1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
|
/*
* Copyright 2008 The Android Open Source Project
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkStrokerPriv.h"
#include "SkGeometry.h"
#include "SkPath.h"
#define kMaxQuadSubdivide 5
#define kMaxCubicSubdivide 4
static inline bool degenerate_vector(const SkVector& v) {
return !SkPoint::CanNormalize(v.fX, v.fY);
}
static inline bool normals_too_curvy(const SkVector& norm0, SkVector& norm1) {
/* root2/2 is a 45-degree angle
make this constant bigger for more subdivisions (but not >= 1)
*/
static const SkScalar kFlatEnoughNormalDotProd =
SK_ScalarSqrt2/2 + SK_Scalar1/10;
SkASSERT(kFlatEnoughNormalDotProd > 0 &&
kFlatEnoughNormalDotProd < SK_Scalar1);
return SkPoint::DotProduct(norm0, norm1) <= kFlatEnoughNormalDotProd;
}
static inline bool normals_too_pinchy(const SkVector& norm0, SkVector& norm1) {
static const SkScalar kTooPinchyNormalDotProd = -SK_Scalar1 * 999 / 1000;
return SkPoint::DotProduct(norm0, norm1) <= kTooPinchyNormalDotProd;
}
static bool set_normal_unitnormal(const SkPoint& before, const SkPoint& after,
SkScalar radius,
SkVector* normal, SkVector* unitNormal) {
if (!unitNormal->setNormalize(after.fX - before.fX, after.fY - before.fY)) {
return false;
}
unitNormal->rotateCCW();
unitNormal->scale(radius, normal);
return true;
}
static bool set_normal_unitnormal(const SkVector& vec,
SkScalar radius,
SkVector* normal, SkVector* unitNormal) {
if (!unitNormal->setNormalize(vec.fX, vec.fY)) {
return false;
}
unitNormal->rotateCCW();
unitNormal->scale(radius, normal);
return true;
}
///////////////////////////////////////////////////////////////////////////////
class SkPathStroker {
public:
SkPathStroker(const SkPath& src,
SkScalar radius, SkScalar miterLimit, SkPaint::Cap cap,
SkPaint::Join join);
void moveTo(const SkPoint&);
void lineTo(const SkPoint&);
void quadTo(const SkPoint&, const SkPoint&);
void cubicTo(const SkPoint&, const SkPoint&, const SkPoint&);
void close(bool isLine) { this->finishContour(true, isLine); }
void done(SkPath* dst, bool isLine) {
this->finishContour(false, isLine);
fOuter.addPath(fExtra);
dst->swap(fOuter);
}
private:
SkScalar fRadius;
SkScalar fInvMiterLimit;
SkVector fFirstNormal, fPrevNormal, fFirstUnitNormal, fPrevUnitNormal;
SkPoint fFirstPt, fPrevPt; // on original path
SkPoint fFirstOuterPt;
int fSegmentCount;
bool fPrevIsLine;
SkStrokerPriv::CapProc fCapper;
SkStrokerPriv::JoinProc fJoiner;
SkPath fInner, fOuter; // outer is our working answer, inner is temp
SkPath fExtra; // added as extra complete contours
void finishContour(bool close, bool isLine);
void preJoinTo(const SkPoint&, SkVector* normal, SkVector* unitNormal,
bool isLine);
void postJoinTo(const SkPoint&, const SkVector& normal,
const SkVector& unitNormal);
void line_to(const SkPoint& currPt, const SkVector& normal);
void quad_to(const SkPoint pts[3],
const SkVector& normalAB, const SkVector& unitNormalAB,
