1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
|
/*
* Copyright 2008 The Android Open Source Project
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkStrokerPriv.h"
#include "SkGeometry.h"
#include "SkPathPriv.h"
#include "SkPointPriv.h"
enum {
kTangent_RecursiveLimit,
kCubic_RecursiveLimit,
kConic_RecursiveLimit,
kQuad_RecursiveLimit
};
// quads with extreme widths (e.g. (0,1) (1,6) (0,3) width=5e7) recurse to point of failure
// largest seen for normal cubics : 5, 26
// largest seen for normal quads : 11
static const int kRecursiveLimits[] = { 5*3, 26*3, 11*3, 11*3 }; // 3x limits seen in practice
static_assert(0 == kTangent_RecursiveLimit, "cubic_stroke_relies_on_tangent_equalling_zero");
static_assert(1 == kCubic_RecursiveLimit, "cubic_stroke_relies_on_cubic_equalling_one");
static_assert(SK_ARRAY_COUNT(kRecursiveLimits) == kQuad_RecursiveLimit + 1,
"recursive_limits_mismatch");
#if defined SK_DEBUG && QUAD_STROKE_APPROX_EXTENDED_DEBUGGING
int gMaxRecursion[SK_ARRAY_COUNT(kRecursiveLimits)] = { 0 };
#endif
#ifndef DEBUG_QUAD_STROKER
#define DEBUG_QUAD_STROKER 0
#endif
#if DEBUG_QUAD_STROKER
/* Enable to show the decisions made in subdividing the curve -- helpful when the resulting
stroke has more than the optimal number of quadratics and lines */
#define STROKER_RESULT(resultType, depth, quadPts, format, ...) \
SkDebugf("[%d] %s " format "\n", depth, __FUNCTION__, __VA_ARGS__), \
SkDebugf(" " #resultType " t=(%g,%g)\n", quadPts->fStartT, quadPts->fEndT), \
resultType
#define STROKER_DEBUG_PARAMS(...) , __VA_ARGS__
#else
#define STROKER_RESULT(resultType, depth, quadPts, format, ...) \
resultType
#define STROKER_DEBUG_PARAMS(...)
#endif
static inline bool degenerate_vector(const SkVector& v) {
return !SkPointPriv::CanNormalize(v.fX, v.fY);
}
static bool set_normal_unitnormal(const SkPoint& before, const SkPoint& after, SkScalar scale,
SkScalar radius,
SkVector* normal, SkVector* unitNormal) {
if (!unitNormal->setNormalize((after.fX - before.fX) * scale,
(after.fY - before.fY) * scale)) {
return false;
}
SkPointPriv::RotateCCW(unitNormal);
unitNormal->scale(radius, normal);
return true;
}
static bool set_normal_unitnormal(const SkVector& vec,
SkScalar radius,
SkVector* normal, SkVector* unitNormal) {
if (!unitNormal->setNormalize(vec.fX, vec.fY)) {
return false;
}
SkPointPriv::RotateCCW(unitNormal);
unitNormal->scale(radius, normal);
return true;
}
///////////////////////////////////////////////////////////////////////////////
struct SkQuadConstruct { // The state of the quad stroke under construction.
SkPoint fQuad[3]; // the stroked quad parallel to the original curve
SkPoint fTangentStart; // a point tangent to fQuad[0]
SkPoint fTangentEnd; // a point tangent to fQuad[2]
SkScalar fStartT; // a segment of the original curve
SkScalar fMidT; // "
SkScalar fEndT; // "
bool fStartSet; // state to share common points across structs
bool fEndSet; // "
bool fOppositeTangents; // set if coincident tangents have opposite directions
// return false if start and end are too close to have a unique middle
bool init(SkScalar start, SkScalar end) {
fStartT = start;
fMidT = (start + end) * SK_ScalarHalf;
fEndT = end;
fStartSet = fEndSet = false;
return fStartT < fMidT && fMidT < fEndT;
}
bool initWithStart(SkQuadConstruct* parent) {
if (!init(parent->fStartT, parent->fMidT)) {
return false;
}
fQuad[0] = parent->fQuad[0];
fTangentStart = parent->fTangentStart;
fStartSet = true;
return true;
}
bool initWithEnd(SkQuadConstruct* parent) {
if (!init(parent->fMidT, parent->fEndT)) {
return false;
}
fQuad[2] = parent->fQuad[2];
fTangentEnd = parent->fTangentEnd;
fEndSet = true;
return true;
}
};
class SkPathStroker {
public:
SkPathStroker(const SkPath& src,
SkScalar radius, SkScalar miterLimit, SkPaint::Cap,
SkPaint::Join, SkScalar resScale,
bool canIgnoreCenter);
bool hasOnlyMoveTo() const { return 0 == fSegmentCount; }
SkPoint moveToPt() const { return fFirstPt; }
void moveTo(const SkPoint&);
void lineTo(const SkPoint&, const SkPath::Iter* iter = nullptr);
void quadTo(const SkPoint&, const SkPoint&);
void conicTo(const SkPoint&, const SkPoint&, SkScalar weight);
void cubicTo(const SkPoint&, const SkPoint&, const SkPoint&);
void close(bool isLine) { this->finishContour(true, isLine); }
void done(SkPath* dst, bool isLine) {
this->finishContour(false, isLine);
dst->swap(fOuter);
}
SkScalar getResScale() const { return fResScale; }
bool isCurrentContourEmpty() const {
return fInner.isZeroLengthSincePoint(0) &&
fOuter.isZeroLengthSincePoint(fFirstOuterPtIndexInContour);
}
private:
SkScalar fRadius;
SkScalar fInvMiterLimit;
SkScalar fResScale;
SkScalar fInvResScale;
