1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
|
/*
* Copyright 2011 The Android Open Source Project
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkBitmap.h"
#include "SkBlurImageFilter.h"
#include "SkColorPriv.h"
#include "SkReadBuffer.h"
#include "SkWriteBuffer.h"
#include "SkGpuBlurUtils.h"
#include "SkBlurImage_opts.h"
#if SK_SUPPORT_GPU
#include "GrContext.h"
#endif
SkBlurImageFilter::SkBlurImageFilter(SkReadBuffer& buffer)
: INHERITED(1, buffer) {
fSigma.fWidth = buffer.readScalar();
fSigma.fHeight = buffer.readScalar();
buffer.validate(SkScalarIsFinite(fSigma.fWidth) &&
SkScalarIsFinite(fSigma.fHeight) &&
(fSigma.fWidth >= 0) &&
(fSigma.fHeight >= 0));
}
SkBlurImageFilter::SkBlurImageFilter(SkScalar sigmaX,
SkScalar sigmaY,
SkImageFilter* input,
const CropRect* cropRect)
: INHERITED(input, cropRect), fSigma(SkSize::Make(sigmaX, sigmaY)) {
SkASSERT(sigmaX >= 0 && sigmaY >= 0);
}
void SkBlurImageFilter::flatten(SkWriteBuffer& buffer) const {
this->INHERITED::flatten(buffer);
buffer.writeScalar(fSigma.fWidth);
buffer.writeScalar(fSigma.fHeight);
}
enum BlurDirection {
kX, kY
};
/**
*
* In order to make memory accesses cache-friendly, we reorder the passes to
* use contiguous memory reads wherever possible.
*
* For example, the 6 passes of the X-and-Y blur case are rewritten as
* follows. Instead of 3 passes in X and 3 passes in Y, we perform
* 2 passes in X, 1 pass in X transposed to Y on write, 2 passes in X,
* then 1 pass in X transposed to Y on write.
*
* +----+ +----+ +----+ +---+ +---+ +---+ +----+
* + AB + ----> | AB | ----> | AB | -----> | A | ----> | A | ----> | A | -----> | AB |
* +----+ blurX +----+ blurX +----+ blurXY | B | blurX | B | blurX | B | blurXY +----+
* +---+ +---+ +---+
*
* In this way, two of the y-blurs become x-blurs applied to transposed
* images, and all memory reads are contiguous.
*/
template<BlurDirection srcDirection, BlurDirection dstDirection>
static void boxBlur(const SkPMColor* src, int srcStride, SkPMColor* dst, int kernelSize,
int leftOffset, int rightOffset, int width, int height)
{
int rightBorder = SkMin32(rightOffset + 1, width);
int srcStrideX = srcDirection == kX ? 1 : srcStride;
int dstStrideX = dstDirection == kX ? 1 : height;
int srcStrideY = srcDirection == kX ? srcStride : 1;
int dstStrideY = dstDirection == kX ? width : 1;
uint32_t scale = (1 << 24) / kernelSize;
uint32_t half = 1 << 23;
for (int y = 0; y < height; ++y) {
int sumA = 0, sumR = 0, sumG = 0, sumB = 0;
const SkPMColor* p = src;
for (int i = 0; i < rightBorder; ++i) {
sumA += SkGetPackedA32(*p);
sumR += SkGetPackedR32(*p);
sumG += SkGetPackedG32(*p);
sumB += SkGetPackedB32(*p);
p += srcStrideX;
}
const SkPMColor* sptr = src;
SkColor* dptr = dst;
for (int x = 0; x < width; ++x) {
*dptr = SkPackARGB32((sumA * scale + half) >> 24,
(sumR * scale + half) >> 24,