SkVector* normalBC, SkVector* unitNormalBC,
int subDivide);
void cubic_to(const SkPoint pts[4],
const SkVector& normalAB, const SkVector& unitNormalAB,
SkVector* normalCD, SkVector* unitNormalCD,
int subDivide);
};
///////////////////////////////////////////////////////////////////////////////
void SkPathStroker::preJoinTo(const SkPoint& currPt, SkVector* normal,
SkVector* unitNormal, bool currIsLine) {
SkASSERT(fSegmentCount >= 0);
SkScalar prevX = fPrevPt.fX;
SkScalar prevY = fPrevPt.fY;
SkAssertResult(set_normal_unitnormal(fPrevPt, currPt, fRadius, normal,
unitNormal));
if (fSegmentCount == 0) {
fFirstNormal = *normal;
fFirstUnitNormal = *unitNormal;
fFirstOuterPt.set(prevX + normal->fX, prevY + normal->fY);
fOuter.moveTo(fFirstOuterPt.fX, fFirstOuterPt.fY);
fInner.moveTo(prevX - normal->fX, prevY - normal->fY);
} else { // we have a previous segment
fJoiner(&fOuter, &fInner, fPrevUnitNormal, fPrevPt, *unitNormal,
fRadius, fInvMiterLimit, fPrevIsLine, currIsLine);
}
fPrevIsLine = currIsLine;
}
void SkPathStroker::postJoinTo(const SkPoint& currPt, const SkVector& normal,
const SkVector& unitNormal) {
fPrevPt = currPt;
fPrevUnitNormal = unitNormal;
fPrevNormal = normal;
fSegmentCount += 1;
}
void SkPathStroker::finishContour(bool close, bool currIsLine) {
if (fSegmentCount > 0) {
SkPoint pt;
if (close) {
fJoiner(&fOuter, &fInner, fPrevUnitNormal, fPrevPt,
fFirstUnitNormal, fRadius, fInvMiterLimit,
fPrevIsLine, currIsLine);
fOuter.close();
// now add fInner as its own contour
fInner.getLastPt(&pt);
fOuter.moveTo(pt.fX, pt.fY);
fOuter.reversePathTo(fInner);
fOuter.close();
} else { // add caps to start and end
// cap the end
fInner.getLastPt(&pt);
fCapper(&fOuter, fPrevPt, fPrevNormal, pt,
currIsLine ? &fInner : NULL);
fOuter.reversePathTo(fInner);
// cap the start
fCapper(&fOuter, fFirstPt, -fFirstNormal, fFirstOuterPt,
fPrevIsLine ? &fInner : NULL);
fOuter.close();
}
}
// since we may re-use fInner, we rewind instead of reset, to save on
// reallocating its internal storage.
fInner.rewind();
fSegmentCount = -1;
}
///////////////////////////////////////////////////////////////////////////////
SkPathStroker::SkPathStroker(const SkPath& src,
SkScalar radius, SkScalar miterLimit,
SkPaint::Cap cap, SkPaint::Join join)
: fRadius(radius) {
/* This is only used when join is miter_join, but we initialize it here
so that it is always defined, to fis valgrind warnings.
*/
fInvMiterLimit = 0;
if (join == SkPaint::kMiter_Join) {
if (miterLimit <= SK_Scalar1) {
join = SkPaint::kBevel_Join;
} else {
fInvMiterLimit = SkScalarInvert(miterLimit);
}
}
fCapper = SkStrokerPriv::CapFactory(cap);
fJoiner = SkStrokerPriv::JoinFactory(join);
fSegmentCount = -1;
fPrevIsLine = false;
// Need some estimate of how large our final result (fOuter)
// and our per-contour temp (fInner) will be, so we don't spend
// extra time repeatedly growing these arrays.