SkScalar fInvResScaleSquared;
SkVector fFirstNormal, fPrevNormal, fFirstUnitNormal, fPrevUnitNormal;
SkPoint fFirstPt, fPrevPt; // on original path
SkPoint fFirstOuterPt;
int fFirstOuterPtIndexInContour;
int fSegmentCount;
bool fPrevIsLine;
bool fCanIgnoreCenter;
SkStrokerPriv::CapProc fCapper;
SkStrokerPriv::JoinProc fJoiner;
SkPath fInner, fOuter; // outer is our working answer, inner is temp
enum StrokeType {
kOuter_StrokeType = 1, // use sign-opposite values later to flip perpendicular axis
kInner_StrokeType = -1
} fStrokeType;
enum ResultType {
kSplit_ResultType, // the caller should split the quad stroke in two
kDegenerate_ResultType, // the caller should add a line
kQuad_ResultType, // the caller should (continue to try to) add a quad stroke
};
enum ReductionType {
kPoint_ReductionType, // all curve points are practically identical
kLine_ReductionType, // the control point is on the line between the ends
kQuad_ReductionType, // the control point is outside the line between the ends
kDegenerate_ReductionType, // the control point is on the line but outside the ends
kDegenerate2_ReductionType, // two control points are on the line but outside ends (cubic)
kDegenerate3_ReductionType, // three areas of max curvature found (for cubic)
};
enum IntersectRayType {
kCtrlPt_RayType,
kResultType_RayType,
};
int fRecursionDepth; // track stack depth to abort if numerics run amok
bool fFoundTangents; // do less work until tangents meet (cubic)
bool fJoinCompleted; // previous join was not degenerate
void addDegenerateLine(const SkQuadConstruct* );
static ReductionType CheckConicLinear(const SkConic& , SkPoint* reduction);
static ReductionType CheckCubicLinear(const SkPoint cubic[4], SkPoint reduction[3],
const SkPoint** tanPtPtr);
static ReductionType CheckQuadLinear(const SkPoint quad[3], SkPoint* reduction);
ResultType compareQuadConic(const SkConic& , SkQuadConstruct* ) const;
ResultType compareQuadCubic(const SkPoint cubic[4], SkQuadConstruct* );
ResultType compareQuadQuad(const SkPoint quad[3], SkQuadConstruct* );
void conicPerpRay(const SkConic& , SkScalar t, SkPoint* tPt, SkPoint* onPt,
SkPoint* tangent) const;
void conicQuadEnds(const SkConic& , SkQuadConstruct* ) const;
bool conicStroke(const SkConic& , SkQuadConstruct* );
bool cubicMidOnLine(const SkPoint cubic[4], const SkQuadConstruct* ) const;
void cubicPerpRay(const SkPoint cubic[4], SkScalar t, SkPoint* tPt, SkPoint* onPt,
SkPoint* tangent) const;
void cubicQuadEnds(const SkPoint cubic[4], SkQuadConstruct* );
void cubicQuadMid(const SkPoint cubic[4], const SkQuadConstruct* , SkPoint* mid) const;
bool cubicStroke(const SkPoint cubic[4], SkQuadConstruct* );
void init(StrokeType strokeType, SkQuadConstruct* , SkScalar tStart, SkScalar tEnd);
ResultType intersectRay(SkQuadConstruct* , IntersectRayType STROKER_DEBUG_PARAMS(int) ) const;
bool ptInQuadBounds(const SkPoint quad[3], const SkPoint& pt) const;
void quadPerpRay(const SkPoint quad[3], SkScalar t, SkPoint* tPt, SkPoint* onPt,
SkPoint* tangent) const;
bool quadStroke(const SkPoint quad[3], SkQuadConstruct* );
void setConicEndNormal(const SkConic& ,
const SkVector& normalAB, const SkVector& unitNormalAB,
SkVector* normalBC, SkVector* unitNormalBC);
void setCubicEndNormal(const SkPoint cubic[4],
const SkVector& normalAB, const SkVector& unitNormalAB,
SkVector* normalCD, SkVector* unitNormalCD);
void setQuadEndNormal(const SkPoint quad[3],
const SkVector& normalAB, const SkVector& unitNormalAB,
SkVector* normalBC, SkVector* unitNormalBC);
void setRayPts(const SkPoint& tPt, SkVector* dxy, SkPoint* onPt, SkPoint* tangent) const;
static bool SlightAngle(SkQuadConstruct* );
ResultType strokeCloseEnough(const SkPoint stroke[3], const SkPoint ray[2],
SkQuadConstruct* STROKER_DEBUG_PARAMS(int depth) ) const;
ResultType tangentsMeet(const SkPoint cubic[4], SkQuadConstruct* );
void finishContour(bool close, bool isLine);
bool preJoinTo(const SkPoint&, SkVector* normal, SkVector* unitNormal,
bool isLine);
void postJoinTo(const SkPoint&, const SkVector& normal,
const SkVector& unitNormal);
void line_to(const SkPoint& currPt, const SkVector& normal);
};
///////////////////////////////////////////////////////////////////////////////
bool SkPathStroker::preJoinTo(const SkPoint& currPt, SkVector* normal,
SkVector* unitNormal, bool currIsLine) {
SkASSERT(fSegmentCount >= 0);
SkScalar prevX = fPrevPt.fX;
SkScalar prevY = fPrevPt.fY;
if (!set_normal_unitnormal(fPrevPt, currPt, fResScale, fRadius, normal, unitNormal)) {
if (SkStrokerPriv::CapFactory(SkPaint::kButt_Cap) == fCapper) {
return false;
}
/* Square caps and round caps draw even if the segment length is zero.
