1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
|
/*
* Copyright 2013 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#ifndef SkTDynamicHash_DEFINED
#define SkTDynamicHash_DEFINED
#include "SkTypes.h"
#include "SkMath.h"
template <typename T,
typename Key,
const Key& (GetKey)(const T&),
uint32_t (Hash)(const Key&),
bool (Equal)(const T&, const Key&),
int kGrowPercent = 75> // Larger -> more memory efficient, but slower.
class SkTDynamicHash {
public:
SkTDynamicHash() : fCount(0), fDeleted(0), fCapacity(0), fArray(NULL) {
SkASSERT(this->validate());
}
~SkTDynamicHash() {
sk_free(fArray);
}
int count() const { return fCount; }
// Return the entry with this key if we have it, otherwise NULL.
T* find(const Key& key) const {
int index = this->firstIndex(key);
for (int round = 0; round < fCapacity; round++) {
T* candidate = fArray[index];
if (Empty() == candidate) {
return NULL;
}
if (Deleted() != candidate && Equal(*candidate, key)) {
return candidate;
}
index = this->nextIndex(index, round);
}
SkASSERT(fCapacity == 0);
return NULL;
}
// Add an entry with this key. We require that no entry with newEntry's key is already present.
void add(T* newEntry) {
SkASSERT(NULL == this->find(GetKey(*newEntry)));
this->maybeGrow();
SkASSERT(this->validate());
this->innerAdd(newEntry);
SkASSERT(this->validate());
}
// Remove the entry with this key. We reqire that an entry with this key is present.
void remove(const Key& key) {
SkASSERT(NULL != this->find(key));
this->innerRemove(key);
SkASSERT(this->validate());
}
protected:
// These methods are used by tests only.
int capacity() const { return fCapacity; }
// How many collisions do we go through before finding where this entry should be inserted?
int countCollisions(const Key& key) const {
int index = this->firstIndex(key);
for (int round = 0; round < fCapacity; round++) {
const T* candidate = fArray[index];
if (Empty() == candidate || Deleted() == candidate || Equal(*candidate, key)) {
return round;
}
index = this->nextIndex(index, round);
}
SkASSERT(fCapacity == 0);
return 0;
}
private:
// We have two special values to indicate an empty or deleted entry.
static T* Empty() { return reinterpret_cast<T*>(0); } // i.e. NULL
static T* Deleted() { return reinterpret_cast<T*>(1); } // Also an invalid pointer.
bool validate() const {
#define SKTDYNAMICHASH_CHECK(x) SkASSERT((x)); if (!(x)) return false
// Is capacity sane?
SKTDYNAMICHASH_CHECK(SkIsPow2(fCapacity));
// Is fCount correct?
int count = 0;
for (int i = 0; i < fCapacity; i++) {
if (Empty() != fArray[i] && Deleted() != fArray[i]) {
count++;
}
}
SKTDYNAMICHASH_CHECK(count == fCount);
// Is fDeleted correct?
int deleted = 0;
for (int i = 0; i < fCapacity; i++) {
if (Deleted() == fArray[i]) {
deleted++;
}
}
SKTDYNAMICHASH_CHECK(deleted == fDeleted);
// Are all entries findable?
for (int i = 0; i < fCapacity; i++) {
if (Empty() == fArray[i] || Deleted() == fArray[i]) {
continue;
}
SKTDYNAMICHASH_CHECK(NULL != this->find(GetKey(*fArray[i])));
}
// Are all entries unique?
for (int i = 0; i < fCapacity; i++) {
if (Empty() == fArray[i] || Deleted() == fArray[i]) {
continue;
}
for (int j = i+1; j < fCapacity; j++) {
if (Empty() == fArray[j] || Deleted() == fArray[j]) {
continue;
}
SKTDYNAMICHASH_CHECK(fArray[i] != fArray[j]);
SKTDYNAMICHASH_CHECK(!Equal(*fArray[i], GetKey(*fArray[j])));
SKTDYNAMICHASH_CHECK(!Equal(*fArray[j], GetKey(*fArray[i])));
}
}
#undef SKTDYNAMICHASH_CHECK
return true;
}
void innerAdd(T* newEntry) {
const Key& key = GetKey(*newEntry);
int index = this->firstIndex(key);
for (int round = 0; round < fCapacity; round++) {
const T* candidate = fArray[index];
if (Empty() == candidate || Deleted() == candidate) {
if (Deleted() == candidate) {
fDeleted--;
}
fCount++;
fArray[index] = newEntry;
return;
}
index = this->nextIndex(index, round);
}
SkASSERT(fCapacity == 0);
}
void innerRemove(const Key& key) {
const int firstIndex = this->firstIndex(key);
int index = firstIndex;
for (int round = 0; round < fCapacity; round++) {
const T* candidate = fArray[index];
if (Deleted() != candidate && Equal(*candidate, key)) {
fDeleted++;
fCount--;
fArray[index] = Deleted();
return;
}
index = this->nextIndex(index, round);
}
SkASSERT(fCapacity == 0);
}
void maybeGrow() {
if (100 * (fCount + fDeleted + 1) > fCapacity * kGrowPercent) {
this->resize(fCapacity > 0 ? fCapacity * 2 : 4);
}
}
void resize(int newCapacity) {
SkDEBUGCODE(int oldCount = fCount;)
int oldCapacity = fCapacity;
SkAutoTMalloc<T*> oldArray(fArray);
fCount = fDeleted = 0;
fCapacity = newCapacity;
fArray = (T**)sk_calloc_throw(sizeof(T*) * fCapacity);
for (int i = 0; i < oldCapacity; i++) {
T* entry = oldArray[i];
if (Empty() != entry && Deleted() != entry) {
this->innerAdd(entry);
}
}
SkASSERT(oldCount == fCount);
}
// fCapacity is always a power of 2, so this masks the correct low bits to index into our hash.
uint32_t hashMask() const { return fCapacity - 1; }
int firstIndex(const Key& key) const {
return Hash(key) & this->hashMask();
}
// Given index at round N, what is the index to check at N+1? round should start at 0.
int nextIndex(int index, int round) const {
// This will search a power-of-two array fully without repeating an index.
return (index + round + 1) & this->hashMask();
}
int fCount; // Number of non Empty(), non Deleted() entries in fArray.
int fDeleted; // Number of Deleted() entries in fArray.
int fCapacity; // Number of entries in fArray. Always a power of 2.
T** fArray;
};
#endif
|