(sumG * scale + half) >> 24,
(sumB * scale + half) >> 24);
if (x >= leftOffset) {
SkColor l = *(sptr - leftOffset * srcStrideX);
sumA -= SkGetPackedA32(l);
sumR -= SkGetPackedR32(l);
sumG -= SkGetPackedG32(l);
sumB -= SkGetPackedB32(l);
}
if (x + rightOffset + 1 < width) {
SkColor r = *(sptr + (rightOffset + 1) * srcStrideX);
sumA += SkGetPackedA32(r);
sumR += SkGetPackedR32(r);
sumG += SkGetPackedG32(r);
sumB += SkGetPackedB32(r);
}
sptr += srcStrideX;
if (srcDirection == kY) {
SK_PREFETCH(sptr + (rightOffset + 1) * srcStrideX);
}
dptr += dstStrideX;
}
src += srcStrideY;
dst += dstStrideY;
}
}
static void getBox3Params(SkScalar s, int *kernelSize, int* kernelSize3, int *lowOffset,
int *highOffset)
{
float pi = SkScalarToFloat(SK_ScalarPI);
int d = static_cast<int>(floorf(SkScalarToFloat(s) * 3.0f * sqrtf(2.0f * pi) / 4.0f + 0.5f));
*kernelSize = d;
if (d % 2 == 1) {
*lowOffset = *highOffset = (d - 1) / 2;
*kernelSize3 = d;
} else {
*highOffset = d / 2;
*lowOffset = *highOffset - 1;
*kernelSize3 = d + 1;
}
}
bool SkBlurImageFilter::onFilterImage(Proxy* proxy,
const SkBitmap& source, const SkMatrix& ctm,
SkBitmap* dst, SkIPoint* offset) const {
SkBitmap src = source;
SkIPoint srcOffset = SkIPoint::Make(0, 0);
if (getInput(0) && !getInput(0)->filterImage(proxy, source, ctm, &src, &srcOffset)) {
return false;
}
if (src.colorType() != kPMColor_SkColorType) {
return false;
}
SkAutoLockPixels alp(src);
if (!src.getPixels()) {
return false;
}
SkIRect srcBounds, dstBounds;
src.getBounds(&srcBounds);
srcBounds.offset(srcOffset);
if (!this->applyCropRect(&srcBounds, ctm)) {
return false;
}
dst->setConfig(src.config(), srcBounds.width(), srcBounds.height());
dst->getBounds(&dstBounds);
if (!dst->allocPixels()) {
return false;
}
SkVector sigma, localSigma = SkVector::Make(fSigma.width(), fSigma.height());
ctm.mapVectors(&sigma, &localSigma, 1);
int kernelSizeX, kernelSizeX3, lowOffsetX, highOffsetX;
int kernelSizeY, kernelSizeY3, lowOffsetY, highOffsetY;
getBox3Params(sigma.x(), &kernelSizeX, &kernelSizeX3, &lowOffsetX, &highOffsetX);
getBox3Params(sigma.y(), &kernelSizeY, &kernelSizeY3, &lowOffsetY, &highOffsetY);
if (kernelSizeX < 0 || kernelSizeY < 0) {
return false;
}
if (kernelSizeX == 0 && kernelSizeY == 0) {
src.copyTo(dst, dst->colorType());
offset->fX = srcBounds.fLeft;
offset->fY = srcBounds.fTop;
return true;
}
SkBitmap temp;
temp.setConfig(dst->config(), dst->width(), dst->height());
if (!temp.allocPixels()) {
return false;
}
offset->fX = srcBounds.fLeft;
offset->fY = srcBounds.fTop;
srcBounds.offset(-srcOffset);
const SkPMColor* s = src.getAddr32(srcBounds.left(), srcBounds.top());
SkPMColor* t = temp.getAddr32(0, 0);
SkPMColor* d = dst->getAddr32(0, 0);
int w = dstBounds.width(), h = dstBounds.height();
int sw = src.rowBytesAsPixels();
SkBoxBlurProc boxBlurX, boxBlurY, boxBlurXY, boxBlurYX;
