1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
|
/*
* Copyright 2006 The Android Open Source Project
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkBlurMaskFilter.h"
#include "SkBlurMask.h"
#include "SkGpuBlurUtils.h"
#include "SkReadBuffer.h"
#include "SkWriteBuffer.h"
#include "SkMaskFilter.h"
#include "SkRRect.h"
#include "SkRTConf.h"
#include "SkStringUtils.h"
#include "SkStrokeRec.h"
#if SK_SUPPORT_GPU
#include "GrContext.h"
#include "GrTexture.h"
#include "GrFragmentProcessor.h"
#include "GrInvariantOutput.h"
#include "SkGrPixelRef.h"
#include "SkDraw.h"
#include "effects/GrPorterDuffXferProcessor.h"
#include "effects/GrSimpleTextureEffect.h"
#include "gl/GrGLProcessor.h"
#include "gl/builders/GrGLProgramBuilder.h"
#endif
SkScalar SkBlurMaskFilter::ConvertRadiusToSigma(SkScalar radius) {
return SkBlurMask::ConvertRadiusToSigma(radius);
}
class SkBlurMaskFilterImpl : public SkMaskFilter {
public:
SkBlurMaskFilterImpl(SkScalar sigma, SkBlurStyle, uint32_t flags);
// overrides from SkMaskFilter
SkMask::Format getFormat() const SK_OVERRIDE;
virtual bool filterMask(SkMask* dst, const SkMask& src, const SkMatrix&,
SkIPoint* margin) const SK_OVERRIDE;
#if SK_SUPPORT_GPU
virtual bool canFilterMaskGPU(const SkRect& devBounds,
const SkIRect& clipBounds,
const SkMatrix& ctm,
SkRect* maskRect) const SK_OVERRIDE;
virtual bool directFilterMaskGPU(GrContext* context,
GrPaint* grp,
const SkMatrix& viewMatrix,
const SkStrokeRec& strokeRec,
const SkPath& path) const SK_OVERRIDE;
virtual bool directFilterRRectMaskGPU(GrContext* context,
GrPaint* grp,
const SkMatrix& viewMatrix,
const SkStrokeRec& strokeRec,
const SkRRect& rrect) const SK_OVERRIDE;
virtual bool filterMaskGPU(GrTexture* src,
const SkMatrix& ctm,
const SkRect& maskRect,
GrTexture** result,
bool canOverwriteSrc) const SK_OVERRIDE;
#endif
void computeFastBounds(const SkRect&, SkRect*) const SK_OVERRIDE;
bool asABlur(BlurRec*) const SK_OVERRIDE;
SK_TO_STRING_OVERRIDE()
SK_DECLARE_PUBLIC_FLATTENABLE_DESERIALIZATION_PROCS(SkBlurMaskFilterImpl)
protected:
virtual FilterReturn filterRectsToNine(const SkRect[], int count, const SkMatrix&,
const SkIRect& clipBounds,
NinePatch*) const SK_OVERRIDE;
virtual FilterReturn filterRRectToNine(const SkRRect&, const SkMatrix&,
const SkIRect& clipBounds,
NinePatch*) const SK_OVERRIDE;
bool filterRectMask(SkMask* dstM, const SkRect& r, const SkMatrix& matrix,
SkIPoint* margin, SkMask::CreateMode createMode) const;
bool filterRRectMask(SkMask* dstM, const SkRRect& r, const SkMatrix& matrix,
SkIPoint* margin, SkMask::CreateMode createMode) const;
private:
// To avoid unseemly allocation requests (esp. for finite platforms like
// handset) we limit the radius so something manageable. (as opposed to
// a request like 10,000)
static const SkScalar kMAX_BLUR_SIGMA;
SkScalar fSigma;
SkBlurStyle fBlurStyle;
uint32_t fBlurFlags;
SkBlurQuality getQuality() const {
return (fBlurFlags & SkBlurMaskFilter::kHighQuality_BlurFlag) ?
kHigh_SkBlurQuality : kLow_SkBlurQuality;
}
SkBlurMaskFilterImpl(SkReadBuffer&);
void flatten(SkWriteBuffer&) const SK_OVERRIDE;
SkScalar computeXformedSigma(const SkMatrix& ctm) const {
bool ignoreTransform = SkToBool(fBlurFlags & SkBlurMaskFilter::kIgnoreTransform_BlurFlag);
SkScalar xformedSigma = ignoreTransform ? fSigma : ctm.mapRadius(fSigma);
return SkMinScalar(xformedSigma, kMAX_BLUR_SIGMA);
}
friend class SkBlurMaskFilter;
typedef SkMaskFilter INHERITED;
};
const SkScalar SkBlurMaskFilterImpl::kMAX_BLUR_SIGMA = SkIntToScalar(128);
SkMaskFilter* SkBlurMaskFilter::Create(SkBlurStyle style, SkScalar sigma, uint32_t flags) {
if (!SkScalarIsFinite(sigma) || sigma <= 0) {
return NULL;
}
if ((unsigned)style > (unsigned)kLastEnum_SkBlurStyle) {
return NULL;
}
if (flags > SkBlurMaskFilter::kAll_BlurFlag) {
return NULL;
}
return SkNEW_ARGS(SkBlurMaskFilterImpl, (sigma, style, flags));
}
///////////////////////////////////////////////////////////////////////////////
SkBlurMaskFilterImpl::SkBlurMaskFilterImpl(SkScalar sigma, SkBlurStyle style, uint32_t flags)
: fSigma(sigma)
, fBlurStyle(style)
, fBlurFlags(flags) {
SkASSERT(fSigma > 0);
SkASSERT((unsigned)style <= kLastEnum_SkBlurStyle);
SkASSERT(flags <= SkBlurMaskFilter::kAll_BlurFlag);
}
SkMask::Format SkBlurMaskFilterImpl::getFormat() const {
return SkMask::kA8_Format;
}
bool SkBlurMaskFilterImpl::asABlur(BlurRec* rec) const {
if (fBlurFlags & SkBlurMaskFilter::kIgnoreTransform_BlurFlag) {
return false;
}
if (rec) {
rec->fSigma = fSigma;
rec->fStyle = fBlurStyle;
rec->fQuality = this->getQuality();
}
return true;
}
bool SkBlurMaskFilterImpl::filterMask(SkMask* dst, const SkMask& src,
const SkMatrix& matrix,
SkIPoint* margin) const{
SkScalar sigma = this->computeXformedSigma(matrix);
return SkBlurMask::BoxBlur(dst, src, sigma, fBlurStyle, this->getQuality(), margin);
}
bool SkBlurMaskFilterImpl::filterRectMask(SkMask* dst, const SkRect& r,
const SkMatrix& matrix,
SkIPoint* margin, SkMask::CreateMode createMode) const{
SkScalar sigma = computeXformedSigma(matrix);
return SkBlurMask::BlurRect(sigma, dst, r, fBlurStyle,
margin, createMode);
}
bool SkBlurMaskFilterImpl::filterRRectMask(SkMask* dst, const SkRRect& r,
const SkMatrix& matrix,
SkIPoint* margin, SkMask::CreateMode createMode) const{
SkScalar sigma = computeXformedSigma(matrix);
return SkBlurMask::BlurRRect(sigma, dst, r, fBlurStyle,
margin, createMode);
}
#include "SkCanvas.h"
static bool prepare_to_draw_into_mask(const SkRect& bounds, SkMask* mask) {
SkASSERT(mask != NULL);
mask->fBounds = bounds.roundOut();
mask->fRowBytes = SkAlign4(mask->fBounds.width());
mask->fFormat = SkMask::kA8_Format;
const size_t size = mask->computeImageSize();
mask->fImage = SkMask::AllocImage(size);
if (NULL == mask->fImage) {
return false;
}
// FIXME: use sk_calloc in AllocImage?