//
// 3x for result == inner + outer + join (swag)
// 1x for inner == 'wag' (worst contour length would be better guess)
fOuter.incReserve(src.countPoints() * 3);
fInner.incReserve(src.countPoints());
}
void SkPathStroker::moveTo(const SkPoint& pt) {
if (fSegmentCount > 0) {
this->finishContour(false, false);
}
fSegmentCount = 0;
fFirstPt = fPrevPt = pt;
}
void SkPathStroker::line_to(const SkPoint& currPt, const SkVector& normal) {
fOuter.lineTo(currPt.fX + normal.fX, currPt.fY + normal.fY);
fInner.lineTo(currPt.fX - normal.fX, currPt.fY - normal.fY);
}
void SkPathStroker::lineTo(const SkPoint& currPt) {
if (SkPath::IsLineDegenerate(fPrevPt, currPt)) {
return;
}
SkVector normal, unitNormal;
this->preJoinTo(currPt, &normal, &unitNormal, true);
this->line_to(currPt, normal);
this->postJoinTo(currPt, normal, unitNormal);
}
void SkPathStroker::quad_to(const SkPoint pts[3],
const SkVector& normalAB, const SkVector& unitNormalAB,
SkVector* normalBC, SkVector* unitNormalBC,
int subDivide) {
if (!set_normal_unitnormal(pts[1], pts[2], fRadius,
normalBC, unitNormalBC)) {
// pts[1] nearly equals pts[2], so just draw a line to pts[2]
this->line_to(pts[2], normalAB);
*normalBC = normalAB;
*unitNormalBC = unitNormalAB;
return;
}
if (--subDivide >= 0 && normals_too_curvy(unitNormalAB, *unitNormalBC)) {
SkPoint tmp[5];
SkVector norm, unit;
SkChopQuadAtHalf(pts, tmp);
this->quad_to(&tmp[0], normalAB, unitNormalAB, &norm, &unit, subDivide);
this->quad_to(&tmp[2], norm, unit, normalBC, unitNormalBC, subDivide);
} else {
SkVector normalB;
#ifdef SK_IGNORE_QUAD_STROKE_FIX
SkVector unitB;
SkAssertResult(set_normal_unitnormal(pts[0], pts[2], fRadius,
&normalB, &unitB));
#else
normalB = pts[2] - pts[0];
normalB.rotateCCW();
SkScalar dot = SkPoint::DotProduct(unitNormalAB, *unitNormalBC);
SkAssertResult(normalB.setLength(SkScalarDiv(fRadius,
SkScalarSqrt((SK_Scalar1 + dot)/2))));
#endif
fOuter.quadTo( pts[1].fX + normalB.fX, pts[1].fY + normalB.fY,
pts[2].fX + normalBC->fX, pts[2].fY + normalBC->fY);
fInner.quadTo( pts[1].fX - normalB.fX, pts[1].fY - normalB.fY,
pts[2].fX - normalBC->fX, pts[2].fY - normalBC->fY);
}
}
void SkPathStroker::cubic_to(const SkPoint pts[4],
const SkVector& normalAB, const SkVector& unitNormalAB,
SkVector* normalCD, SkVector* unitNormalCD,
int subDivide) {
SkVector ab = pts[1] - pts[0];
SkVector cd = pts[3] - pts[2];
SkVector normalBC, unitNormalBC;
bool degenerateAB = degenerate_vector(ab);
bool degenerateCD = degenerate_vector(cd);
if (degenerateAB && degenerateCD) {
DRAW_LINE:
this->line_to(pts[3], normalAB);
*normalCD = normalAB;
*unitNormalCD = unitNormalAB;
return;
}
if (degenerateAB) {
ab = pts[2] - pts[0];
degenerateAB = degenerate_vector(ab);
}
if (degenerateCD) {
cd = pts[3] - pts[1];
degenerateCD = degenerate_vector(cd);
}
if (degenerateAB || degenerateCD) {
goto DRAW_LINE;
}
SkAssertResult(set_normal_unitnormal(cd, fRadius, normalCD, unitNormalCD));
bool degenerateBC = !set_normal_unitnormal(pts[1], pts[2], fRadius,
&normalBC, &unitNormalBC);
if (degenerateBC || normals_too_curvy(unitNormalAB, unitNormalBC) ||
normals_too_curvy(unitNormalBC, *unitNormalCD)) {
// subdivide if we can
if (--subDivide < 0) {
goto DRAW_LINE;
}
SkPoint tmp[7];
SkVector norm, unit, dummy, unitDummy;
SkChopCubicAtHalf(pts, tmp);
this->cubic_to(&tmp[0], normalAB, unitNormalAB, &norm, &unit,
subDivide);
