aboutsummaryrefslogtreecommitdiffhomepage
path: root/src/core/SkTDynamicHash.h
blob: b144d18d4810a9042e299c1ad15c4a17102c208e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
/*
 * Copyright 2013 Google Inc.
 *
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */

#ifndef SkTDynamicHash_DEFINED
#define SkTDynamicHash_DEFINED

#include "SkMath.h"
#include "SkTemplates.h"
#include "SkTypes.h"

// Traits requires:
//   static const Key& GetKey(const T&) { ... }
//   static uint32_t Hash(const Key&) { ... }
// We'll look on T for these by default, or you can pass a custom Traits type.
template <typename T,
          typename Key,
          typename Traits = T,
          int kGrowPercent = 75>  // Larger -> more memory efficient, but slower.
class SkTDynamicHash {
public:
    SkTDynamicHash() : fCount(0), fDeleted(0), fCapacity(0), fArray(nullptr) {
        SkASSERT(this->validate());
    }

    ~SkTDynamicHash() {
        sk_free(fArray);
    }

    class Iter {
    public:
        explicit Iter(SkTDynamicHash* hash) : fHash(hash), fCurrentIndex(-1) {
            SkASSERT(hash);
            ++(*this);
        }
        bool done() const {
            SkASSERT(fCurrentIndex <= fHash->fCapacity);
            return fCurrentIndex == fHash->fCapacity;
        }
        T& operator*() const {
            SkASSERT(!this->done());
            return *this->current();
        }
        void operator++() {
            do {
                fCurrentIndex++;
            } while (!this->done() && (this->current() == Empty() || this->current() == Deleted()));
        }

    private:
        T* current() const { return fHash->fArray[fCurrentIndex]; }

        SkTDynamicHash* fHash;
        int fCurrentIndex;
    };

    class ConstIter {
    public:
        explicit ConstIter(const SkTDynamicHash* hash) : fHash(hash), fCurrentIndex(-1) {
            SkASSERT(hash);
            ++(*this);
        }
        bool done() const {
            SkASSERT(fCurrentIndex <= fHash->fCapacity);
            return fCurrentIndex == fHash->fCapacity;
        }
        const T& operator*() const {
            SkASSERT(!this->done());
            return *this->current();
        }
        void operator++() {
            do {
                fCurrentIndex++;
            } while (!this->done() && (this->current() == Empty() || this->current() == Deleted()));
        }

    private:
        const T* current() const { return fHash->fArray[fCurrentIndex]; }

        const SkTDynamicHash* fHash;
        int fCurrentIndex;
    };

    int count() const { return fCount; }

    // Return the entry with this key if we have it, otherwise nullptr.
    T* find(const Key& key) const {
        int index = this->firstIndex(key);
        for (int round = 0; round < fCapacity; round++) {
            SkASSERT(index >= 0 && index < fCapacity);
            T* candidate = fArray[index];
            if (Empty() == candidate) {
                return nullptr;
            }
            if (Deleted() != candidate && GetKey(*candidate) == key) {
                return candidate;
            }
            index = this->nextIndex(index, round);
        }
        SkASSERT(fCapacity == 0);
        return nullptr;
    }

    // Add an entry with this key.  We require that no entry with newEntry's key is already present.
    void add(T* newEntry) {
        SkASSERT(nullptr == this->find(GetKey(*newEntry)));
        this->maybeGrow();
        this->innerAdd(newEntry);
        SkASSERT(this->validate());
    }

    // Remove the entry with this key.  We require that an entry with this key is present.
    void remove(const Key& key) {
        SkASSERT(this->find(key));
        this->innerRemove(key);
        SkASSERT(this->validate());
    }

    void rewind() {
        if (fArray) {
            sk_bzero(fArray, sizeof(T*)* fCapacity);
        }
        fCount = 0;
        fDeleted = 0;
    }

    void reset() {
        fCount = 0;
        fDeleted = 0;
        fCapacity = 0;
        sk_free(fArray);
        fArray = nullptr;
    }

protected:
    // These methods are used by tests only.

    int capacity() const { return fCapacity; }

    // How many collisions do we go through before finding where this entry should be inserted?
    int countCollisions(const Key& key) const {
        int index = this->firstIndex(key);
        for (int round = 0; round < fCapacity; round++) {
            SkASSERT(index >= 0 && index < fCapacity);
            const T* candidate = fArray[index];
            if (Empty() == candidate || Deleted() == candidate || GetKey(*candidate) == key) {
                return round;
            }
            index = this->nextIndex(index, round);
        }
        SkASSERT(fCapacity == 0);
        return 0;
    }

private:
    // We have two special values to indicate an empty or deleted entry.
    static T* Empty()   { return reinterpret_cast<T*>(0); }  // i.e. nullptr
    static T* Deleted() { return reinterpret_cast<T*>(1); }  // Also an invalid pointer.

    bool validate() const {
        #define SKTDYNAMICHASH_CHECK(x) SkASSERT(x); if (!(x)) return false
        static const int kLarge = 50;  // Arbitrary, tweak to suit your patience.