sk_bzero(mask->fImage, size);
return true;
}
static bool draw_rrect_into_mask(const SkRRect rrect, SkMask* mask) {
if (!prepare_to_draw_into_mask(rrect.rect(), mask)) {
return false;
}
// FIXME: This code duplicates code in draw_rects_into_mask, below. Is there a
// clean way to share more code?
SkBitmap bitmap;
bitmap.installMaskPixels(*mask);
SkCanvas canvas(bitmap);
canvas.translate(-SkIntToScalar(mask->fBounds.left()),
-SkIntToScalar(mask->fBounds.top()));
SkPaint paint;
paint.setAntiAlias(true);
canvas.drawRRect(rrect, paint);
return true;
}
static bool draw_rects_into_mask(const SkRect rects[], int count, SkMask* mask) {
if (!prepare_to_draw_into_mask(rects[0], mask)) {
return false;
}
SkBitmap bitmap;
bitmap.installPixels(SkImageInfo::Make(mask->fBounds.width(),
mask->fBounds.height(),
kAlpha_8_SkColorType,
kPremul_SkAlphaType),
mask->fImage, mask->fRowBytes);
SkCanvas canvas(bitmap);
canvas.translate(-SkIntToScalar(mask->fBounds.left()),
-SkIntToScalar(mask->fBounds.top()));
SkPaint paint;
paint.setAntiAlias(true);
if (1 == count) {
canvas.drawRect(rects[0], paint);
} else {
// todo: do I need a fast way to do this?
SkPath path;
path.addRect(rects[0]);
path.addRect(rects[1]);
path.setFillType(SkPath::kEvenOdd_FillType);
canvas.drawPath(path, paint);
}
return true;
}
static bool rect_exceeds(const SkRect& r, SkScalar v) {
return r.fLeft < -v || r.fTop < -v || r.fRight > v || r.fBottom > v ||
r.width() > v || r.height() > v;
}
#include "SkMaskCache.h"
static bool copy_cacheddata_to_mask(SkCachedData* data, SkMask* mask) {
const size_t size = data->size();
SkASSERT(mask->computeTotalImageSize() <= size);
mask->fImage = SkMask::AllocImage(size);
if (mask->fImage) {
memcpy(mask->fImage, data->data(), size);
return true;
}
return false;
}
static SkCachedData* copy_mask_to_cacheddata(const SkMask& mask) {
const size_t size = mask.computeTotalImageSize();
SkCachedData* data = SkResourceCache::NewCachedData(size);
if (data) {
memcpy(data->writable_data(), mask.fImage, size);
return data;
}
return NULL;
}
static bool find_cached_rrect(SkMask* mask, SkScalar sigma, SkBlurStyle style,
SkBlurQuality quality, const SkRRect& rrect) {
SkAutoTUnref<SkCachedData> data(SkMaskCache::FindAndRef(sigma, style, quality, rrect, mask));
return data.get() && copy_cacheddata_to_mask(data, mask);
}
static void add_cached_rrect(const SkMask& mask, SkScalar sigma, SkBlurStyle style,
SkBlurQuality quality, const SkRRect& rrect) {
SkAutoTUnref<SkCachedData> data(copy_mask_to_cacheddata(mask));
if (data.get()) {
SkMaskCache::Add(sigma, style, quality, rrect, mask, data);
}
}
static bool find_cached_rects(SkMask* mask, SkScalar sigma, SkBlurStyle style,
SkBlurQuality quality, const SkRect rects[], int count) {
SkAutoTUnref<SkCachedData> data(SkMaskCache::FindAndRef(sigma, style, quality, rects, count, mask));
return data.get() && copy_cacheddata_to_mask(data, mask);
}
static void add_cached_rects(const SkMask& mask, SkScalar sigma, SkBlurStyle style,
SkBlurQuality quality, const SkRect rects[], int count) {
SkAutoTUnref<SkCachedData> data(copy_mask_to_cacheddata(mask));
if (data.get()) {
SkMaskCache::Add(sigma, style, quality, rects, count, mask, data);
}
}
#ifdef SK_IGNORE_FAST_RRECT_BLUR
SK_CONF_DECLARE( bool, c_analyticBlurRRect, "mask.filter.blur.analyticblurrrect", false, "Use the faster analytic blur approach for ninepatch rects" );
#else
SK_CONF_DECLARE( bool, c_analyticBlurRRect, "mask.filter.blur.analyticblurrrect", true, "Use the faster analytic blur approach for ninepatch round rects" );
#endif
SkMaskFilter::FilterReturn
SkBlurMaskFilterImpl::filterRRectToNine(const SkRRect& rrect, const SkMatrix& matrix,
const SkIRect& clipBounds,
NinePatch* patch) const {
SkASSERT(patch != NULL);
switch (rrect.getType()) {
case SkRRect::kEmpty_Type:
// Nothing to draw.
return kFalse_FilterReturn;
case SkRRect::kRect_Type:
// We should have caught this earlier.
