1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
|
/*
* Copyright 2011 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkWriter32.h"
SkWriter32::SkWriter32(size_t minSize, void* storage, size_t storageSize) {
fMinSize = minSize;
fSize = 0;
fWrittenBeforeLastBlock = 0;
fHead = fTail = NULL;
if (storageSize) {
this->reset(storage, storageSize);
}
}
SkWriter32::~SkWriter32() {
this->reset();
}
void SkWriter32::reset() {
Block* block = fHead;
if (this->isHeadExternallyAllocated()) {
SkASSERT(block);
// don't 'free' the first block, since it is owned by the caller
block = block->fNext;
}
while (block) {
Block* next = block->fNext;
sk_free(block);
block = next;
}
fSize = 0;
fWrittenBeforeLastBlock = 0;
fHead = fTail = NULL;
}
void SkWriter32::reset(void* storage, size_t storageSize) {
this->reset();
storageSize &= ~3; // trunc down to multiple of 4
if (storageSize > 0 && SkIsAlign4((intptr_t)storage)) {
fHead = fTail = fExternalBlock.initFromStorage(storage, storageSize);
}
}
SkWriter32::Block* SkWriter32::doReserve(size_t size) {
SkASSERT(SkAlign4(size) == size);
Block* block = fTail;
SkASSERT(NULL == block || block->available() < size);
if (NULL == block) {
SkASSERT(NULL == fHead);
fHead = fTail = block = Block::Create(SkMax32(size, fMinSize));
SkASSERT(0 == fWrittenBeforeLastBlock);
} else {
SkASSERT(fSize > 0);
fWrittenBeforeLastBlock = fSize;
fTail = Block::Create(SkMax32(size, fMinSize));
block->fNext = fTail;
block = fTail;
}
return block;
}
uint32_t* SkWriter32::peek32(size_t offset) {
SkDEBUGCODE(this->validate();)
SkASSERT(SkAlign4(offset) == offset);
SkASSERT(offset <= fSize);
// try the fast case, where offset is within fTail
if (offset >= fWrittenBeforeLastBlock) {
return fTail->peek32(offset - fWrittenBeforeLastBlock);
}
Block* block = fHead;
SkASSERT(NULL != block);
while (offset >= block->fAllocatedSoFar) {
offset -= block->fAllocatedSoFar;
block = block->fNext;
SkASSERT(NULL != block);
}
return block->peek32(offset);
}
void SkWriter32::rewindToOffset(size_t offset) {
if (offset >= fSize) {
return;
}
if (0 == offset) {
this->reset();
return;
}
SkDEBUGCODE(this->validate();)
SkASSERT(SkAlign4(offset) == offset);
SkASSERT(offset <= fSize);
fSize = offset;
// Try the fast case, where offset is within fTail
if (offset >= fWrittenBeforeLastBlock) {
fTail->fAllocatedSoFar = offset - fWrittenBeforeLastBlock;
} else {
// Similar to peek32, except that we free up any following blocks.
// We have to re-compute fWrittenBeforeLastBlock as well.
size_t globalOffset = offset;
Block* block = fHead;
SkASSERT(NULL != block);
while (offset >= block->fAllocatedSoFar) {
offset -= block->fAllocatedSoFar;
block = block->fNext;
SkASSERT(NULL != block);
}
// this has to be recomputed, since we may free up fTail
fWrittenBeforeLastBlock = globalOffset - offset;
// update the size on the "last" block
block->fAllocatedSoFar = offset;
// end our list
fTail = block;
Block* next = block->fNext;
block->fNext = NULL;
// free up any trailing blocks
block = next;
while (block) {
Block* next = block->fNext;
sk_free(block);
block = next;
}
}
SkDEBUGCODE(this->validate();)
}
void SkWriter32::flatten(void* dst) const {
const Block* block = fHead;
SkDEBUGCODE(size_t total = 0;)
while (block) {
size_t allocated = block->fAllocatedSoFar;
memcpy(dst, block->base(), allocated);
dst = (char*)dst + allocated;
block = block->fNext;
SkDEBUGCODE(total += allocated;)
SkASSERT(total <= fSize);
}
SkASSERT(total == fSize);
}
uint32_t* SkWriter32::reservePad(size_t size) {
if (size > 0) {
size_t alignedSize = SkAlign4(size);
char* dst = (char*)this->reserve(alignedSize);
// Pad the last four bytes with zeroes in one step.