        // O(1) checks, always done.
        // Is capacity sane?
        SKTDYNAMICHASH_CHECK(SkIsPow2(fCapacity));

        // O(N) checks, skipped when very large.
        if (fCount < kLarge * kLarge) {
            // Are fCount and fDeleted correct, and are all elements findable?
            int count = 0, deleted = 0;
            for (int i = 0; i < fCapacity; i++) {
                if (Deleted() == fArray[i]) {
                    deleted++;
                } else if (Empty() != fArray[i]) {
                    count++;
                    SKTDYNAMICHASH_CHECK(this->find(GetKey(*fArray[i])));
                }
            }
            SKTDYNAMICHASH_CHECK(count == fCount);
            SKTDYNAMICHASH_CHECK(deleted == fDeleted);
        }

        // O(N^2) checks, skipped when large.
        if (fCount < kLarge) {
            // Are all entries unique?
            for (int i = 0; i < fCapacity; i++) {
                if (Empty() == fArray[i] || Deleted() == fArray[i]) {
                    continue;
                }
                for (int j = i+1; j < fCapacity; j++) {
                    if (Empty() == fArray[j] || Deleted() == fArray[j]) {
                        continue;
                    }
                    SKTDYNAMICHASH_CHECK(fArray[i] != fArray[j]);
                    SKTDYNAMICHASH_CHECK(!(GetKey(*fArray[i]) == GetKey(*fArray[j])));
                }
            }
        }
        #undef SKTDYNAMICHASH_CHECK
        return true;
    }

    void innerAdd(T* newEntry) {
        const Key& key = GetKey(*newEntry);
        int index = this->firstIndex(key);
        for (int round = 0; round < fCapacity; round++) {
            SkASSERT(index >= 0 && index < fCapacity);
            const T* candidate = fArray[index];
            if (Empty() == candidate || Deleted() == candidate) {
                if (Deleted() == candidate) {
                    fDeleted--;
                }
                fCount++;
                fArray[index] = newEntry;
                return;
            }
            index = this->nextIndex(index, round);
        }
        SkASSERT(fCapacity == 0);
    }

    void innerRemove(const Key& key) {
        const int firstIndex = this->firstIndex(key);
        int index = firstIndex;
        for (int round = 0; round < fCapacity; round++) {
            SkASSERT(index >= 0 && index < fCapacity);
            const T* candidate = fArray[index];
            if (Deleted() != candidate && GetKey(*candidate) == key) {
                fDeleted++;
                fCount--;
                fArray[index] = Deleted();
                return;
            }
            index = this->nextIndex(index, round);
        }
        SkASSERT(fCapacity == 0);
    }

    void maybeGrow() {
        if (100 * (fCount + fDeleted + 1) > fCapacity * kGrowPercent) {
            this->resize(fCapacity > 0 ? fCapacity * 2 : 4);
        }
    }

    void resize(int newCapacity) {
        SkDEBUGCODE(int oldCount = fCount;)
        int oldCapacity = fCapacity;
        SkAutoTMalloc<T*> oldArray(fArray);

        fCount = fDeleted = 0;
        fCapacity = newCapacity;
        fArray = (T**)sk_calloc_throw(sizeof(T*) * fCapacity);

        for (int i = 0; i < oldCapacity; i++) {
            T* entry = oldArray[i];
            if (Empty() != entry && Deleted() != entry) {
                this->innerAdd(entry);
            }
        }
        SkASSERT(oldCount == fCount);
    }

    // fCapacity is always a power of 2, so this masks the correct low bits to index into our hash.
    uint32_t hashMask() const { return fCapacity - 1; }

    int firstIndex(const Key& key) const {
        return Hash(key) & this->hashMask();
    }

    // Given index at round N, what is the index to check at N+1?  round should start at 0.
    int nextIndex(int index, int round) const {
        // This will search a power-of-two array fully without repeating an index.
        return (index + round + 1) & this->hashMask();
    }

    static const Key& GetKey(const T& t) { return Traits::GetKey(t); }
    static uint32_t Hash(const Key& key) { return Traits::Hash(key); }

    int fCount;     // Number of non Empty(), non Deleted() entries in fArray.
    int fDeleted;   // Number of Deleted() entries in fArray.
    int fCapacity;  // Number of entries in fArray.  Always a power of 2.
    T** fArray;
};

#endif