SkASSERT(false);
// Fall through.
case SkRRect::kOval_Type:
// The nine patch special case does not handle ovals, and we
// already have code for rectangles.
return kUnimplemented_FilterReturn;
// These three can take advantage of this fast path.
case SkRRect::kSimple_Type:
case SkRRect::kNinePatch_Type:
case SkRRect::kComplex_Type:
break;
}
// TODO: report correct metrics for innerstyle, where we do not grow the
// total bounds, but we do need an inset the size of our blur-radius
if (kInner_SkBlurStyle == fBlurStyle) {
return kUnimplemented_FilterReturn;
}
// TODO: take clipBounds into account to limit our coordinates up front
// for now, just skip too-large src rects (to take the old code path).
if (rect_exceeds(rrect.rect(), SkIntToScalar(32767))) {
return kUnimplemented_FilterReturn;
}
SkIPoint margin;
SkMask srcM, dstM;
srcM.fBounds = rrect.rect().roundOut();
srcM.fImage = NULL;
srcM.fFormat = SkMask::kA8_Format;
srcM.fRowBytes = 0;
bool filterResult = false;
if (c_analyticBlurRRect) {
// special case for fast round rect blur
// don't actually do the blur the first time, just compute the correct size
filterResult = this->filterRRectMask(&dstM, rrect, matrix, &margin,
SkMask::kJustComputeBounds_CreateMode);
}
if (!filterResult) {
filterResult = this->filterMask(&dstM, srcM, matrix, &margin);
}
if (!filterResult) {
return kFalse_FilterReturn;
}
// Now figure out the appropriate width and height of the smaller round rectangle
// to stretch. It will take into account the larger radius per side as well as double
// the margin, to account for inner and outer blur.
const SkVector& UL = rrect.radii(SkRRect::kUpperLeft_Corner);
const SkVector& UR = rrect.radii(SkRRect::kUpperRight_Corner);
const SkVector& LR = rrect.radii(SkRRect::kLowerRight_Corner);
const SkVector& LL = rrect.radii(SkRRect::kLowerLeft_Corner);
const SkScalar leftUnstretched = SkTMax(UL.fX, LL.fX) + SkIntToScalar(2 * margin.fX);
const SkScalar rightUnstretched = SkTMax(UR.fX, LR.fX) + SkIntToScalar(2 * margin.fX);
// Extra space in the middle to ensure an unchanging piece for stretching. Use 3 to cover
// any fractional space on either side plus 1 for the part to stretch.
const SkScalar stretchSize = SkIntToScalar(3);
const SkScalar totalSmallWidth = leftUnstretched + rightUnstretched + stretchSize;
if (totalSmallWidth >= rrect.rect().width()) {
// There is no valid piece to stretch.
return kUnimplemented_FilterReturn;
}
const SkScalar topUnstretched = SkTMax(UL.fY, UR.fY) + SkIntToScalar(2 * margin.fY);
const SkScalar bottomUnstretched = SkTMax(LL.fY, LR.fY) + SkIntToScalar(2 * margin.fY);
const SkScalar totalSmallHeight = topUnstretched + bottomUnstretched + stretchSize;
if (totalSmallHeight >= rrect.rect().height()) {
// There is no valid piece to stretch.
return kUnimplemented_FilterReturn;
}
SkRect smallR = SkRect::MakeWH(totalSmallWidth, totalSmallHeight);
SkRRect smallRR;
SkVector radii[4];
radii[SkRRect::kUpperLeft_Corner] = UL;
radii[SkRRect::kUpperRight_Corner] = UR;
radii[SkRRect::kLowerRight_Corner] = LR;
radii[SkRRect::kLowerLeft_Corner] = LL;
smallRR.setRectRadii(smallR, radii);
const SkScalar sigma = this->computeXformedSigma(matrix);
if (!find_cached_rrect(&patch->fMask, sigma, fBlurStyle, this->getQuality(), smallRR)) {
bool analyticBlurWorked = false;
if (c_analyticBlurRRect) {
analyticBlurWorked =
this->filterRRectMask(&patch->fMask, smallRR, matrix, &margin,
SkMask::kComputeBoundsAndRenderImage_CreateMode);
}
if (!analyticBlurWorked) {
if (!draw_rrect_into_mask(smallRR, &srcM)) {
return kFalse_FilterReturn;
}
SkAutoMaskFreeImage amf(srcM.fImage);
if (!this->filterMask(&patch->fMask, srcM, matrix, &margin)) {
return kFalse_FilterReturn;
}
}
add_cached_rrect(patch->fMask, sigma, fBlurStyle, this->getQuality(), smallRR);
}
patch->fMask.fBounds.offsetTo(0, 0);
patch->fOuterRect = dstM.fBounds;
patch->fCenter.fX = SkScalarCeilToInt(leftUnstretched) + 1;
patch->fCenter.fY = SkScalarCeilToInt(topUnstretched) + 1;
return kTrue_FilterReturn;
}
SK_CONF_DECLARE( bool, c_analyticBlurNinepatch, "mask.filter.analyticNinePatch", true, "Use the faster analytic blur approach for ninepatch rects" );
SkMaskFilter::FilterReturn
SkBlurMaskFilterImpl::filterRectsToNine(const SkRect rects[], int count,
const SkMatrix& matrix,
const SkIRect& clipBounds,
NinePatch* patch) const {
if (count < 1 || count > 2) {
return kUnimplemented_FilterReturn;
}
// TODO: report correct metrics for innerstyle, where we do not grow the
// total bounds, but we do need an inset the size of our blur-radius
if (kInner_SkBlurStyle == fBlurStyle || kOuter_SkBlurStyle == fBlurStyle) {
return kUnimplemented_FilterReturn;
}
// TODO: take clipBounds into account to limit our coordinates up front
// for now, just skip too-large src rects (to take the old code path).
if (rect_exceeds(rects[0], SkIntToScalar(32767))) {
return kUnimplemented_FilterReturn;
}
SkIPoint margin;
SkMask srcM, dstM;
srcM.fBounds = rects[0].roundOut();
srcM.fImage = NULL;
srcM.fFormat = SkMask::kA8_Format;
srcM.fRowBytes = 0;
bool filterResult = false;
if (count == 1 && c_analyticBlurNinepatch) {
// special case for fast rect blur
// don't actually do the blur the first time, just compute the correct size
filterResult = this->filterRectMask(&dstM, rects[0], matrix, &margin,
SkMask::kJustComputeBounds_CreateMode);
} else {
filterResult = this->filterMask(&dstM, srcM, matrix, &margin);
}
if (!filterResult) {
return kFalse_FilterReturn;
}
/*
* smallR is the smallest version of 'rect' that will still guarantee that
* we get the same blur results on all edges, plus 1 center row/col that is
* representative of the extendible/stretchable edges of the ninepatch.