Since the zero length segment has no direction, set the orientation
to upright as the default orientation */
normal->set(fRadius, 0);
unitNormal->set(1, 0);
}
if (fSegmentCount == 0) {
fFirstNormal = *normal;
fFirstUnitNormal = *unitNormal;
fFirstOuterPt.set(prevX + normal->fX, prevY + normal->fY);
fOuter.moveTo(fFirstOuterPt.fX, fFirstOuterPt.fY);
fInner.moveTo(prevX - normal->fX, prevY - normal->fY);
} else { // we have a previous segment
fJoiner(&fOuter, &fInner, fPrevUnitNormal, fPrevPt, *unitNormal,
fRadius, fInvMiterLimit, fPrevIsLine, currIsLine);
}
fPrevIsLine = currIsLine;
return true;
}
void SkPathStroker::postJoinTo(const SkPoint& currPt, const SkVector& normal,
const SkVector& unitNormal) {
fJoinCompleted = true;
fPrevPt = currPt;
fPrevUnitNormal = unitNormal;
fPrevNormal = normal;
fSegmentCount += 1;
}
void SkPathStroker::finishContour(bool close, bool currIsLine) {
if (fSegmentCount > 0) {
SkPoint pt;
if (close) {
fJoiner(&fOuter, &fInner, fPrevUnitNormal, fPrevPt,
fFirstUnitNormal, fRadius, fInvMiterLimit,
fPrevIsLine, currIsLine);
fOuter.close();
if (fCanIgnoreCenter) {
if (!fOuter.getBounds().contains(fInner.getBounds())) {
SkASSERT(fInner.getBounds().contains(fOuter.getBounds()));
fInner.swap(fOuter);
}
} else {
// now add fInner as its own contour
fInner.getLastPt(&pt);
fOuter.moveTo(pt.fX, pt.fY);
fOuter.reversePathTo(fInner);
fOuter.close();
}
} else { // add caps to start and end
// cap the end
fInner.getLastPt(&pt);
fCapper(&fOuter, fPrevPt, fPrevNormal, pt,
currIsLine ? &fInner : nullptr);
fOuter.reversePathTo(fInner);
// cap the start
fCapper(&fOuter, fFirstPt, -fFirstNormal, fFirstOuterPt,
fPrevIsLine ? &fInner : nullptr);
fOuter.close();
}
}
// since we may re-use fInner, we rewind instead of reset, to save on
// reallocating its internal storage.
fInner.rewind();
fSegmentCount = -1;
fFirstOuterPtIndexInContour = fOuter.countPoints();
}
///////////////////////////////////////////////////////////////////////////////
SkPathStroker::SkPathStroker(const SkPath& src,
SkScalar radius, SkScalar miterLimit,
SkPaint::Cap cap, SkPaint::Join join, SkScalar resScale,
bool canIgnoreCenter)
: fRadius(radius)
, fResScale(resScale)
, fCanIgnoreCenter(canIgnoreCenter) {
/* This is only used when join is miter_join, but we initialize it here
so that it is always defined, to fis valgrind warnings.
*/
fInvMiterLimit = 0;
if (join == SkPaint::kMiter_Join) {
if (miterLimit <= SK_Scalar1) {
join = SkPaint::kBevel_Join;
} else {
fInvMiterLimit = SkScalarInvert(miterLimit);
}
}
fCapper = SkStrokerPriv::CapFactory(cap);
fJoiner = SkStrokerPriv::JoinFactory(join);
fSegmentCount = -1;
fFirstOuterPtIndexInContour = 0;
fPrevIsLine = false;
// Need some estimate of how large our final result (fOuter)
// and our per-contour temp (fInner) will be, so we don't spend
// extra time repeatedly growing these arrays.
//
// 3x for result == inner + outer + join (swag)
// 1x for inner == 'wag' (worst contour length would be better guess)
fOuter.incReserve(src.countPoints() * 3);
fOuter.setIsVolatile(true);
fInner.incReserve(src.countPoints());
fInner.setIsVolatile(true);
// TODO : write a common error function used by stroking and filling
// The '4' below matches the fill scan converter's error term
fInvResScale = SkScalarInvert(resScale * 4);
fInvResScaleSquared = fInvResScale * fInvResScale;
fRecursionDepth = 0;
}
void SkPathStroker::moveTo(const SkPoint& pt) {
if (fSegmentCount > 0) {
this->finishContour(false, false);
}
fSegmentCount = 0;
fFirstPt = fPrevPt = pt;
fJoinCompleted = false;
}
void SkPathStroker::line_to(const SkPoint& currPt, const SkVector& normal) {
fOuter.lineTo(currPt.fX + normal.fX, currPt.fY + normal.fY);
fInner.lineTo(currPt.fX - normal.fX, currPt.fY - normal.fY);
}
static bool has_valid_tangent(const SkPath::Iter* iter) {
SkPath::Iter copy = *iter;
SkPath::Verb verb;
SkPoint pts[4];
while ((verb = copy.next(pts))) {
switch (verb) {
case SkPath::kMove_Verb:
return false;
case SkPath::kLine_Verb:
if (pts[0] == pts[1]) {
continue;
}
return true;
case SkPath::kQuad_Verb:
case SkPath::kConic_Verb:
if (pts[0] == pts[1] && pts[0] == pts[2]) {
continue;
}
return true;
case SkPath::kCubic_Verb:
if (pts[0] == pts[1] && pts[0] == pts[2] && pts[0] == pts[3]) {
continue;
}
return true;
case SkPath::kClose_Verb:
case SkPath::kDone_Verb:
return false;
}
}
return false;
}
void SkPathStroker::lineTo(const SkPoint& currPt, const SkPath::Iter* iter) {
bool teenyLine = SkPointPriv::EqualsWithinTolerance(fPrevPt, currPt, SK_ScalarNearlyZero * fInvResScale);
if (SkStrokerPriv::CapFactory(SkPaint::kButt_Cap) == fCapper && teenyLine) {
return;
}
if (teenyLine && (fJoinCompleted || (iter && has_valid_tangent(iter)))) {
return;
}
SkVector normal, unitNormal;
if (!this->preJoinTo(currPt, &normal, &unitNormal, true)) {
return;
}
this->line_to(currPt, normal);
this->postJoinTo(currPt, normal, unitNormal);
}
void SkPathStroker::setQuadEndNormal(const SkPoint quad[3], const SkVector& normalAB,
const SkVector& unitNormalAB, SkVector* normalBC, SkVector* unitNormalBC) {
if (!set_normal_unitnormal(quad[1], quad[2], fResScale, fRadius, normalBC, unitNormalBC)) {
*normalBC = normalAB;
*unitNormalBC = unitNormalAB;
}
}
void SkPathStroker::setConicEndNormal(const SkConic& conic, const SkVector& normalAB,
const SkVector& unitNormalAB, SkVector* normalBC, SkVector* unitNormalBC) {
setQuadEndNormal(conic.fPts, normalAB, unitNormalAB, normalBC, unitNormalBC);
}
void SkPathStroker::setCubicEndNormal(const SkPoint cubic[4], const SkVector& normalAB,
const SkVector& unitNormalAB, SkVector* normalCD, SkVector* unitNormalCD) {
SkVector ab = cubic[1] - cubic[0];
SkVector cd = cubic[3] - cubic[2];
bool degenerateAB = degenerate_vector(ab);
bool degenerateCD = degenerate_vector(cd);
if (degenerateAB && degenerateCD) {
goto DEGENERATE_NORMAL;
}
if (degenerateAB) {
ab = cubic[2] - cubic[0];
degenerateAB = degenerate_vector(ab);
}
if (degenerateCD) {
cd = cubic[3] - cubic[1];
degenerateCD = degenerate_vector(cd);
}
if (degenerateAB || degenerateCD) {
DEGENERATE_NORMAL:
*normalCD = normalAB;
*unitNormalCD = unitNormalAB;
return;
}
SkAssertResult(set_normal_unitnormal(cd, fRadius, normalCD, unitNormalCD));
}
void SkPathStroker::init(StrokeType strokeType, SkQuadConstruct* quadPts, SkScalar tStart,
SkScalar tEnd) {
fStrokeType = strokeType;
fFoundTangents = false;
quadPts->init(tStart, tEnd);
}
// returns the distance squared from the point to the line
static SkScalar pt_to_line(const SkPoint& pt, const SkPoint& lineStart, const SkPoint& lineEnd) {
SkVector dxy = lineEnd - lineStart;
if (degenerate_vector(dxy)) {
return SkPointPriv::DistanceToSqd(pt, lineStart);
}
SkVector ab0 = pt - lineStart;
SkScalar numer = dxy.dot(ab0);
SkScalar denom = dxy.dot(dxy);
SkScalar t = numer / denom;
SkPoint hit;
hit.fX = lineStart.fX * (1 - t) + lineEnd.fX * t;
hit.fY = lineStart.fY * (1 - t) + lineEnd.fY * t;
return SkPointPriv::DistanceToSqd(hit, pt);
}
/* Given a cubic, determine if all four points are in a line.