// we use dummys since we already have a valid (and more accurate)
// normals for CD
this->cubic_to(&tmp[3], norm, unit, &dummy, &unitDummy, subDivide);
} else {
SkVector normalB, normalC;
// need normals to inset/outset the off-curve pts B and C
if (0) { // this is normal to the line between our adjacent pts
normalB = pts[2] - pts[0];
normalB.rotateCCW();
SkAssertResult(normalB.setLength(fRadius));
normalC = pts[3] - pts[1];
normalC.rotateCCW();
SkAssertResult(normalC.setLength(fRadius));
} else { // miter-join
SkVector unitBC = pts[2] - pts[1];
unitBC.normalize();
unitBC.rotateCCW();
normalB = unitNormalAB + unitBC;
normalC = *unitNormalCD + unitBC;
SkScalar dot = SkPoint::DotProduct(unitNormalAB, unitBC);
SkAssertResult(normalB.setLength(SkScalarDiv(fRadius,
SkScalarSqrt((SK_Scalar1 + dot)/2))));
dot = SkPoint::DotProduct(*unitNormalCD, unitBC);
SkAssertResult(normalC.setLength(SkScalarDiv(fRadius,
SkScalarSqrt((SK_Scalar1 + dot)/2))));
}
fOuter.cubicTo( pts[1].fX + normalB.fX, pts[1].fY + normalB.fY,
pts[2].fX + normalC.fX, pts[2].fY + normalC.fY,
pts[3].fX + normalCD->fX, pts[3].fY + normalCD->fY);
fInner.cubicTo( pts[1].fX - normalB.fX, pts[1].fY - normalB.fY,
pts[2].fX - normalC.fX, pts[2].fY - normalC.fY,
pts[3].fX - normalCD->fX, pts[3].fY - normalCD->fY);
}
}
void SkPathStroker::quadTo(const SkPoint& pt1, const SkPoint& pt2) {
bool degenerateAB = SkPath::IsLineDegenerate(fPrevPt, pt1);
bool degenerateBC = SkPath::IsLineDegenerate(pt1, pt2);
if (degenerateAB | degenerateBC) {
if (degenerateAB ^ degenerateBC) {
this->lineTo(pt2);
}
return;
}
SkVector normalAB, unitAB, normalBC, unitBC;
this->preJoinTo(pt1, &normalAB, &unitAB, false);
{
SkPoint pts[3], tmp[5];
pts[0] = fPrevPt;
pts[1] = pt1;
pts[2] = pt2;
if (SkChopQuadAtMaxCurvature(pts, tmp) == 2) {
unitBC.setNormalize(pts[2].fX - pts[1].fX, pts[2].fY - pts[1].fY);
unitBC.rotateCCW();
if (normals_too_pinchy(unitAB, unitBC)) {
normalBC = unitBC;
normalBC.scale(fRadius);
fOuter.lineTo(tmp[2].fX + normalAB.fX, tmp[2].fY + normalAB.fY);
fOuter.lineTo(tmp[2].fX + normalBC.fX, tmp[2].fY + normalBC.fY);
fOuter.lineTo(tmp[4].fX + normalBC.fX, tmp[4].fY + normalBC.fY);
fInner.lineTo(tmp[2].fX - normalAB.fX, tmp[2].fY - normalAB.fY);
fInner.lineTo(tmp[2].fX - normalBC.fX, tmp[2].fY - normalBC.fY);
fInner.lineTo(tmp[4].fX - normalBC.fX, tmp[4].fY - normalBC.fY);
fExtra.addCircle(tmp[2].fX, tmp[2].fY, fRadius,
SkPath::kCW_Direction);
} else {
this->quad_to(&tmp[0], normalAB, unitAB, &normalBC, &unitBC,
kMaxQuadSubdivide);
SkVector n = normalBC;
SkVector u = unitBC;
this->quad_to(&tmp[2], n, u, &normalBC, &unitBC,
kMaxQuadSubdivide);
}
} else {
this->quad_to(pts, normalAB, unitAB, &normalBC, &unitBC,
kMaxQuadSubdivide);
}
}
this->postJoinTo(pt2, normalBC, unitBC);
}
void SkPathStroker::cubicTo(const SkPoint& pt1, const SkPoint& pt2,
const SkPoint& pt3) {
bool degenerateAB = SkPath::IsLineDegenerate(fPrevPt, pt1);
bool degenerateBC = SkPath::IsLineDegenerate(pt1, pt2);
bool degenerateCD = SkPath::IsLineDegenerate(pt2, pt3);
if (degenerateAB + degenerateBC + degenerateCD >= 2) {
this->lineTo(pt3);
return;
}
SkVector normalAB, unitAB, normalCD, unitCD;
// find the first tangent (which might be pt1 or pt2
{
const SkPoint* nextPt = &pt1;
if (degenerateAB)
nextPt = &pt2;
this->preJoinTo(*nextPt, &normalAB, &unitAB, false);
}
{
SkPoint pts[4], tmp[13];
int i, count;
SkVector n, u;