* Since our actual edge may be fractional we inset 1 more to be sure we
* don't miss any interior blur.
* x is an added pixel of blur, and { and } are the (fractional) edge
* pixels from the original rect.
*
* x x { x x .... x x } x x
*
* Thus, in this case, we inset by a total of 5 (on each side) beginning
* with our outer-rect (dstM.fBounds)
*/
SkRect smallR[2];
SkIPoint center;
// +2 is from +1 for each edge (to account for possible fractional edges
int smallW = dstM.fBounds.width() - srcM.fBounds.width() + 2;
int smallH = dstM.fBounds.height() - srcM.fBounds.height() + 2;
SkIRect innerIR;
if (1 == count) {
innerIR = srcM.fBounds;
center.set(smallW, smallH);
} else {
SkASSERT(2 == count);
rects[1].roundIn(&innerIR);
center.set(smallW + (innerIR.left() - srcM.fBounds.left()),
smallH + (innerIR.top() - srcM.fBounds.top()));
}
// +1 so we get a clean, stretchable, center row/col
smallW += 1;
smallH += 1;
// we want the inset amounts to be integral, so we don't change any
// fractional phase on the fRight or fBottom of our smallR.
const SkScalar dx = SkIntToScalar(innerIR.width() - smallW);
const SkScalar dy = SkIntToScalar(innerIR.height() - smallH);
if (dx < 0 || dy < 0) {
// we're too small, relative to our blur, to break into nine-patch,
// so we ask to have our normal filterMask() be called.
return kUnimplemented_FilterReturn;
}
smallR[0].set(rects[0].left(), rects[0].top(), rects[0].right() - dx, rects[0].bottom() - dy);
if (smallR[0].width() < 2 || smallR[0].height() < 2) {
return kUnimplemented_FilterReturn;
}
if (2 == count) {
smallR[1].set(rects[1].left(), rects[1].top(),
rects[1].right() - dx, rects[1].bottom() - dy);
SkASSERT(!smallR[1].isEmpty());
}
const SkScalar sigma = this->computeXformedSigma(matrix);
if (!find_cached_rects(&patch->fMask, sigma, fBlurStyle, this->getQuality(), smallR, count)) {
if (count > 1 || !c_analyticBlurNinepatch) {
if (!draw_rects_into_mask(smallR, count, &srcM)) {
return kFalse_FilterReturn;
}
SkAutoMaskFreeImage amf(srcM.fImage);
if (!this->filterMask(&patch->fMask, srcM, matrix, &margin)) {
return kFalse_FilterReturn;
}
} else {
if (!this->filterRectMask(&patch->fMask, smallR[0], matrix, &margin,
SkMask::kComputeBoundsAndRenderImage_CreateMode)) {
return kFalse_FilterReturn;
}
}
add_cached_rects(patch->fMask, sigma, fBlurStyle, this->getQuality(), smallR, count);
}
patch->fMask.fBounds.offsetTo(0, 0);
patch->fOuterRect = dstM.fBounds;
patch->fCenter = center;
return kTrue_FilterReturn;
}
void SkBlurMaskFilterImpl::computeFastBounds(const SkRect& src,
SkRect* dst) const {
SkScalar pad = 3.0f * fSigma;
dst->set(src.fLeft - pad, src.fTop - pad,
src.fRight + pad, src.fBottom + pad);
}
SkFlattenable* SkBlurMaskFilterImpl::CreateProc(SkReadBuffer& buffer) {
const SkScalar sigma = buffer.readScalar();
const unsigned style = buffer.readUInt();
const unsigned flags = buffer.readUInt();
if (style <= kLastEnum_SkBlurStyle) {
return SkBlurMaskFilter::Create((SkBlurStyle)style, sigma, flags);
}
return NULL;
}
void SkBlurMaskFilterImpl::flatten(SkWriteBuffer& buffer) const {
buffer.writeScalar(fSigma);
buffer.writeUInt(fBlurStyle);
buffer.writeUInt(fBlurFlags);
}
#if SK_SUPPORT_GPU
class GrGLRectBlurEffect;
class GrRectBlurEffect : public GrFragmentProcessor {
public:
virtual ~GrRectBlurEffect();
const char* name() const SK_OVERRIDE { return "RectBlur"; }
virtual void getGLProcessorKey(const GrGLCaps& caps,
GrProcessorKeyBuilder* b) const SK_OVERRIDE;
GrGLFragmentProcessor* createGLInstance() const SK_OVERRIDE;
/**
* Create a simple filter effect with custom bicubic coefficients.
*/
static GrFragmentProcessor* Create(GrContext *context, const SkRect& rect, float sigma) {
GrTexture *blurProfileTexture = NULL;
int doubleProfileSize = SkScalarCeilToInt(12*sigma);
if (doubleProfileSize >= rect.width() || doubleProfileSize >= rect.height()) {
// if the blur sigma is too large so the gaussian overlaps the whole
// rect in either direction, fall back to CPU path for now.