Return true if the inner points is close to a line connecting the outermost points.
Find the outermost point by looking for the largest difference in X or Y.
Given the indices of the outermost points, and that outer_1 is greater than outer_2,
this table shows the index of the smaller of the remaining points:
outer_2
0 1 2 3
outer_1 ----------------
0 | - 2 1 1
1 | - - 0 0
2 | - - - 0
3 | - - - -
If outer_1 == 0 and outer_2 == 1, the smaller of the remaining indices (2 and 3) is 2.
This table can be collapsed to: (1 + (2 >> outer_2)) >> outer_1
Given three indices (outer_1 outer_2 mid_1) from 0..3, the remaining index is:
mid_2 == (outer_1 ^ outer_2 ^ mid_1)
*/
static bool cubic_in_line(const SkPoint cubic[4]) {
SkScalar ptMax = -1;
int outer1 SK_INIT_TO_AVOID_WARNING;
int outer2 SK_INIT_TO_AVOID_WARNING;
for (int index = 0; index < 3; ++index) {
for (int inner = index + 1; inner < 4; ++inner) {
SkVector testDiff = cubic[inner] - cubic[index];
SkScalar testMax = SkTMax(SkScalarAbs(testDiff.fX), SkScalarAbs(testDiff.fY));
if (ptMax < testMax) {
outer1 = index;
outer2 = inner;
ptMax = testMax;
}
}
}
SkASSERT(outer1 >= 0 && outer1 <= 2);
SkASSERT(outer2 >= 1 && outer2 <= 3);
SkASSERT(outer1 < outer2);
int mid1 = (1 + (2 >> outer2)) >> outer1;
SkASSERT(mid1 >= 0 && mid1 <= 2);
SkASSERT(outer1 != mid1 && outer2 != mid1);
int mid2 = outer1 ^ outer2 ^ mid1;
SkASSERT(mid2 >= 1 && mid2 <= 3);
SkASSERT(mid2 != outer1 && mid2 != outer2 && mid2 != mid1);
SkASSERT(((1 << outer1) | (1 << outer2) | (1 << mid1) | (1 << mid2)) == 0x0f);
SkScalar lineSlop = ptMax * ptMax * 0.00001f; // this multiplier is pulled out of the air
return pt_to_line(cubic[mid1], cubic[outer1], cubic[outer2]) <= lineSlop
&& pt_to_line(cubic[mid2], cubic[outer1], cubic[outer2]) <= lineSlop;
}
/* Given quad, see if all there points are in a line.
Return true if the inside point is close to a line connecting the outermost points.
Find the outermost point by looking for the largest difference in X or Y.
Since the XOR of the indices is 3 (0 ^ 1 ^ 2)
the missing index equals: outer_1 ^ outer_2 ^ 3
*/
static bool quad_in_line(const SkPoint quad[3]) {
SkScalar ptMax = -1;
int outer1 SK_INIT_TO_AVOID_WARNING;
int outer2 SK_INIT_TO_AVOID_WARNING;
for (int index = 0; index < 2; ++index) {
for (int inner = index + 1; inner < 3; ++inner) {
SkVector testDiff = quad[inner] - quad[index];
SkScalar testMax = SkTMax(SkScalarAbs(testDiff.fX), SkScalarAbs(testDiff.fY));
if (ptMax < testMax) {
outer1 = index;
outer2 = inner;
ptMax = testMax;
}
}
}
SkASSERT(outer1 >= 0 && outer1 <= 1);
SkASSERT(outer2 >= 1 && outer2 <= 2);
SkASSERT(outer1 < outer2);
int mid = outer1 ^ outer2 ^ 3;
SkScalar lineSlop = ptMax * ptMax * 0.00001f; // this multiplier is pulled out of the air
return pt_to_line(quad[mid], quad[outer1], quad[outer2]) <= lineSlop;
}
static bool conic_in_line(const SkConic& conic) {
return quad_in_line(conic.fPts);
}
SkPathStroker::ReductionType SkPathStroker::CheckCubicLinear(const SkPoint cubic[4],
SkPoint reduction[3], const SkPoint** tangentPtPtr) {
bool degenerateAB = degenerate_vector(cubic[1] - cubic[0]);
bool degenerateBC = degenerate_vector(cubic[2] - cubic[1]);
bool degenerateCD = degenerate_vector(cubic[3] - cubic[2]);
if (degenerateAB & degenerateBC & degenerateCD) {
return kPoint_ReductionType;
}
if (degenerateAB + degenerateBC + degenerateCD == 2) {
return kLine_ReductionType;
}
if (!cubic_in_line(cubic)) {
*tangentPtPtr = degenerateAB ? &cubic[2] : &cubic[1];
return kQuad_ReductionType;
}
SkScalar tValues[3];
int count = SkFindCubicMaxCurvature(cubic, tValues);
if (count == 0) {
return kLine_ReductionType;
}
int rCount = 0;
// Now loop over the t-values, and reject any that evaluate to either end-point
for (int index = 0; index < count; ++index) {
SkScalar t = tValues[index];
SkEvalCubicAt(cubic, t, &reduction[rCount], nullptr, nullptr);
if (reduction[rCount] != cubic[0] && reduction[rCount] != cubic[3]) {
++rCount;
}
}
if (rCount == 0) {
return kLine_ReductionType;
}
static_assert(kQuad_ReductionType + 1 == kDegenerate_ReductionType, "enum_out_of_whack");
static_assert(kQuad_ReductionType + 2 == kDegenerate2_ReductionType, "enum_out_of_whack");
static_assert(kQuad_ReductionType + 3 == kDegenerate3_ReductionType, "enum_out_of_whack");