SkScalar tValues[3];
pts[0] = fPrevPt;
pts[1] = pt1;
pts[2] = pt2;
pts[3] = pt3;
#if 1
count = SkChopCubicAtMaxCurvature(pts, tmp, tValues);
#else
count = 1;
memcpy(tmp, pts, 4 * sizeof(SkPoint));
#endif
n = normalAB;
u = unitAB;
for (i = 0; i < count; i++) {
this->cubic_to(&tmp[i * 3], n, u, &normalCD, &unitCD,
kMaxCubicSubdivide);
if (i == count - 1) {
break;
}
n = normalCD;
u = unitCD;
}
#if 0
/*
* Why was this code here? It caused us to draw circles where we didn't
* want them. See http://code.google.com/p/chromium/issues/detail?id=112145
* and gm/dashcubics.cpp
*
* Simply removing this code seemed to fix the problem (no more circles).
* Wish I had a repro case earlier when I added this check/hack...
*/
// check for too pinchy
for (i = 1; i < count; i++) {
SkPoint p;
SkVector v, c;
SkEvalCubicAt(pts, tValues[i - 1], &p, &v, &c);
SkScalar dot = SkPoint::DotProduct(c, c);
v.scale(SkScalarInvert(dot));
if (SkScalarNearlyZero(v.fX) && SkScalarNearlyZero(v.fY)) {
fExtra.addCircle(p.fX, p.fY, fRadius, SkPath::kCW_Direction);
}
}
#endif
}
this->postJoinTo(pt3, normalCD, unitCD);
}
///////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////
#include "SkPaintDefaults.h"
SkStroke::SkStroke() {
fWidth = SK_Scalar1;
fMiterLimit = SkPaintDefaults_MiterLimit;
fCap = SkPaint::kDefault_Cap;
fJoin = SkPaint::kDefault_Join;
fDoFill = false;
}
SkStroke::SkStroke(const SkPaint& p) {
fWidth = p.getStrokeWidth();
fMiterLimit = p.getStrokeMiter();
fCap = (uint8_t)p.getStrokeCap();
fJoin = (uint8_t)p.getStrokeJoin();
fDoFill = SkToU8(p.getStyle() == SkPaint::kStrokeAndFill_Style);
}
SkStroke::SkStroke(const SkPaint& p, SkScalar width) {
fWidth = width;
fMiterLimit = p.getStrokeMiter();
fCap = (uint8_t)p.getStrokeCap();
fJoin = (uint8_t)p.getStrokeJoin();
fDoFill = SkToU8(p.getStyle() == SkPaint::kStrokeAndFill_Style);
}
void SkStroke::setWidth(SkScalar width) {
SkASSERT(width >= 0);
fWidth = width;
}
void SkStroke::setMiterLimit(SkScalar miterLimit) {
SkASSERT(miterLimit >= 0);
fMiterLimit = miterLimit;
}
void SkStroke::setCap(SkPaint::Cap cap) {
SkASSERT((unsigned)cap < SkPaint::kCapCount);
fCap = SkToU8(cap);
}
void SkStroke::setJoin(SkPaint::Join join) {
SkASSERT((unsigned)join < SkPaint::kJoinCount);
fJoin = SkToU8(join);
}
///////////////////////////////////////////////////////////////////////////////
#ifdef SK_SCALAR_IS_FIXED
/* return non-zero if the path is too big, and should be shrunk to avoid
overflows during intermediate calculations. Note that we compute the
bounds for this. If we had a custom callback/walker for paths, we could
perhaps go faster by using that, and just perform the abs | in that
routine
*/
static int needs_to_shrink(const SkPath& path) {
const SkRect& r = path.getBounds();
SkFixed mask = SkAbs32(r.fLeft);
mask |= SkAbs32(r.fTop);
mask |= SkAbs32(r.fRight);
mask |= SkAbs32(r.fBottom);
// we need the top 3 bits clear (after abs) to avoid overflow
return mask >> 29;
}
static void identity_proc(SkPoint pts[], int count) {}
static void shift_down_2_proc(SkPoint pts[], int count) {
for (int i = 0; i < count; i++) {
pts->fX >>= 2;
pts->fY >>= 2;
pts += 1;
}
}
#define APPLY_PROC(proc, pts, count) proc(pts, count)
#else // float does need any of this
#define APPLY_PROC(proc, pts, count)
#endif
// If src==dst, then we use a tmp path to record the stroke, and then swap
// its contents with src when we're done.