return NULL;
}
bool createdBlurProfileTexture = CreateBlurProfileTexture(context, sigma, &blurProfileTexture);
SkAutoTUnref<GrTexture> hunref(blurProfileTexture);
if (!createdBlurProfileTexture) {
return NULL;
}
return SkNEW_ARGS(GrRectBlurEffect, (rect, sigma, blurProfileTexture));
}
const SkRect& getRect() const { return fRect; }
float getSigma() const { return fSigma; }
private:
GrRectBlurEffect(const SkRect& rect, float sigma, GrTexture *blur_profile);
bool onIsEqual(const GrFragmentProcessor&) const SK_OVERRIDE;
void onComputeInvariantOutput(GrInvariantOutput* inout) const SK_OVERRIDE;
static bool CreateBlurProfileTexture(GrContext *context, float sigma,
GrTexture **blurProfileTexture);
SkRect fRect;
float fSigma;
GrTextureAccess fBlurProfileAccess;
GR_DECLARE_FRAGMENT_PROCESSOR_TEST;
typedef GrFragmentProcessor INHERITED;
};
class GrGLRectBlurEffect : public GrGLFragmentProcessor {
public:
GrGLRectBlurEffect(const GrProcessor&) {}
virtual void emitCode(GrGLFPBuilder*,
const GrFragmentProcessor&,
const char* outputColor,
const char* inputColor,
const TransformedCoordsArray&,
const TextureSamplerArray&) SK_OVERRIDE;
void setData(const GrGLProgramDataManager&, const GrProcessor&) SK_OVERRIDE;
private:
typedef GrGLProgramDataManager::UniformHandle UniformHandle;
UniformHandle fProxyRectUniform;
UniformHandle fProfileSizeUniform;
typedef GrGLFragmentProcessor INHERITED;
};
void OutputRectBlurProfileLookup(GrGLFPFragmentBuilder* fsBuilder,
const GrGLShaderBuilder::TextureSampler& sampler,
const char *output,
const char *profileSize, const char *loc,
const char *blurred_width,
const char *sharp_width) {
fsBuilder->codeAppendf("\tfloat %s;\n", output);
fsBuilder->codeAppendf("\t\t{\n");
fsBuilder->codeAppendf("\t\t\tfloat coord = (0.5 * (abs(2.0*%s - %s) - %s))/%s;\n",
loc, blurred_width, sharp_width, profileSize);
fsBuilder->codeAppendf("\t\t\t%s = ", output);
fsBuilder->appendTextureLookup(sampler, "vec2(coord,0.5)");
fsBuilder->codeAppend(".a;\n");
fsBuilder->codeAppendf("\t\t}\n");
}
void GrGLRectBlurEffect::emitCode(GrGLFPBuilder* builder,
const GrFragmentProcessor&,
const char* outputColor,
const char* inputColor,
const TransformedCoordsArray& coords,
const TextureSamplerArray& samplers) {
const char *rectName;
const char *profileSizeName;
fProxyRectUniform = builder->addUniform(GrGLProgramBuilder::kFragment_Visibility,
kVec4f_GrSLType,
kDefault_GrSLPrecision,
"proxyRect",
&rectName);
fProfileSizeUniform = builder->addUniform(GrGLProgramBuilder::kFragment_Visibility,
kFloat_GrSLType,
kDefault_GrSLPrecision,
"profileSize",
&profileSizeName);
GrGLFPFragmentBuilder* fsBuilder = builder->getFragmentShaderBuilder();
const char *fragmentPos = fsBuilder->fragmentPosition();
if (inputColor) {
fsBuilder->codeAppendf("\tvec4 src=%s;\n", inputColor);
} else {
fsBuilder->codeAppendf("\tvec4 src=vec4(1)\n;");
}
fsBuilder->codeAppendf("\tvec2 translatedPos = %s.xy - %s.xy;\n", fragmentPos, rectName );
fsBuilder->codeAppendf("\tfloat width = %s.z - %s.x;\n", rectName, rectName);
fsBuilder->codeAppendf("\tfloat height = %s.w - %s.y;\n", rectName, rectName);
fsBuilder->codeAppendf("\tvec2 smallDims = vec2(width - %s, height-%s);\n", profileSizeName, profileSizeName);
fsBuilder->codeAppendf("\tfloat center = 2.0 * floor(%s/2.0 + .25) - 1.0;\n", profileSizeName);
fsBuilder->codeAppendf("\tvec2 wh = smallDims - vec2(center,center);\n");
OutputRectBlurProfileLookup(fsBuilder, samplers[0], "horiz_lookup", profileSizeName, "translatedPos.x", "width", "wh.x");
OutputRectBlurProfileLookup(fsBuilder, samplers[0], "vert_lookup", profileSizeName, "translatedPos.y", "height", "wh.y");
fsBuilder->codeAppendf("\tfloat final = horiz_lookup * vert_lookup;\n");
fsBuilder->codeAppendf("\t%s = src * final;\n", outputColor );
}
void GrGLRectBlurEffect::setData(const GrGLProgramDataManager& pdman,
const GrProcessor& proc) {
const GrRectBlurEffect& rbe = proc.cast<GrRectBlurEffect>();
SkRect rect = rbe.getRect();
pdman.set4f(fProxyRectUniform, rect.fLeft, rect.fTop, rect.fRight, rect.fBottom);
pdman.set1f(fProfileSizeUniform, SkScalarCeilToScalar(6*rbe.getSigma()));
}
bool GrRectBlurEffect::CreateBlurProfileTexture(GrContext *context, float sigma,
GrTexture **blurProfileTexture) {
GrTextureParams params;
GrSurfaceDesc texDesc;
unsigned int profile_size = SkScalarCeilToInt(6*sigma);
texDesc.fWidth = profile_size;
texDesc.fHeight = 1;
texDesc.fConfig = kAlpha_8_GrPixelConfig;
static const GrCacheID::Domain gBlurProfileDomain = GrCacheID::GenerateDomain();
GrCacheID::Key key;
memset(&key, 0, sizeof(key));
key.fData32[0] = profile_size;
key.fData32[1] = 1;
GrCacheID blurProfileKey(gBlurProfileDomain, key);
uint8_t *profile = NULL;
SkAutoTDeleteArray<uint8_t> ada(NULL);
*blurProfileTexture = context->findAndRefTexture(texDesc, blurProfileKey, ¶ms);
if (NULL == *blurProfileTexture) {
SkBlurMask::ComputeBlurProfile(sigma, &profile);
ada.reset(profile);
*blurProfileTexture = context->createTexture(¶ms, texDesc, blurProfileKey,
profile, 0);
if (NULL == *blurProfileTexture) {
return false;
}
}