return (ReductionType) (kQuad_ReductionType + rCount);
}
SkPathStroker::ReductionType SkPathStroker::CheckConicLinear(const SkConic& conic,
SkPoint* reduction) {
bool degenerateAB = degenerate_vector(conic.fPts[1] - conic.fPts[0]);
bool degenerateBC = degenerate_vector(conic.fPts[2] - conic.fPts[1]);
if (degenerateAB & degenerateBC) {
return kPoint_ReductionType;
}
if (degenerateAB | degenerateBC) {
return kLine_ReductionType;
}
if (!conic_in_line(conic)) {
return kQuad_ReductionType;
}
#if 0 // once findMaxCurvature is implemented, this will be a better solution
SkScalar t;
if (!conic.findMaxCurvature(&t) || 0 == t) {
return kLine_ReductionType;
}
#else // but for now, use extrema instead
SkScalar xT = 0, yT = 0;
(void) conic.findXExtrema(&xT);
(void) conic.findYExtrema(&yT);
SkScalar t = SkTMax(xT, yT);
if (0 == t) {
return kLine_ReductionType;
}
#endif
conic.evalAt(t, reduction, nullptr);
return kDegenerate_ReductionType;
}
SkPathStroker::ReductionType SkPathStroker::CheckQuadLinear(const SkPoint quad[3],
SkPoint* reduction) {
bool degenerateAB = degenerate_vector(quad[1] - quad[0]);
bool degenerateBC = degenerate_vector(quad[2] - quad[1]);
if (degenerateAB & degenerateBC) {
return kPoint_ReductionType;
}
if (degenerateAB | degenerateBC) {
return kLine_ReductionType;
}
if (!quad_in_line(quad)) {
return kQuad_ReductionType;
}
SkScalar t = SkFindQuadMaxCurvature(quad);
if (0 == t) {
return kLine_ReductionType;
}
*reduction = SkEvalQuadAt(quad, t);
return kDegenerate_ReductionType;
}
void SkPathStroker::conicTo(const SkPoint& pt1, const SkPoint& pt2, SkScalar weight) {
const SkConic conic(fPrevPt, pt1, pt2, weight);
SkPoint reduction;
ReductionType reductionType = CheckConicLinear(conic, &reduction);
if (kPoint_ReductionType == reductionType) {
/* If the stroke consists of a moveTo followed by a degenerate curve, treat it
as if it were followed by a zero-length line. Lines without length
can have square and round end caps. */
this->lineTo(pt2);
return;
}
if (kLine_ReductionType == reductionType) {
this->lineTo(pt2);
return;
}
if (kDegenerate_ReductionType == reductionType) {
this->lineTo(reduction);
SkStrokerPriv::JoinProc saveJoiner = fJoiner;
fJoiner = SkStrokerPriv::JoinFactory(SkPaint::kRound_Join);
this->lineTo(pt2);
fJoiner = saveJoiner;
return;
}
SkASSERT(kQuad_ReductionType == reductionType);
SkVector normalAB, unitAB, normalBC, unitBC;
if (!this->preJoinTo(pt1, &normalAB, &unitAB, false)) {
this->lineTo(pt2);
return;
}
SkQuadConstruct quadPts;
this->init(kOuter_StrokeType, &quadPts, 0, 1);
(void) this->conicStroke(conic, &quadPts);
this->init(kInner_StrokeType, &quadPts, 0, 1);
(void) this->conicStroke(conic, &quadPts);
this->setConicEndNormal(conic, normalAB, unitAB, &normalBC, &unitBC);
this->postJoinTo(pt2, normalBC, unitBC);
}
void SkPathStroker::quadTo(const SkPoint& pt1, const SkPoint& pt2) {
const SkPoint quad[3] = { fPrevPt, pt1, pt2 };
SkPoint reduction;
ReductionType reductionType = CheckQuadLinear(quad, &reduction);
if (kPoint_ReductionType == reductionType) {
/* If the stroke consists of a moveTo followed by a degenerate curve, treat it
as if it were followed by a zero-length line. Lines without length
can have square and round end caps. */
this->lineTo(pt2);
return;
}
if (kLine_ReductionType == reductionType) {
this->lineTo(pt2);
return;
}
if (kDegenerate_ReductionType == reductionType) {
this->lineTo(reduction);
SkStrokerPriv::JoinProc saveJoiner = fJoiner;
fJoiner = SkStrokerPriv::JoinFactory(SkPaint::kRound_Join);
this->lineTo(pt2);
fJoiner = saveJoiner;
return;
}
SkASSERT(kQuad_ReductionType == reductionType);
SkVector normalAB, unitAB, normalBC, unitBC;
if (!this->preJoinTo(pt1, &normalAB, &unitAB, false)) {
this->lineTo(pt2);
return;
}
SkQuadConstruct quadPts;
this->init(kOuter_StrokeType, &quadPts, 0, 1);
(void) this->quadStroke(quad, &quadPts);
this->init(kInner_StrokeType, &quadPts, 0, 1);
(void) this->quadStroke(quad, &quadPts);
this->setQuadEndNormal(quad, normalAB, unitAB, &normalBC, &unitBC);
this->postJoinTo(pt2, normalBC, unitBC);
}
// Given a point on the curve and its derivative, scale the derivative by the radius, and
// compute the perpendicular point and its tangent.