class AutoTmpPath {
public:
AutoTmpPath(const SkPath& src, SkPath** dst) : fSrc(src) {
if (&src == *dst) {
*dst = &fTmpDst;
fSwapWithSrc = true;
} else {
(*dst)->reset();
fSwapWithSrc = false;
}
}
~AutoTmpPath() {
if (fSwapWithSrc) {
fTmpDst.swap(*const_cast<SkPath*>(&fSrc));
}
}
private:
SkPath fTmpDst;
const SkPath& fSrc;
bool fSwapWithSrc;
};
void SkStroke::strokePath(const SkPath& src, SkPath* dst) const {
SkASSERT(&src != NULL && dst != NULL);
SkScalar radius = SkScalarHalf(fWidth);
AutoTmpPath tmp(src, &dst);
if (radius <= 0) {
return;
}
// If src is really a rect, call our specialty strokeRect() method
{
bool isClosed;
SkPath::Direction dir;
if (src.isRect(&isClosed, &dir) && isClosed) {
this->strokeRect(src.getBounds(), dst, dir);
// our answer should preserve the inverseness of the src
if (src.isInverseFillType()) {
SkASSERT(!dst->isInverseFillType());
dst->toggleInverseFillType();
}
return;
}
}
#ifdef SK_SCALAR_IS_FIXED
void (*proc)(SkPoint pts[], int count) = identity_proc;
if (needs_to_shrink(src)) {
proc = shift_down_2_proc;
radius >>= 2;
if (radius == 0) {
return;
}
}
#endif
SkPathStroker stroker(src, radius, fMiterLimit, this->getCap(),
this->getJoin());
SkPath::Iter iter(src, false);
SkPoint pts[4];
SkPath::Verb verb, lastSegment = SkPath::kMove_Verb;
while ((verb = iter.next(pts, false)) != SkPath::kDone_Verb) {
switch (verb) {
case SkPath::kMove_Verb:
APPLY_PROC(proc, &pts[0], 1);
stroker.moveTo(pts[0]);
break;
case SkPath::kLine_Verb:
APPLY_PROC(proc, &pts[1], 1);
stroker.lineTo(pts[1]);
lastSegment = verb;
break;
case SkPath::kQuad_Verb:
APPLY_PROC(proc, &pts[1], 2);
stroker.quadTo(pts[1], pts[2]);
lastSegment = verb;
break;
case SkPath::kCubic_Verb:
APPLY_PROC(proc, &pts[1], 3);
stroker.cubicTo(pts[1], pts[2], pts[3]);
lastSegment = verb;
break;
case SkPath::kClose_Verb:
stroker.close(lastSegment == SkPath::kLine_Verb);
break;
default:
break;
}
}
stroker.done(dst, lastSegment == SkPath::kLine_Verb);
#ifdef SK_SCALAR_IS_FIXED
// undo our previous down_shift
if (shift_down_2_proc == proc) {
// need a real shift methid on path. antialias paths could use this too
SkMatrix matrix;
matrix.setScale(SkIntToScalar(4), SkIntToScalar(4));
dst->transform(matrix);
}
#endif
if (fDoFill) {
if (src.cheapIsDirection(SkPath::kCCW_Direction)) {
dst->reverseAddPath(src);
} else {
dst->addPath(src);
}
} else {
// Seems like we can assume that a 2-point src would always result in
// a convex stroke, but testing has proved otherwise.