if (!SkBoxBlurGetPlatformProcs(&boxBlurX, &boxBlurY, &boxBlurXY, &boxBlurYX)) {
boxBlurX = boxBlur<kX, kX>;
boxBlurY = boxBlur<kY, kY>;
boxBlurXY = boxBlur<kX, kY>;
boxBlurYX = boxBlur<kY, kX>;
}
if (kernelSizeX > 0 && kernelSizeY > 0) {
boxBlurX(s, sw, t, kernelSizeX, lowOffsetX, highOffsetX, w, h);
boxBlurX(t, w, d, kernelSizeX, highOffsetX, lowOffsetX, w, h);
boxBlurXY(d, w, t, kernelSizeX3, highOffsetX, highOffsetX, w, h);
boxBlurX(t, h, d, kernelSizeY, lowOffsetY, highOffsetY, h, w);
boxBlurX(d, h, t, kernelSizeY, highOffsetY, lowOffsetY, h, w);
boxBlurXY(t, h, d, kernelSizeY3, highOffsetY, highOffsetY, h, w);
} else if (kernelSizeX > 0) {
boxBlurX(s, sw, d, kernelSizeX, lowOffsetX, highOffsetX, w, h);
boxBlurX(d, w, t, kernelSizeX, highOffsetX, lowOffsetX, w, h);
boxBlurX(t, w, d, kernelSizeX3, highOffsetX, highOffsetX, w, h);
} else if (kernelSizeY > 0) {
boxBlurYX(s, sw, d, kernelSizeY, lowOffsetY, highOffsetY, h, w);
boxBlurX(d, h, t, kernelSizeY, highOffsetY, lowOffsetY, h, w);
boxBlurXY(t, h, d, kernelSizeY3, highOffsetY, highOffsetY, h, w);
}
return true;
}
void SkBlurImageFilter::computeFastBounds(const SkRect& src, SkRect* dst) const {
if (getInput(0)) {
getInput(0)->computeFastBounds(src, dst);
} else {
*dst = src;
}
dst->outset(SkScalarMul(fSigma.width(), SkIntToScalar(3)),
SkScalarMul(fSigma.height(), SkIntToScalar(3)));
}
bool SkBlurImageFilter::onFilterBounds(const SkIRect& src, const SkMatrix& ctm,
SkIRect* dst) const {
SkIRect bounds = src;
if (getInput(0) && !getInput(0)->filterBounds(src, ctm, &bounds)) {
return false;
}
SkVector sigma, localSigma = SkVector::Make(fSigma.width(), fSigma.height());
ctm.mapVectors(&sigma, &localSigma, 1);
bounds.outset(SkScalarCeilToInt(SkScalarMul(sigma.x(), SkIntToScalar(3))),
SkScalarCeilToInt(SkScalarMul(sigma.y(), SkIntToScalar(3))));
*dst = bounds;
return true;
}
bool SkBlurImageFilter::filterImageGPU(Proxy* proxy, const SkBitmap& src, const SkMatrix& ctm,
SkBitmap* result, SkIPoint* offset) const {
#if SK_SUPPORT_GPU
SkBitmap input = src;
SkIPoint srcOffset = SkIPoint::Make(0, 0);
if (getInput(0) && !getInput(0)->getInputResultGPU(proxy, src, ctm, &input, &srcOffset)) {
return false;
}
GrTexture* source = input.getTexture();
SkIRect rect;
src.getBounds(&rect);
rect.offset(srcOffset);
if (!this->applyCropRect(&rect, ctm)) {
return false;
}
SkVector sigma, localSigma = SkVector::Make(fSigma.width(), fSigma.height());
ctm.mapVectors(&sigma, &localSigma, 1);
offset->fX = rect.fLeft;
offset->fY = rect.fTop;
rect.offset(-srcOffset);
SkAutoTUnref<GrTexture> tex(SkGpuBlurUtils::GaussianBlur(source->getContext(),
source,
false,
SkRect::Make(rect),
true,
sigma.x(),
sigma.y()));
WrapTexture(tex, rect.width(), rect.height(), result);
return true;
#else
SkDEBUGFAIL("Should not call in GPU-less build");
return false;
#endif
}
|