void SkPathStroker::setRayPts(const SkPoint& tPt, SkVector* dxy, SkPoint* onPt,
SkPoint* tangent) const {
SkPoint oldDxy = *dxy;
if (!dxy->setLength(fRadius)) { // consider moving double logic into SkPoint::setLength
double xx = oldDxy.fX;
double yy = oldDxy.fY;
double dscale = fRadius / sqrt(xx * xx + yy * yy);
dxy->fX = SkDoubleToScalar(xx * dscale);
dxy->fY = SkDoubleToScalar(yy * dscale);
}
SkScalar axisFlip = SkIntToScalar(fStrokeType); // go opposite ways for outer, inner
onPt->fX = tPt.fX + axisFlip * dxy->fY;
onPt->fY = tPt.fY - axisFlip * dxy->fX;
if (tangent) {
tangent->fX = onPt->fX + dxy->fX;
tangent->fY = onPt->fY + dxy->fY;
}
}
// Given a conic and t, return the point on curve, its perpendicular, and the perpendicular tangent.
// Returns false if the perpendicular could not be computed (because the derivative collapsed to 0)
void SkPathStroker::conicPerpRay(const SkConic& conic, SkScalar t, SkPoint* tPt, SkPoint* onPt,
SkPoint* tangent) const {
SkVector dxy;
conic.evalAt(t, tPt, &dxy);
if (dxy.fX == 0 && dxy.fY == 0) {
dxy = conic.fPts[2] - conic.fPts[0];
}
this->setRayPts(*tPt, &dxy, onPt, tangent);
}
// Given a conic and a t range, find the start and end if they haven't been found already.
void SkPathStroker::conicQuadEnds(const SkConic& conic, SkQuadConstruct* quadPts) const {
if (!quadPts->fStartSet) {
SkPoint conicStartPt;
this->conicPerpRay(conic, quadPts->fStartT, &conicStartPt, &quadPts->fQuad[0],
&quadPts->fTangentStart);
quadPts->fStartSet = true;
}
if (!quadPts->fEndSet) {
SkPoint conicEndPt;
this->conicPerpRay(conic, quadPts->fEndT, &conicEndPt, &quadPts->fQuad[2],
&quadPts->fTangentEnd);
quadPts->fEndSet = true;
}
}
// Given a cubic and t, return the point on curve, its perpendicular, and the perpendicular tangent.
void SkPathStroker::cubicPerpRay(const SkPoint cubic[4], SkScalar t, SkPoint* tPt, SkPoint* onPt,
SkPoint* tangent) const {
SkVector dxy;
SkPoint chopped[7];
SkEvalCubicAt(cubic, t, tPt, &dxy, nullptr);
if (dxy.fX == 0 && dxy.fY == 0) {
const SkPoint* cPts = cubic;
if (SkScalarNearlyZero(t)) {
dxy = cubic[2] - cubic[0];
} else if (SkScalarNearlyZero(1 - t)) {
dxy = cubic[3] - cubic[1];
} else {
// If the cubic inflection falls on the cusp, subdivide the cubic
// to find the tangent at that point.
SkChopCubicAt(cubic, chopped, t);
dxy = chopped[3] - chopped[2];
if (dxy.fX == 0 && dxy.fY == 0) {
dxy = chopped[3] - chopped[1];
cPts = chopped;
}
}
if (dxy.fX == 0 && dxy.fY == 0) {
dxy = cPts[3] - cPts[0];
}
}
setRayPts(*tPt, &dxy, onPt, tangent);
}
// Given a cubic and a t range, find the start and end if they haven't been found already.
void SkPathStroker::cubicQuadEnds(const SkPoint cubic[4], SkQuadConstruct* quadPts) {
if (!quadPts->fStartSet) {
SkPoint cubicStartPt;
this->cubicPerpRay(cubic, quadPts->fStartT, &cubicStartPt, &quadPts->fQuad[0],
&quadPts->fTangentStart);
quadPts->fStartSet = true;
}
if (!quadPts->fEndSet) {
SkPoint cubicEndPt;
this->cubicPerpRay(cubic, quadPts->fEndT, &cubicEndPt, &quadPts->fQuad[2],
&quadPts->fTangentEnd);
quadPts->fEndSet = true;
}
}
void SkPathStroker::cubicQuadMid(const SkPoint cubic[4], const SkQuadConstruct* quadPts,
SkPoint* mid) const {
SkPoint cubicMidPt;
this->cubicPerpRay(cubic, quadPts->fMidT, &cubicMidPt, mid, nullptr);
}
// Given a quad and t, return the point on curve, its perpendicular, and the perpendicular tangent.
void SkPathStroker::quadPerpRay(const SkPoint quad[3], SkScalar t, SkPoint* tPt, SkPoint* onPt,
SkPoint* tangent) const {
SkVector dxy;
SkEvalQuadAt(quad, t, tPt, &dxy);
if (dxy.fX == 0 && dxy.fY == 0) {
dxy = quad[2] - quad[0];
}
setRayPts(*tPt, &dxy, onPt, tangent);
}
// Find the intersection of the stroke tangents to construct a stroke quad.
// Return whether the stroke is a degenerate (a line), a quad, or must be split.
// Optionally compute the quad's control point.
