1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
|
/*
* Copyright 2006 The Android Open Source Project
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkStrokerPriv.h"
#include "SkGeometry.h"
#include "SkPath.h"
#include "SkPointPriv.h"
static void ButtCapper(SkPath* path, const SkPoint& pivot, const SkVector& normal,
const SkPoint& stop, SkPath*) {
path->lineTo(stop.fX, stop.fY);
}
static void RoundCapper(SkPath* path, const SkPoint& pivot, const SkVector& normal,
const SkPoint& stop, SkPath*) {
SkVector parallel;
SkPointPriv::RotateCW(normal, ¶llel);
SkPoint projectedCenter = pivot + parallel;
path->conicTo(projectedCenter + normal, projectedCenter, SK_ScalarRoot2Over2);
path->conicTo(projectedCenter - normal, stop, SK_ScalarRoot2Over2);
}
static void SquareCapper(SkPath* path, const SkPoint& pivot, const SkVector& normal,
const SkPoint& stop, SkPath* otherPath) {
SkVector parallel;
SkPointPriv::RotateCW(normal, ¶llel);
if (otherPath) {
path->setLastPt(pivot.fX + normal.fX + parallel.fX, pivot.fY + normal.fY + parallel.fY);
path->lineTo(pivot.fX - normal.fX + parallel.fX, pivot.fY - normal.fY + parallel.fY);
} else {
path->lineTo(pivot.fX + normal.fX + parallel.fX, pivot.fY + normal.fY + parallel.fY);
path->lineTo(pivot.fX - normal.fX + parallel.fX, pivot.fY - normal.fY + parallel.fY);
path->lineTo(stop.fX, stop.fY);
}
}
/////////////////////////////////////////////////////////////////////////////
static bool is_clockwise(const SkVector& before, const SkVector& after) {
return before.fX * after.fY > before.fY * after.fX;
}
enum AngleType {
kNearly180_AngleType,
kSharp_AngleType,
kShallow_AngleType,
kNearlyLine_AngleType
};
static AngleType Dot2AngleType(SkScalar dot) {
// need more precise fixed normalization
// SkASSERT(SkScalarAbs(dot) <= SK_Scalar1 + SK_ScalarNearlyZero);
if (dot >= 0) { // shallow or line
return SkScalarNearlyZero(SK_Scalar1 - dot) ? kNearlyLine_AngleType : kShallow_AngleType;
} else { // sharp or 180
return SkScalarNearlyZero(SK_Scalar1 + dot) ? kNearly180_AngleType : kSharp_AngleType;
}
}
static void HandleInnerJoin(SkPath* inner, const SkPoint& pivot, const SkVector& after) {
#if 1
/* In the degenerate case that the stroke radius is larger than our segments
just connecting the two inner segments may "show through" as a funny
diagonal. To pseudo-fix this, we go through the pivot point. This adds
an extra point/edge, but I can't see a cheap way to know when this is
not needed :(
*/
inner->lineTo(pivot.fX, pivot.fY);
#endif
inner->lineTo(pivot.fX - after.fX, pivot.fY - after.fY);
}
static void BluntJoiner(SkPath* outer, SkPath* inner, const SkVector& beforeUnitNormal,
const SkPoint& pivot, const SkVector& afterUnitNormal,
SkScalar radius, SkScalar invMiterLimit, bool, bool) {
SkVector after;
afterUnitNormal.scale(radius, &after);
if (!is_clockwise(beforeUnitNormal, afterUnitNormal)) {
SkTSwap<SkPath*>(outer, inner);
after.negate();
}
outer->lineTo(pivot.fX + after.fX, pivot.fY + after.fY);
HandleInnerJoin(inner, pivot, after);
}
static void RoundJoiner(SkPath* outer, SkPath* inner, const SkVector& beforeUnitNormal,
const SkPoint& pivot, const SkVector& afterUnitNormal,
SkScalar radius, SkScalar invMiterLimit, bool, bool) {
SkScalar dotProd = SkPoint::DotProduct(beforeUnitNormal, afterUnitNormal);
AngleType angleType = Dot2AngleType(dotProd);
if (angleType == kNearlyLine_AngleType)
return;
