dim];
                    SkScalar factor = colorToFactors[x][r] *
                                      colorToFactors[y][g] *
                                      colorToFactors[z][b];
                    rOut += colorToScalar[SkColorGetR(lutColor)] * factor;
                    gOut += colorToScalar[SkColorGetG(lutColor)] * factor;
                    bOut += colorToScalar[SkColorGetB(lutColor)] * factor;
                }
            }
        }
        const SkScalar aOut = SkIntToScalar(a);
        dst[i] = SkPackARGB32(a,
            SkScalarRoundToInt(rOut * aOut),
            SkScalarRoundToInt(gOut * aOut),
            SkScalarRoundToInt(bOut * aOut));
    }
}

SkFlattenable* SkColorCubeFilter::CreateProc(SkReadBuffer& buffer) {
    int cubeDimension = buffer.readInt();
    SkAutoDataUnref cubeData(buffer.readByteArrayAsData());
    if (!buffer.validate(is_valid_3D_lut(cubeData, cubeDimension))) {
        return NULL;
    }
    return Create(cubeData, cubeDimension);
}

void SkColorCubeFilter::flatten(SkWriteBuffer& buffer) const {
    this->INHERITED::flatten(buffer);
    buffer.writeInt(fCache.cubeDimension());
    buffer.writeDataAsByteArray(fCubeData);
}

#ifndef SK_IGNORE_TO_STRING
void SkColorCubeFilter::toString(SkString* str) const {
    str->append("SkColorCubeFilter ");
}
#endif

///////////////////////////////////////////////////////////////////////////////
#if SK_SUPPORT_GPU

class GrColorCubeEffect : public GrFragmentProcessor {
public:
    static GrFragmentProcessor* Create(GrTexture* colorCube) {
        return (NULL != colorCube) ? SkNEW_ARGS(GrColorCubeEffect, (colorCube)) : NULL;
    }

    virtual ~GrColorCubeEffect();

    const char* name() const SK_OVERRIDE { return "ColorCube"; }

    virtual void getGLProcessorKey(const GrGLCaps& caps,
                                   GrProcessorKeyBuilder* b) const SK_OVERRIDE;

    GrGLFragmentProcessor* createGLInstance() const SK_OVERRIDE;
    int colorCubeSize() const { return fColorCubeAccess.getTexture()->width(); }


    void onComputeInvariantOutput(GrInvariantOutput*) const SK_OVERRIDE;

    class GLProcessor : public GrGLFragmentProcessor {
    public:
        GLProcessor(const GrProcessor&);
        virtual ~GLProcessor();

        virtual void emitCode(GrGLFPBuilder*,
                              const GrFragmentProcessor&,
                              const char* outputColor,
                              const char* inputColor,
                              const TransformedCoordsArray&,
                              const TextureSamplerArray&) SK_OVERRIDE;

        static inline void GenKey(const GrProcessor&, const GrGLCaps&, GrProcessorKeyBuilder*);

        void setData(const GrGLProgramDataManager&, const GrProcessor&) SK_OVERRIDE;

    private:
        GrGLProgramDataManager::UniformHandle fColorCubeSizeUni;
        GrGLProgramDataManager::UniformHandle fColorCubeInvSizeUni;

        typedef GrGLFragmentProcessor INHERITED;
    };

private:
    bool onIsEqual(const GrFragmentProcessor&) const SK_OVERRIDE { return true; }

    GrColorCubeEffect(GrTexture* colorCube);

    GrTextureAccess     fColorCubeAccess;

    typedef GrFragmentProcessor INHERITED;
};

///////////////////////////////////////////////////////////////////////////////

GrColorCubeEffect::GrColorCubeEffect(GrTexture* colorCube)
    : fColorCubeAccess(colorCube, "bgra", GrTextureParams::kBilerp_FilterMode) {
    this->initClassID<GrColorCubeEffect>();
    this->addTextureAccess(&fColorCubeAccess);
}

GrColorCubeEffect::~GrColorCubeEffect() {
}

void GrColorCubeEffect::getGLProcessorKey(const GrGLCaps& caps, GrProcessorKeyBuilder* b) const {
    GLProcessor::GenKey(*this, caps, b);
}

GrGLFragmentProcessor* GrColorCubeEffect::createGLInstance() const {
    return SkNEW_ARGS(GLProcessor, (*this));
}

void GrColorCubeEffect::onComputeInvariantOutput(GrInvariantOutput* inout) const {
    inout->setToUnknown(GrInvariantOutput::kWill_ReadInput);
}

