1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
|
/*
* Copyright 2012 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkWriteBuffer.h"
#include "SkBitmap.h"
#include "SkData.h"
#include "SkDeduper.h"
#include "SkPaint.h"
#include "SkPixelRef.h"
#include "SkPtrRecorder.h"
#include "SkStream.h"
#include "SkTypeface.h"
///////////////////////////////////////////////////////////////////////////////////////////////////
SkBinaryWriteBuffer::SkBinaryWriteBuffer()
: fFactorySet(nullptr)
, fTFSet(nullptr) {
}
SkBinaryWriteBuffer::SkBinaryWriteBuffer(void* storage, size_t storageSize)
: fFactorySet(nullptr)
, fWriter(storage, storageSize)
, fTFSet(nullptr) {
}
SkBinaryWriteBuffer::~SkBinaryWriteBuffer() {
SkSafeUnref(fFactorySet);
SkSafeUnref(fTFSet);
}
void SkBinaryWriteBuffer::writeByteArray(const void* data, size_t size) {
fWriter.write32(SkToU32(size));
fWriter.writePad(data, size);
}
void SkBinaryWriteBuffer::writeBool(bool value) {
fWriter.writeBool(value);
}
void SkBinaryWriteBuffer::writeScalar(SkScalar value) {
fWriter.writeScalar(value);
}
void SkBinaryWriteBuffer::writeScalarArray(const SkScalar* value, uint32_t count) {
fWriter.write32(count);
fWriter.write(value, count * sizeof(SkScalar));
}
void SkBinaryWriteBuffer::writeInt(int32_t value) {
fWriter.write32(value);
}
void SkBinaryWriteBuffer::writeIntArray(const int32_t* value, uint32_t count) {
fWriter.write32(count);
fWriter.write(value, count * sizeof(int32_t));
}
void SkBinaryWriteBuffer::writeUInt(uint32_t value) {
fWriter.write32(value);
}
void SkBinaryWriteBuffer::writeString(const char* value) {
fWriter.writeString(value);
}
void SkBinaryWriteBuffer::writeColor(SkColor color) {
fWriter.write32(color);
}
void SkBinaryWriteBuffer::writeColorArray(const SkColor* color, uint32_t count) {
fWriter.write32(count);
fWriter.write(color, count * sizeof(SkColor));
}
void SkBinaryWriteBuffer::writeColor4f(const SkColor4f& color) {
fWriter.write(&color, sizeof(SkColor4f));
}
void SkBinaryWriteBuffer::writeColor4fArray(const SkColor4f* color, uint32_t count) {
fWriter.write32(count);
fWriter.write(color, count * sizeof(SkColor4f));
}
void SkBinaryWriteBuffer::writePoint(const SkPoint& point) {
fWriter.writeScalar(point.fX);
fWriter.writeScalar(point.fY);
}
void SkBinaryWriteBuffer::writePointArray(const SkPoint* point, uint32_t count) {
fWriter.write32(count);
fWriter.write(point, count * sizeof(SkPoint));
}
void SkBinaryWriteBuffer::writeMatrix(const SkMatrix& matrix) {
fWriter.writeMatrix(matrix);
}
void SkBinaryWriteBuffer::writeIRect(const SkIRect& rect) {
fWriter.write(&rect, sizeof(SkIRect));
}
void SkBinaryWriteBuffer::writeRect(const SkRect& rect) {
fWriter.writeRect(rect);
}
void SkBinaryWriteBuffer::writeRegion(const SkRegion& region) {
fWriter.writeRegion(region);
}
void SkBinaryWriteBuffer::writePath(const SkPath& path) {
fWriter.writePath(path);
}
size_t SkBinaryWriteBuffer::writeStream(SkStream* stream, size_t length) {
fWriter.write32(SkToU32(length));
size_t bytesWritten = fWriter.readFromStream(stream, length);
if (bytesWritten < length) {
fWriter.reservePad(length - bytesWritten);
}
return bytesWritten;
}
bool SkBinaryWriteBuffer::writeToStream(SkWStream* stream) {
return fWriter.writeToStream(stream);
}
void SkBinaryWriteBuffer::writeImage(const SkImage* image) {
if (fDeduper) {
this->write32(fDeduper->findOrDefineImage(const_cast<SkImage*>(image)));
return;
}
this->writeInt(image->width());
this->writeInt(image->height());
auto write_data = [this](sk_sp<SkData> data, int sign) {
size_t size = data ? data->size() : 0;
if (!sk_64_isS32(size)) {
size = 0; // too big to store
}
if (size) {
this->write32(SkToS32(size) * sign);
this->writePad32(data->data(), size); // does nothing if size == 0
this->write32(0); // origin-x
this->write32(0); // origin-y
} else {
this->write32(0); // signal no image
}
};
/*
* What follows is a 32bit encoded size.