SkPathStroker::ResultType SkPathStroker::intersectRay(SkQuadConstruct* quadPts,
IntersectRayType intersectRayType STROKER_DEBUG_PARAMS(int depth)) const {
const SkPoint& start = quadPts->fQuad[0];
const SkPoint& end = quadPts->fQuad[2];
SkVector aLen = quadPts->fTangentStart - start;
SkVector bLen = quadPts->fTangentEnd - end;
/* Slopes match when denom goes to zero:
axLen / ayLen == bxLen / byLen
(ayLen * byLen) * axLen / ayLen == (ayLen * byLen) * bxLen / byLen
byLen * axLen == ayLen * bxLen
byLen * axLen - ayLen * bxLen ( == denom )
*/
SkScalar denom = aLen.cross(bLen);
if (denom == 0 || !SkScalarIsFinite(denom)) {
quadPts->fOppositeTangents = aLen.dot(bLen) < 0;
return STROKER_RESULT(kDegenerate_ResultType, depth, quadPts, "denom == 0");
}
quadPts->fOppositeTangents = false;
SkVector ab0 = start - end;
SkScalar numerA = bLen.cross(ab0);
SkScalar numerB = aLen.cross(ab0);
if ((numerA >= 0) == (numerB >= 0)) { // if the control point is outside the quad ends
// if the perpendicular distances from the quad points to the opposite tangent line
// are small, a straight line is good enough
SkScalar dist1 = pt_to_line(start, end, quadPts->fTangentEnd);
SkScalar dist2 = pt_to_line(end, start, quadPts->fTangentStart);
if (SkTMax(dist1, dist2) <= fInvResScaleSquared) {
return STROKER_RESULT(kDegenerate_ResultType, depth, quadPts,
"SkTMax(dist1=%g, dist2=%g) <= fInvResScaleSquared", dist1, dist2);
}
return STROKER_RESULT(kSplit_ResultType, depth, quadPts,
"(numerA=%g >= 0) == (numerB=%g >= 0)", numerA, numerB);
}
// check to see if the denominator is teeny relative to the numerator
// if the offset by one will be lost, the ratio is too large
numerA /= denom;
bool validDivide = numerA > numerA - 1;
if (validDivide) {
if (kCtrlPt_RayType == intersectRayType) {
SkPoint* ctrlPt = &quadPts->fQuad[1];
// the intersection of the tangents need not be on the tangent segment
// so 0 <= numerA <= 1 is not necessarily true
ctrlPt->fX = start.fX * (1 - numerA) + quadPts->fTangentStart.fX * numerA;
ctrlPt->fY = start.fY * (1 - numerA) + quadPts->fTangentStart.fY * numerA;
}
return STROKER_RESULT(kQuad_ResultType, depth, quadPts,
"(numerA=%g >= 0) != (numerB=%g >= 0)", numerA, numerB);
}
quadPts->fOppositeTangents = aLen.dot(bLen) < 0;
// if the lines are parallel, straight line is good enough
return STROKER_RESULT(kDegenerate_ResultType, depth, quadPts,
"SkScalarNearlyZero(denom=%g)", denom);
}
// Given a cubic and a t-range, determine if the stroke can be described by a quadratic.
SkPathStroker::ResultType SkPathStroker::tangentsMeet(const SkPoint cubic[4],
SkQuadConstruct* quadPts) {
this->cubicQuadEnds(cubic, quadPts);
return this->intersectRay(quadPts, kResultType_RayType STROKER_DEBUG_PARAMS(fRecursionDepth));
}
// Intersect the line with the quad and return the t values on the quad where the line crosses.
static int intersect_quad_ray(const SkPoint line[2], const SkPoint quad[3], SkScalar roots[2]) {
SkVector vec = line[1] - line[0];
SkScalar r[3];
for (int n = 0; n < 3; ++n) {
r[n] = (quad[n].fY - line[0].fY) * vec.fX - (quad[n].fX - line[0].fX) * vec.fY;
}
SkScalar A = r[2];
SkScalar B = r[1];
SkScalar C = r[0];
A += C - 2 * B; // A = a - 2*b + c
B -= C; // B = -(b - c)
return SkFindUnitQuadRoots(A, 2 * B, C, roots);
}
// Return true if the point is close to the bounds of the quad. This is used as a quick reject.
bool SkPathStroker::ptInQuadBounds(const SkPoint quad[3], const SkPoint& pt) const {
SkScalar xMin = SkTMin(SkTMin(quad[0].fX, quad[1].fX), quad[2].fX);
if (pt.fX + fInvResScale < xMin) {
return false;
}
SkScalar xMax = SkTMax(SkTMax(quad[0].fX, quad[1].fX), quad[2].fX);
if (pt.fX - fInvResScale > xMax) {
return false;
}
SkScalar yMin = SkTMin(SkTMin(quad[0].fY, quad[1].fY), quad[2].fY);
if (pt.fY + fInvResScale < yMin) {
return false;
}
SkScalar yMax = SkTMax(SkTMax(quad[0].fY, quad[1].fY), quad[2].fY);
if (pt.fY - fInvResScale > yMax) {
return false;
}
return true;
}
static bool points_within_dist(const SkPoint& nearPt, const SkPoint& farPt, SkScalar limit) {
return SkPointPriv::DistanceToSqd(nearPt, farPt) <= limit * limit;
}
static bool sharp_angle(const SkPoint quad[3]) {
SkVector smaller = quad[1] - quad[0];
SkVector larger = quad[1] - quad[2];
SkScalar smallerLen = SkPointPriv::LengthSqd(smaller);
SkScalar largerLen = SkPointPriv::LengthSqd(larger);
if (smallerLen > largerLen) {
SkTSwap(smaller, larger);
largerLen = smallerLen;
}
if (!smaller.setLength(largerLen)) {
return false;
}
SkScalar dot = smaller.dot(larger);
return dot > 0;
}
SkPathStroker::ResultType SkPathStroker::strokeCloseEnough(const SkPoint stroke[3],
const SkPoint ray[2], SkQuadConstruct* quadPts STROKER_DEBUG_PARAMS(int depth)) const {
SkPoint strokeMid = SkEvalQuadAt(stroke, SK_ScalarHalf);
// measure the distance from the curve to the quad-stroke midpoint, compare to radius
if (points_within_dist(ray[0], strokeMid, fInvResScale)) { // if the difference is small
if (sharp_angle(quadPts->fQuad)) {
return STROKER_RESULT(kSplit_ResultType, depth, quadPts,
"sharp_angle (1) =%g,%g, %g,%g, %g,%g",