///////////////////////////////////////////////////////////////////////////////

GrColorCubeEffect::GLProcessor::GLProcessor(const GrProcessor&) {
}

GrColorCubeEffect::GLProcessor::~GLProcessor() {
}

void GrColorCubeEffect::GLProcessor::emitCode(GrGLFPBuilder* builder,
                                              const GrFragmentProcessor&,
                                              const char* outputColor,
                                              const char* inputColor,
                                              const TransformedCoordsArray& coords,
                                              const TextureSamplerArray& samplers) {
    if (NULL == inputColor) {
        inputColor = "vec4(1)";
    }

    fColorCubeSizeUni = builder->addUniform(GrGLProgramBuilder::kFragment_Visibility,
                                            kFloat_GrSLType, kDefault_GrSLPrecision,
                                            "Size");
    const char* colorCubeSizeUni = builder->getUniformCStr(fColorCubeSizeUni);
    fColorCubeInvSizeUni = builder->addUniform(GrGLProgramBuilder::kFragment_Visibility,
                                               kFloat_GrSLType, kDefault_GrSLPrecision,
                                               "InvSize");
    const char* colorCubeInvSizeUni = builder->getUniformCStr(fColorCubeInvSizeUni);

    const char* nonZeroAlpha = "nonZeroAlpha";
    const char* unPMColor = "unPMColor";
    const char* cubeIdx = "cubeIdx";
    const char* cCoords1 = "cCoords1";
    const char* cCoords2 = "cCoords2";

    // Note: if implemented using texture3D in OpenGL ES older than OpenGL ES 3.0,
    //       the shader might need "#extension GL_OES_texture_3D : enable".

    GrGLFPFragmentBuilder* fsBuilder = builder->getFragmentShaderBuilder();

    // Unpremultiply color
    fsBuilder->codeAppendf("\tfloat %s = max(%s.a, 0.00001);\n", nonZeroAlpha, inputColor);
    fsBuilder->codeAppendf("\tvec4 %s = vec4(%s.rgb / %s, %s);\n",
                           unPMColor, inputColor, nonZeroAlpha, nonZeroAlpha);

    // Fit input color into the cube.
    fsBuilder->codeAppendf(
        "vec3 %s = vec3(%s.rg * vec2((%s - 1.0) * %s) + vec2(0.5 * %s), %s.b * (%s - 1.0));\n",
        cubeIdx, unPMColor, colorCubeSizeUni, colorCubeInvSizeUni, colorCubeInvSizeUni,
        unPMColor, colorCubeSizeUni);

    // Compute y coord for for texture fetches.
    fsBuilder->codeAppendf("vec2 %s = vec2(%s.r, (floor(%s.b) + %s.g) * %s);\n",
                           cCoords1, cubeIdx, cubeIdx, cubeIdx, colorCubeInvSizeUni);
    fsBuilder->codeAppendf("vec2 %s = vec2(%s.r, (ceil(%s.b) + %s.g) * %s);\n",
                           cCoords2, cubeIdx, cubeIdx, cubeIdx, colorCubeInvSizeUni);

    // Apply the cube.
    fsBuilder->codeAppendf("%s = vec4(mix(", outputColor);
    fsBuilder->appendTextureLookup(samplers[0], cCoords1);
    fsBuilder->codeAppend(".rgb, ");
    fsBuilder->appendTextureLookup(samplers[0], cCoords2);

    // Premultiply color by alpha. Note that the input alpha is not modified by this shader.
    fsBuilder->codeAppendf(".rgb, fract(%s.b)) * vec3(%s), %s.a);\n",
                           cubeIdx, nonZeroAlpha, inputColor);
}

void GrColorCubeEffect::GLProcessor::setData(const GrGLProgramDataManager& pdman,
                                             const GrProcessor& proc) {
    const GrColorCubeEffect& colorCube = proc.cast<GrColorCubeEffect>();
    SkScalar size = SkIntToScalar(colorCube.colorCubeSize());
    pdman.set1f(fColorCubeSizeUni, SkScalarToFloat(size));
    pdman.set1f(fColorCubeInvSizeUni, SkScalarToFloat(SkScalarInvert(size)));
}

void GrColorCubeEffect::GLProcessor::GenKey(const GrProcessor& proc,
                                            const GrGLCaps&, GrProcessorKeyBuilder* b) {
}

bool SkColorCubeFilter::asFragmentProcessors(GrContext* context,
                                             SkTDArray<GrFragmentProcessor*>* array) const {
    static const GrUniqueKey::Domain kDomain = GrUniqueKey::GenerateDomain();
    GrUniqueKey key;
    GrUniqueKey::Builder builder(&key, kDomain, 2);
    builder[0] = fUniqueID;
    builder[1] = fCache.cubeDimension();
    builder.finish();

    GrSurfaceDesc desc;
    desc.fWidth = fCache.cubeDimension();
    desc.fHeight = fCache.cubeDimension() * fCache.cubeDimension();
    desc.fConfig = kRGBA_8888_GrPixelConfig;

    SkAutoTUnref<GrTexture> textureCube(context->findAndRefCachedTexture(key));
    if (!textureCube) {
        textureCube.reset(context->createTexture(desc, true, fCubeData->data(), 0));
        if (textureCube) {
            context->addResourceToCache(key, textureCube);
        }
    }

    GrFragmentProcessor* frag = textureCube ? GrColorCubeEffect::Create(textureCube) : NULL;
    if (frag) {
        if (array) {
            *array->append() = frag;
        }
        return true;
    }
    return false;
}
#endif