return true;
}
GrRectBlurEffect::GrRectBlurEffect(const SkRect& rect, float sigma,
GrTexture *blur_profile)
: fRect(rect),
fSigma(sigma),
fBlurProfileAccess(blur_profile) {
this->initClassID<GrRectBlurEffect>();
this->addTextureAccess(&fBlurProfileAccess);
this->setWillReadFragmentPosition();
}
GrRectBlurEffect::~GrRectBlurEffect() {
}
void GrRectBlurEffect::getGLProcessorKey(const GrGLCaps& caps,
GrProcessorKeyBuilder* b) const {
GrGLRectBlurEffect::GenKey(*this, caps, b);
}
GrGLFragmentProcessor* GrRectBlurEffect::createGLInstance() const {
return SkNEW_ARGS(GrGLRectBlurEffect, (*this));
}
bool GrRectBlurEffect::onIsEqual(const GrFragmentProcessor& sBase) const {
const GrRectBlurEffect& s = sBase.cast<GrRectBlurEffect>();
return this->getSigma() == s.getSigma() && this->getRect() == s.getRect();
}
void GrRectBlurEffect::onComputeInvariantOutput(GrInvariantOutput* inout) const {
inout->mulByUnknownSingleComponent();
}
GR_DEFINE_FRAGMENT_PROCESSOR_TEST(GrRectBlurEffect);
GrFragmentProcessor* GrRectBlurEffect::TestCreate(SkRandom* random,
GrContext* context,
const GrDrawTargetCaps&,
GrTexture**) {
float sigma = random->nextRangeF(3,8);
float width = random->nextRangeF(200,300);
float height = random->nextRangeF(200,300);
return GrRectBlurEffect::Create(context, SkRect::MakeWH(width, height), sigma);
}
bool SkBlurMaskFilterImpl::directFilterMaskGPU(GrContext* context,
GrPaint* grp,
const SkMatrix& viewMatrix,
const SkStrokeRec& strokeRec,
const SkPath& path) const {
if (fBlurStyle != kNormal_SkBlurStyle) {
return false;
}
SkRect rect;
if (!path.isRect(&rect)) {
return false;
}
if (!strokeRec.isFillStyle()) {
return false;
}
SkMatrix ctm = viewMatrix;
SkScalar xformedSigma = this->computeXformedSigma(ctm);
int pad=SkScalarCeilToInt(6*xformedSigma)/2;
rect.outset(SkIntToScalar(pad), SkIntToScalar(pad));
SkAutoTUnref<GrFragmentProcessor> fp(GrRectBlurEffect::Create(context, rect, xformedSigma));
if (!fp) {
return false;
}
grp->addCoverageProcessor(fp);
SkMatrix inverse;
if (!viewMatrix.invert(&inverse)) {
return false;
}
context->drawNonAARectWithLocalMatrix(*grp, SkMatrix::I(), rect, inverse);
return true;
}
class GrRRectBlurEffect : public GrFragmentProcessor {
public:
static GrFragmentProcessor* Create(GrContext* context, float sigma, const SkRRect&);
virtual ~GrRRectBlurEffect() {};
const char* name() const SK_OVERRIDE { return "GrRRectBlur"; }
const SkRRect& getRRect() const { return fRRect; }
float getSigma() const { return fSigma; }
virtual void getGLProcessorKey(const GrGLCaps& caps,
GrProcessorKeyBuilder* b) const SK_OVERRIDE;
GrGLFragmentProcessor* createGLInstance() const SK_OVERRIDE;
private:
GrRRectBlurEffect(float sigma, const SkRRect&, GrTexture* profileTexture);
bool onIsEqual(const GrFragmentProcessor& other) const SK_OVERRIDE;
void onComputeInvariantOutput(GrInvariantOutput* inout) const SK_OVERRIDE;
SkRRect fRRect;
float fSigma;
GrTextureAccess fNinePatchAccess;
GR_DECLARE_FRAGMENT_PROCESSOR_TEST;
typedef GrFragmentProcessor INHERITED;
};
GrFragmentProcessor* GrRRectBlurEffect::Create(GrContext* context, float sigma,
const SkRRect& rrect) {
if (!rrect.isSimpleCircular()) {
return NULL;
}
// Make sure we can successfully ninepatch this rrect -- the blur sigma has to be
// sufficiently small relative to both the size of the corner radius and the
// width (and height) of the rrect.
unsigned int blurRadius = 3*SkScalarCeilToInt(sigma-1/6.0f);
unsigned int cornerRadius = SkScalarCeilToInt(rrect.getSimpleRadii().x());
if (cornerRadius + blurRadius > rrect.width()/2 ||
cornerRadius + blurRadius > rrect.height()/2) {
return NULL;
}
static const GrCacheID::Domain gRRectBlurDomain = GrCacheID::GenerateDomain();
GrCacheID::Key key;
memset(&key, 0, sizeof(key));
key.fData32[0] = blurRadius;
key.fData32[1] = cornerRadius;
GrCacheID blurRRectNinePatchID(gRRectBlurDomain, key);
GrTextureParams params;
params.setFilterMode(GrTextureParams::kBilerp_FilterMode);
unsigned int smallRectSide = 2*(blurRadius + cornerRadius) + 1;
unsigned int texSide = smallRectSide + 2*blurRadius;
GrSurfaceDesc texDesc;
texDesc.fWidth = texSide;
texDesc.fHeight = texSide;
texDesc.fConfig = kAlpha_8_GrPixelConfig;
GrTexture *blurNinePatchTexture = context->findAndRefTexture(texDesc, blurRRectNinePatchID, ¶ms);
if (NULL == blurNinePatchTexture) {
SkMask mask;
mask.fBounds = SkIRect::MakeWH(smallRectSide, smallRectSide);
mask.fFormat = SkMask::kA8_Format;
mask.fRowBytes = mask.fBounds.width();
mask.fImage = SkMask::AllocImage(mask.computeTotalImageSize());
SkAutoMaskFreeImage amfi(mask.fImage);
memset(mask.fImage, 0, mask.computeTotalImageSize());
SkRect smallRect;
smallRect.setWH(SkIntToScalar(smallRectSide), SkIntToScalar(smallRectSide));
SkRRect smallRRect;
smallRRect.setRectXY(smallRect, SkIntToScalar(cornerRadius), SkIntToScalar(cornerRadius));
SkPath path;
path.addRRect( smallRRect );
SkDraw::DrawToMask(path, &mask.fBounds, NULL, NULL, &mask, SkMask::kJustRenderImage_CreateMode, SkPaint::kFill_Style);
SkMask blurred_mask;