// TODO: fix the stroker to make this assumption true (without making
// it slower that the work that will be done in computeConvexity())
#if 0
// this test results in a non-convex stroke :(
static void test(SkCanvas* canvas) {
SkPoint pts[] = { 146.333328, 192.333328, 300.333344, 293.333344 };
SkPaint paint;
paint.setStrokeWidth(7);
paint.setStrokeCap(SkPaint::kRound_Cap);
canvas->drawLine(pts[0].fX, pts[0].fY, pts[1].fX, pts[1].fY, paint);
}
#endif
#if 0
if (2 == src.countPoints()) {
dst->setIsConvex(true);
}
#endif
}
// our answer should preserve the inverseness of the src
if (src.isInverseFillType()) {
SkASSERT(!dst->isInverseFillType());
dst->toggleInverseFillType();
}
}
static SkPath::Direction reverse_direction(SkPath::Direction dir) {
SkASSERT(SkPath::kUnknown_Direction != dir);
return SkPath::kCW_Direction == dir ? SkPath::kCCW_Direction : SkPath::kCW_Direction;
}
static void addBevel(SkPath* path, const SkRect& r, const SkRect& outer, SkPath::Direction dir) {
SkPoint pts[8];
if (SkPath::kCW_Direction == dir) {
pts[0].set(r.fLeft, outer.fTop);
pts[1].set(r.fRight, outer.fTop);
pts[2].set(outer.fRight, r.fTop);
pts[3].set(outer.fRight, r.fBottom);
pts[4].set(r.fRight, outer.fBottom);
pts[5].set(r.fLeft, outer.fBottom);
pts[6].set(outer.fLeft, r.fBottom);
pts[7].set(outer.fLeft, r.fTop);
} else {
pts[7].set(r.fLeft, outer.fTop);
pts[6].set(r.fRight, outer.fTop);
pts[5].set(outer.fRight, r.fTop);
pts[4].set(outer.fRight, r.fBottom);
pts[3].set(r.fRight, outer.fBottom);
pts[2].set(r.fLeft, outer.fBottom);
pts[1].set(outer.fLeft, r.fBottom);
pts[0].set(outer.fLeft, r.fTop);
}
path->addPoly(pts, 8, true);
}
void SkStroke::strokeRect(const SkRect& origRect, SkPath* dst,
SkPath::Direction dir) const {
SkASSERT(dst != NULL);
dst->reset();
SkScalar radius = SkScalarHalf(fWidth);
if (radius <= 0) {
return;
}
SkScalar rw = origRect.width();
SkScalar rh = origRect.height();
if ((rw < 0) ^ (rh < 0)) {
dir = reverse_direction(dir);
}
SkRect rect(origRect);
rect.sort();
// reassign these, now that we know they'll be >= 0
rw = rect.width();
rh = rect.height();
SkRect r(rect);
r.outset(radius, radius);
SkPaint::Join join = (SkPaint::Join)fJoin;
if (SkPaint::kMiter_Join == join && fMiterLimit < SK_ScalarSqrt2) {
join = SkPaint::kBevel_Join;
}
switch (join) {
case SkPaint::kMiter_Join:
dst->addRect(r, dir);
break;
case SkPaint::kBevel_Join:
addBevel(dst, rect, r, dir);
break;
case SkPaint::kRound_Join:
dst->addRoundRect(r, radius, radius, dir);
break;
default:
break;
}
if (fWidth < SkMinScalar(rw, rh) && !fDoFill) {
r = rect;
r.inset(radius, radius);
dst->addRect(r, reverse_direction(dir));
}
}
|