uint32_t* padding = (uint32_t*)(dst + (alignedSize - 4));
*padding = 0;
return (uint32_t*) dst;
}
return this->reserve(0);
}
void SkWriter32::writePad(const void* src, size_t size) {
if (size > 0) {
char* dst = (char*)this->reservePad(size);
// Copy the actual data.
memcpy(dst, src, size);
}
}
#include "SkStream.h"
size_t SkWriter32::readFromStream(SkStream* stream, size_t length) {
char scratch[1024];
const size_t MAX = sizeof(scratch);
size_t remaining = length;
while (remaining != 0) {
size_t n = remaining;
if (n > MAX) {
n = MAX;
}
size_t bytes = stream->read(scratch, n);
this->writePad(scratch, bytes);
remaining -= bytes;
if (bytes != n) {
break;
}
}
return length - remaining;
}
bool SkWriter32::writeToStream(SkWStream* stream) {
const Block* block = fHead;
while (block) {
if (!stream->write(block->base(), block->fAllocatedSoFar)) {
return false;
}
block = block->fNext;
}
return true;
}
#ifdef SK_DEBUG
void SkWriter32::validate() const {
SkASSERT(SkIsAlign4(fSize));
size_t accum = 0;
const Block* block = fHead;
while (block) {
SkASSERT(SkIsAlign4(block->fSizeOfBlock));
SkASSERT(SkIsAlign4(block->fAllocatedSoFar));
SkASSERT(block->fAllocatedSoFar <= block->fSizeOfBlock);
if (NULL == block->fNext) {
SkASSERT(fTail == block);
SkASSERT(fWrittenBeforeLastBlock == accum);
}
accum += block->fAllocatedSoFar;
SkASSERT(accum <= fSize);
block = block->fNext;
}
SkASSERT(accum == fSize);
}
#endif
///////////////////////////////////////////////////////////////////////////////
#include "SkReader32.h"
#include "SkString.h"
/*
* Strings are stored as: length[4-bytes] + string_data + '\0' + pad_to_mul_4
*/
const char* SkReader32::readString(size_t* outLen) {
size_t len = this->readInt();
const void* ptr = this->peek();
// skip over teh string + '\0' and then pad to a multiple of 4
size_t alignedSize = SkAlign4(len + 1);
this->skip(alignedSize);
if (outLen) {
*outLen = len;
}
return (const char*)ptr;
}
size_t SkReader32::readIntoString(SkString* copy) {
size_t len;
const char* ptr = this->readString(&len);
if (copy) {
copy->set(ptr, len);
}
return len;
}
void SkWriter32::writeString(const char str[], size_t len) {
if ((long)len < 0) {
SkASSERT(str);
len = strlen(str);
}
this->write32(len);
// add 1 since we also write a terminating 0
size_t alignedLen = SkAlign4(len + 1);
char* ptr = (char*)this->reserve(alignedLen);
{
// Write the terminating 0 and fill in the rest with zeroes
uint32_t* padding = (uint32_t*)(ptr + (alignedLen - 4));
*padding = 0;
}
// Copy the string itself.
memcpy(ptr, str, len);
}
size_t SkWriter32::WriteStringSize(const char* str, size_t len) {
if ((long)len < 0) {
SkASSERT(str);
len = strlen(str);
}
const size_t lenBytes = 4; // we use 4 bytes to record the length
// add 1 since we also write a terminating 0
return SkAlign4(lenBytes + len + 1);
}
|