SkBlurMask::BoxBlur(&blurred_mask, mask, sigma, kNormal_SkBlurStyle, kHigh_SkBlurQuality, NULL, true );
blurNinePatchTexture = context->createTexture(¶ms, texDesc, blurRRectNinePatchID, blurred_mask.fImage, 0);
SkMask::FreeImage(blurred_mask.fImage);
}
SkAutoTUnref<GrTexture> blurunref(blurNinePatchTexture);
if (NULL == blurNinePatchTexture) {
return NULL;
}
return SkNEW_ARGS(GrRRectBlurEffect, (sigma, rrect, blurNinePatchTexture));
}
void GrRRectBlurEffect::onComputeInvariantOutput(GrInvariantOutput* inout) const {
inout->mulByUnknownSingleComponent();
}
GrRRectBlurEffect::GrRRectBlurEffect(float sigma, const SkRRect& rrect, GrTexture *ninePatchTexture)
: fRRect(rrect),
fSigma(sigma),
fNinePatchAccess(ninePatchTexture) {
this->initClassID<GrRRectBlurEffect>();
this->addTextureAccess(&fNinePatchAccess);
this->setWillReadFragmentPosition();
}
bool GrRRectBlurEffect::onIsEqual(const GrFragmentProcessor& other) const {
const GrRRectBlurEffect& rrbe = other.cast<GrRRectBlurEffect>();
return fRRect.getSimpleRadii().fX == rrbe.fRRect.getSimpleRadii().fX && fSigma == rrbe.fSigma;
}
//////////////////////////////////////////////////////////////////////////////
GR_DEFINE_FRAGMENT_PROCESSOR_TEST(GrRRectBlurEffect);
GrFragmentProcessor* GrRRectBlurEffect::TestCreate(SkRandom* random,
GrContext* context,
const GrDrawTargetCaps& caps,
GrTexture*[]) {
SkScalar w = random->nextRangeScalar(100.f, 1000.f);
SkScalar h = random->nextRangeScalar(100.f, 1000.f);
SkScalar r = random->nextRangeF(1.f, 9.f);
SkScalar sigma = random->nextRangeF(1.f,10.f);
SkRRect rrect;
rrect.setRectXY(SkRect::MakeWH(w, h), r, r);
return GrRRectBlurEffect::Create(context, sigma, rrect);
}
//////////////////////////////////////////////////////////////////////////////
class GrGLRRectBlurEffect : public GrGLFragmentProcessor {
public:
GrGLRRectBlurEffect(const GrProcessor&) {}
virtual void emitCode(GrGLFPBuilder*,
const GrFragmentProcessor&,
const char* outputColor,
const char* inputColor,
const TransformedCoordsArray&,
const TextureSamplerArray&) SK_OVERRIDE;
void setData(const GrGLProgramDataManager&, const GrProcessor&) SK_OVERRIDE;
private:
GrGLProgramDataManager::UniformHandle fProxyRectUniform;
GrGLProgramDataManager::UniformHandle fCornerRadiusUniform;
GrGLProgramDataManager::UniformHandle fBlurRadiusUniform;
typedef GrGLFragmentProcessor INHERITED;
};
void GrGLRRectBlurEffect::emitCode(GrGLFPBuilder* builder,
const GrFragmentProcessor&,
const char* outputColor,
const char* inputColor,
const TransformedCoordsArray&,
const TextureSamplerArray& samplers) {
const char *rectName;
const char *cornerRadiusName;
const char *blurRadiusName;
// The proxy rect has left, top, right, and bottom edges correspond to
// components x, y, z, and w, respectively.
fProxyRectUniform = builder->addUniform(GrGLProgramBuilder::kFragment_Visibility,
kVec4f_GrSLType,
kDefault_GrSLPrecision,
"proxyRect",
&rectName);
fCornerRadiusUniform = builder->addUniform(GrGLProgramBuilder::kFragment_Visibility,
kFloat_GrSLType,
kDefault_GrSLPrecision,
"cornerRadius",
&cornerRadiusName);
fBlurRadiusUniform = builder->addUniform(GrGLProgramBuilder::kFragment_Visibility,
kFloat_GrSLType,
kDefault_GrSLPrecision,
"blurRadius",
&blurRadiusName);
GrGLFPFragmentBuilder* fsBuilder = builder->getFragmentShaderBuilder();
const char* fragmentPos = fsBuilder->fragmentPosition();
// warp the fragment position to the appropriate part of the 9patch blur texture
fsBuilder->codeAppendf("\t\tvec2 rectCenter = (%s.xy + %s.zw)/2.0;\n", rectName, rectName);
fsBuilder->codeAppendf("\t\tvec2 translatedFragPos = %s.xy - %s.xy;\n", fragmentPos, rectName);
fsBuilder->codeAppendf("\t\tfloat threshold = %s + 2.0*%s;\n", cornerRadiusName, blurRadiusName );
fsBuilder->codeAppendf("\t\tvec2 middle = %s.zw - %s.xy - 2.0*threshold;\n", rectName, rectName );
fsBuilder->codeAppendf("\t\tif (translatedFragPos.x >= threshold && translatedFragPos.x < (middle.x+threshold)) {\n" );
fsBuilder->codeAppendf("\t\t\ttranslatedFragPos.x = threshold;\n");
fsBuilder->codeAppendf("\t\t} else if (translatedFragPos.x >= (middle.x + threshold)) {\n");
fsBuilder->codeAppendf("\t\t\ttranslatedFragPos.x -= middle.x - 1.0;\n");
fsBuilder->codeAppendf("\t\t}\n");
fsBuilder->codeAppendf("\t\tif (translatedFragPos.y > threshold && translatedFragPos.y < (middle.y+threshold)) {\n" );
fsBuilder->codeAppendf("\t\t\ttranslatedFragPos.y = threshold;\n");
fsBuilder->codeAppendf("\t\t} else if (translatedFragPos.y >= (middle.y + threshold)) {\n");
fsBuilder->codeAppendf("\t\t\ttranslatedFragPos.y -= middle.y - 1.0;\n");
fsBuilder->codeAppendf("\t\t}\n");
fsBuilder->codeAppendf("\t\tvec2 proxyDims = vec2(2.0*threshold+1.0);\n");
fsBuilder->codeAppendf("\t\tvec2 texCoord = translatedFragPos / proxyDims;\n");
fsBuilder->codeAppendf("\t%s = ", outputColor);
fsBuilder->appendTextureLookupAndModulate(inputColor, samplers[0], "texCoord");
fsBuilder->codeAppend(";\n");
}
void GrGLRRectBlurEffect::setData(const GrGLProgramDataManager& pdman,
const GrProcessor& proc) {
const GrRRectBlurEffect& brre = proc.cast<GrRRectBlurEffect>();
SkRRect rrect = brre.getRRect();