SkVector before = beforeUnitNormal;
SkVector after = afterUnitNormal;
SkRotationDirection dir = kCW_SkRotationDirection;
if (!is_clockwise(before, after)) {
SkTSwap<SkPath*>(outer, inner);
before.negate();
after.negate();
dir = kCCW_SkRotationDirection;
}
SkMatrix matrix;
matrix.setScale(radius, radius);
matrix.postTranslate(pivot.fX, pivot.fY);
SkConic conics[SkConic::kMaxConicsForArc];
int count = SkConic::BuildUnitArc(before, after, dir, &matrix, conics);
if (count > 0) {
for (int i = 0; i < count; ++i) {
outer->conicTo(conics[i].fPts[1], conics[i].fPts[2], conics[i].fW);
}
after.scale(radius);
HandleInnerJoin(inner, pivot, after);
}
}
#define kOneOverSqrt2 (0.707106781f)
static void MiterJoiner(SkPath* outer, SkPath* inner, const SkVector& beforeUnitNormal,
const SkPoint& pivot, const SkVector& afterUnitNormal,
SkScalar radius, SkScalar invMiterLimit,
bool prevIsLine, bool currIsLine) {
// negate the dot since we're using normals instead of tangents
SkScalar dotProd = SkPoint::DotProduct(beforeUnitNormal, afterUnitNormal);
AngleType angleType = Dot2AngleType(dotProd);
SkVector before = beforeUnitNormal;
SkVector after = afterUnitNormal;
SkVector mid;
SkScalar sinHalfAngle;
bool ccw;
if (angleType == kNearlyLine_AngleType) {
return;
}
if (angleType == kNearly180_AngleType) {
currIsLine = false;
goto DO_BLUNT;
}
ccw = !is_clockwise(before, after);
if (ccw) {
SkTSwap<SkPath*>(outer, inner);
before.negate();
after.negate();
}
/* Before we enter the world of square-roots and divides,
check if we're trying to join an upright right angle
(common case for stroking rectangles). If so, special case
that (for speed an accuracy).
Note: we only need to check one normal if dot==0
*/
if (0 == dotProd && invMiterLimit <= kOneOverSqrt2) {
mid = (before + after) * radius;
goto DO_MITER;
}
/* midLength = radius / sinHalfAngle
if (midLength > miterLimit * radius) abort
if (radius / sinHalf > miterLimit * radius) abort
if (1 / sinHalf > miterLimit) abort
if (1 / miterLimit > sinHalf) abort
My dotProd is opposite sign, since it is built from normals and not tangents
hence 1 + dot instead of 1 - dot in the formula
*/
sinHalfAngle = SkScalarSqrt(SkScalarHalf(SK_Scalar1 + dotProd));
if (sinHalfAngle < invMiterLimit) {
currIsLine = false;
goto DO_BLUNT;
}
// choose the most accurate way to form the initial mid-vector
if (angleType == kSharp_AngleType) {
mid.set(after.fY - before.fY, before.fX - after.fX);
if (ccw) {
mid.negate();
}
} else {
mid.set(before.fX + after.fX, before.fY + after.fY);
}
mid.setLength(radius / sinHalfAngle);
DO_MITER:
if (prevIsLine) {
outer->setLastPt(pivot.fX + mid.fX, pivot.fY + mid.fY);
} else {
outer->lineTo(pivot.fX + mid.fX, pivot.fY + mid.fY);
}
DO_BLUNT:
after.scale(radius);
if (!currIsLine) {
outer->lineTo(pivot.fX + after.fX, pivot.fY + after.fY);
}
HandleInnerJoin(inner, pivot, after);
}
/////////////////////////////////////////////////////////////////////////////
SkStrokerPriv::CapProc SkStrokerPriv::CapFactory(SkPaint::Cap cap) {
const SkStrokerPriv::CapProc gCappers[] = {
ButtCapper, RoundCapper, SquareCapper
};
SkASSERT((unsigned)cap < SkPaint::kCapCount);
return gCappers[cap];
}
SkStrokerPriv::JoinProc SkStrokerPriv::JoinFactory(SkPaint::Join join) {
const SkStrokerPriv::JoinProc gJoiners[] = {
MiterJoiner, RoundJoiner, BluntJoiner
};
SkASSERT((unsigned)join < SkPaint::kJoinCount);
return gJoiners[join];
}
|