* 0 : failure, nothing else to do
* <0 : negative (int32_t) of a custom encoded blob using SerialProcs
* >0 : standard encoded blob size (use MakeFromEncoded)
*/
sk_sp<SkData> data;
int sign = 1; // +1 signals standard encoder
if (fProcs.fImageProc) {
data = fProcs.fImageProc(const_cast<SkImage*>(image), fProcs.fImageCtx);
sign = -1; // +1 signals custom encoder
}
// We check data, since a custom proc can return nullptr, in which case we behave as if
// there was no custom proc.
if (!data) {
data = image->encodeToData();
sign = 1;
}
write_data(std::move(data), sign);
}
void SkBinaryWriteBuffer::writeTypeface(SkTypeface* obj) {
if (fDeduper) {
this->write32(fDeduper->findOrDefineTypeface(obj));
return;
}
// Write 32 bits (signed)
// 0 -- default font
// >0 -- index
// <0 -- custom (serial procs)
if (obj == nullptr) {
fWriter.write32(0);
} else if (fProcs.fTypefaceProc) {
auto data = fProcs.fTypefaceProc(obj, fProcs.fTypefaceCtx);
if (data) {
size_t size = data->size();
if (!sk_64_isS32(size)) {
size = 0; // fall back to default font
}
int32_t ssize = SkToS32(size);
fWriter.write32(-ssize); // negative to signal custom
if (size) {
this->writePad32(data->data(), size);
}
return;
}
// no data means fall through for std behavior
}
fWriter.write32(fTFSet ? fTFSet->add(obj) : 0);
}
void SkBinaryWriteBuffer::writePaint(const SkPaint& paint) {
paint.flatten(*this);
}
SkFactorySet* SkBinaryWriteBuffer::setFactoryRecorder(SkFactorySet* rec) {
SkRefCnt_SafeAssign(fFactorySet, rec);
return rec;
}
SkRefCntSet* SkBinaryWriteBuffer::setTypefaceRecorder(SkRefCntSet* rec) {
SkRefCnt_SafeAssign(fTFSet, rec);
return rec;
}
void SkBinaryWriteBuffer::writeFlattenable(const SkFlattenable* flattenable) {
if (nullptr == flattenable) {
this->write32(0);
return;
}
if (fDeduper) {
this->write32(fDeduper->findOrDefineFactory(const_cast<SkFlattenable*>(flattenable)));
} else {
/*
* We can write 1 of 2 versions of the flattenable:
* 1. index into fFactorySet : This assumes the writer will later
* resolve the function-ptrs into strings for its reader. SkPicture
* does exactly this, by writing a table of names (matching the indices)
* up front in its serialized form.
* 2. string name of the flattenable or index into fFlattenableDict: We
* store the string to allow the reader to specify its own factories
* after write time. In order to improve compression, if we have
* already written the string, we write its index instead.
*/
if (fFactorySet) {
SkFlattenable::Factory factory = flattenable->getFactory();
SkASSERT(factory);
this->write32(fFactorySet->add(factory));
} else {
const char* name = flattenable->getTypeName();
SkASSERT(name);
SkString key(name);
if (uint32_t* indexPtr = fFlattenableDict.find(key)) {
// We will write the index as a 32-bit int. We want the first byte
// that we send to be zero - this will act as a sentinel that we
// have an index (not a string). This means that we will send the
// the index shifted left by 8. The remaining 24-bits should be
// plenty to store the index. Note that this strategy depends on
// being little endian.
SkASSERT(0 == *indexPtr >> 24);
this->write32(*indexPtr << 8);
} else {
// Otherwise write the string. Clients should not use the empty
// string as a name, or we will have a problem.
SkASSERT(strcmp("", name));
this->writeString(name);
// Add key to dictionary.
fFlattenableDict.set(key, fFlattenableDict.count() + 1);
}
}
}
// make room for the size of the flattened object
(void)fWriter.reserve(sizeof(uint32_t));
// record the current size, so we can subtract after the object writes.
size_t offset = fWriter.bytesWritten();
// now flatten the object
flattenable->flatten(*this);
size_t objSize = fWriter.bytesWritten() - offset;
// record the obj's size
fWriter.overwriteTAt(offset - sizeof(uint32_t), SkToU32(objSize));
}
|