float blurRadius = 3.f*SkScalarCeilToScalar(brre.getSigma()-1/6.0f);
pdman.set1f(fBlurRadiusUniform, blurRadius);
SkRect rect = rrect.getBounds();
rect.outset(blurRadius, blurRadius);
pdman.set4f(fProxyRectUniform, rect.fLeft, rect.fTop, rect.fRight, rect.fBottom);
SkScalar radius = 0;
SkASSERT(rrect.isSimpleCircular() || rrect.isRect());
radius = rrect.getSimpleRadii().fX;
pdman.set1f(fCornerRadiusUniform, radius);
}
void GrRRectBlurEffect::getGLProcessorKey(const GrGLCaps& caps, GrProcessorKeyBuilder* b) const {
GrGLRRectBlurEffect::GenKey(*this, caps, b);
}
GrGLFragmentProcessor* GrRRectBlurEffect::createGLInstance() const {
return SkNEW_ARGS(GrGLRRectBlurEffect, (*this));
}
bool SkBlurMaskFilterImpl::directFilterRRectMaskGPU(GrContext* context,
GrPaint* grp,
const SkMatrix& viewMatrix,
const SkStrokeRec& strokeRec,
const SkRRect& rrect) const {
if (fBlurStyle != kNormal_SkBlurStyle) {
return false;
}
if (!strokeRec.isFillStyle()) {
return false;
}
SkRect proxy_rect = rrect.rect();
SkMatrix ctm = viewMatrix;
SkScalar xformedSigma = this->computeXformedSigma(ctm);
float extra=3.f*SkScalarCeilToScalar(xformedSigma-1/6.0f);
proxy_rect.outset(extra, extra);
SkAutoTUnref<GrFragmentProcessor> fp(GrRRectBlurEffect::Create(context, xformedSigma, rrect));
if (!fp) {
return false;
}
grp->addCoverageProcessor(fp);
SkMatrix inverse;
if (!viewMatrix.invert(&inverse)) {
return false;
}
context->drawNonAARectWithLocalMatrix(*grp, SkMatrix::I(), proxy_rect, inverse);
return true;
}
bool SkBlurMaskFilterImpl::canFilterMaskGPU(const SkRect& srcBounds,
const SkIRect& clipBounds,
const SkMatrix& ctm,
SkRect* maskRect) const {
SkScalar xformedSigma = this->computeXformedSigma(ctm);
if (xformedSigma <= 0) {
return false;
}
static const SkScalar kMIN_GPU_BLUR_SIZE = SkIntToScalar(64);
static const SkScalar kMIN_GPU_BLUR_SIGMA = SkIntToScalar(32);
if (srcBounds.width() <= kMIN_GPU_BLUR_SIZE &&
srcBounds.height() <= kMIN_GPU_BLUR_SIZE &&
xformedSigma <= kMIN_GPU_BLUR_SIGMA) {
// We prefer to blur small rect with small radius via CPU.
return false;
}
if (NULL == maskRect) {
// don't need to compute maskRect
return true;
}
float sigma3 = 3 * SkScalarToFloat(xformedSigma);
SkRect clipRect = SkRect::Make(clipBounds);
SkRect srcRect(srcBounds);
// Outset srcRect and clipRect by 3 * sigma, to compute affected blur area.
srcRect.outset(sigma3, sigma3);
clipRect.outset(sigma3, sigma3);
if (!srcRect.intersect(clipRect)) {
srcRect.setEmpty();
}
*maskRect = srcRect;
return true;
}
bool SkBlurMaskFilterImpl::filterMaskGPU(GrTexture* src,
const SkMatrix& ctm,
const SkRect& maskRect,
GrTexture** result,
bool canOverwriteSrc) const {
SkRect clipRect = SkRect::MakeWH(maskRect.width(), maskRect.height());
GrContext* context = src->getContext();
GrContext::AutoWideOpenIdentityDraw awo(context, NULL);
SkScalar xformedSigma = this->computeXformedSigma(ctm);
SkASSERT(xformedSigma > 0);
// If we're doing a normal blur, we can clobber the pathTexture in the
// gaussianBlur. Otherwise, we need to save it for later compositing.
bool isNormalBlur = (kNormal_SkBlurStyle == fBlurStyle);
*result = SkGpuBlurUtils::GaussianBlur(context, src, isNormalBlur && canOverwriteSrc,
clipRect, false, xformedSigma, xformedSigma);
if (NULL == *result) {
return false;
}
if (!isNormalBlur) {
GrPaint paint;
SkMatrix matrix;
matrix.setIDiv(src->width(), src->height());
// Blend pathTexture over blurTexture.
GrContext::AutoRenderTarget art(context, (*result)->asRenderTarget());
paint.addColorProcessor(GrSimpleTextureEffect::Create(src, matrix))->unref();
if (kInner_SkBlurStyle == fBlurStyle) {
// inner: dst = dst * src
paint.setPorterDuffXPFactory(kDC_GrBlendCoeff, kZero_GrBlendCoeff);
} else if (kSolid_SkBlurStyle == fBlurStyle) {
// solid: dst = src + dst - src * dst
// = (1 - dst) * src + 1 * dst
paint.setPorterDuffXPFactory(kIDC_GrBlendCoeff, kOne_GrBlendCoeff);
} else if (kOuter_SkBlurStyle == fBlurStyle) {
// outer: dst = dst * (1 - src)
// = 0 * src + (1 - src) * dst
paint.setPorterDuffXPFactory(kZero_GrBlendCoeff, kISC_GrBlendCoeff);
}
context->drawRect(paint, SkMatrix::I(), clipRect);
}
return true;
}
#endif // SK_SUPPORT_GPU
#ifndef SK_IGNORE_TO_STRING
void SkBlurMaskFilterImpl::toString(SkString* str) const {
str->append("SkBlurMaskFilterImpl: (");
str->append("sigma: ");
str->appendScalar(fSigma);
str->append(" ");
static const char* gStyleName[kLastEnum_SkBlurStyle + 1] = {
"normal", "solid", "outer", "inner"
};
str->appendf("style: %s ", gStyleName[fBlurStyle]);
str->append("flags: (");
if (fBlurFlags) {
bool needSeparator = false;
SkAddFlagToString(str,
SkToBool(fBlurFlags & SkBlurMaskFilter::kIgnoreTransform_BlurFlag),
"IgnoreXform", &needSeparator);
SkAddFlagToString(str,
SkToBool(fBlurFlags & SkBlurMaskFilter::kHighQuality_BlurFlag),
"HighQuality", &needSeparator);
} else {
str->append("None");
}
str->append("))");
}
#endif
SK_DEFINE_FLATTENABLE_REGISTRAR_GROUP_START(SkBlurMaskFilter)
SK_DEFINE_FLATTENABLE_REGISTRAR_ENTRY(SkBlurMaskFilterImpl)
SK_DEFINE_FLATTENABLE_REGISTRAR_GROUP_END
|