quadPts->fQuad[0].fX, quadPts->fQuad[0].fY,
quadPts->fQuad[1].fX, quadPts->fQuad[1].fY,
quadPts->fQuad[2].fX, quadPts->fQuad[2].fY);
}
return STROKER_RESULT(kQuad_ResultType, depth, quadPts,
"points_within_dist(ray[0]=%g,%g, strokeMid=%g,%g, fInvResScale=%g)",
ray[0].fX, ray[0].fY, strokeMid.fX, strokeMid.fY, fInvResScale);
}
// measure the distance to quad's bounds (quick reject)
// an alternative : look for point in triangle
if (!ptInQuadBounds(stroke, ray[0])) { // if far, subdivide
return STROKER_RESULT(kSplit_ResultType, depth, quadPts,
"!pt_in_quad_bounds(stroke=(%g,%g %g,%g %g,%g), ray[0]=%g,%g)",
stroke[0].fX, stroke[0].fY, stroke[1].fX, stroke[1].fY, stroke[2].fX, stroke[2].fY,
ray[0].fX, ray[0].fY);
}
// measure the curve ray distance to the quad-stroke
SkScalar roots[2];
int rootCount = intersect_quad_ray(ray, stroke, roots);
if (rootCount != 1) {
return STROKER_RESULT(kSplit_ResultType, depth, quadPts,
"rootCount=%d != 1", rootCount);
}
SkPoint quadPt = SkEvalQuadAt(stroke, roots[0]);
SkScalar error = fInvResScale * (SK_Scalar1 - SkScalarAbs(roots[0] - 0.5f) * 2);
if (points_within_dist(ray[0], quadPt, error)) { // if the difference is small, we're done
if (sharp_angle(quadPts->fQuad)) {
return STROKER_RESULT(kSplit_ResultType, depth, quadPts,
"sharp_angle (2) =%g,%g, %g,%g, %g,%g",
quadPts->fQuad[0].fX, quadPts->fQuad[0].fY,
quadPts->fQuad[1].fX, quadPts->fQuad[1].fY,
quadPts->fQuad[2].fX, quadPts->fQuad[2].fY);
}
return STROKER_RESULT(kQuad_ResultType, depth, quadPts,
"points_within_dist(ray[0]=%g,%g, quadPt=%g,%g, error=%g)",
ray[0].fX, ray[0].fY, quadPt.fX, quadPt.fY, error);
}
// otherwise, subdivide
return STROKER_RESULT(kSplit_ResultType, depth, quadPts, "%s", "fall through");
}
SkPathStroker::ResultType SkPathStroker::compareQuadCubic(const SkPoint cubic[4],
SkQuadConstruct* quadPts) {
// get the quadratic approximation of the stroke
this->cubicQuadEnds(cubic, quadPts);
ResultType resultType = this->intersectRay(quadPts, kCtrlPt_RayType
STROKER_DEBUG_PARAMS(fRecursionDepth) );
if (resultType != kQuad_ResultType) {
return resultType;
}
// project a ray from the curve to the stroke
SkPoint ray[2]; // points near midpoint on quad, midpoint on cubic
this->cubicPerpRay(cubic, quadPts->fMidT, &ray[1], &ray[0], nullptr);
return this->strokeCloseEnough(quadPts->fQuad, ray, quadPts
STROKER_DEBUG_PARAMS(fRecursionDepth));
}
SkPathStroker::ResultType SkPathStroker::compareQuadConic(const SkConic& conic,
SkQuadConstruct* quadPts) const {
// get the quadratic approximation of the stroke
this->conicQuadEnds(conic, quadPts);
ResultType resultType = this->intersectRay(quadPts, kCtrlPt_RayType
STROKER_DEBUG_PARAMS(fRecursionDepth) );
if (resultType != kQuad_ResultType) {
return resultType;
}
// project a ray from the curve to the stroke
SkPoint ray[2]; // points near midpoint on quad, midpoint on conic
this->conicPerpRay(conic, quadPts->fMidT, &ray[1], &ray[0], nullptr);
return this->strokeCloseEnough(quadPts->fQuad, ray, quadPts
STROKER_DEBUG_PARAMS(fRecursionDepth));
}
SkPathStroker::ResultType SkPathStroker::compareQuadQuad(const SkPoint quad[3],
SkQuadConstruct* quadPts) {
// get the quadratic approximation of the stroke
if (!quadPts->fStartSet) {
SkPoint quadStartPt;
this->quadPerpRay(quad, quadPts->fStartT, &quadStartPt, &quadPts->fQuad[0],
&quadPts->fTangentStart);
quadPts->fStartSet = true;
}
if (!quadPts->fEndSet) {
SkPoint quadEndPt;
this->quadPerpRay(quad, quadPts->fEndT, &quadEndPt, &quadPts->fQuad[2],
&quadPts->fTangentEnd);
quadPts->fEndSet = true;
}
ResultType resultType = this->intersectRay(quadPts, kCtrlPt_RayType
STROKER_DEBUG_PARAMS(fRecursionDepth));
if (resultType != kQuad_ResultType) {
return resultType;
}
// project a ray from the curve to the stroke
SkPoint ray[2];
this->quadPerpRay(quad, quadPts->fMidT, &ray[1], &ray[0], nullptr);
return this->strokeCloseEnough(quadPts->fQuad, ray, quadPts
STROKER_DEBUG_PARAMS(fRecursionDepth));
}
void SkPathStroker::addDegenerateLine(const SkQuadConstruct* quadPts) {
const SkPoint* quad = quadPts->fQuad;
SkPath* path = fStrokeType == kOuter_StrokeType ? &fOuter : &fInner;
path->lineTo(quad[2].fX, quad[2].fY);
}
bool SkPathStroker::cubicMidOnLine(const SkPoint cubic[4], const SkQuadConstruct* quadPts) const {
SkPoint strokeMid;
this->cubicQuadMid(cubic, quadPts, &strokeMid);
SkScalar dist = pt_to_line(strokeMid, quadPts->fQuad[0], quadPts->fQuad[2]);
return dist < fInvResScaleSquared;
}
bool SkPathStroker::cubicStroke(const SkPoint cubic[4], SkQuadConstruct* quadPts) {
if (!fFoundTangents) {
ResultType resultType = this->tangentsMeet(cubic, quadPts);
if (kQuad_ResultType != resultType) {
if ((kDegenerate_ResultType == resultType
|| points_within_dist(quadPts->fQuad[0], quadPts->fQuad[2],
fInvResScale)) && cubicMidOnLine(cubic, quadPts)) {
addDegenerateLine(quadPts);
return true;
}
} else {
fFoundTangents = true;
}
}
if (fFoundTangents) {
ResultType resultType = this->compareQuadCubic(cubic, quadPts);
if (kQuad_ResultType == resultType) {
SkPath* path = fStrokeType == kOuter_StrokeType ? &fOuter : &fInner;
const SkPoint* stroke = quadPts->fQuad;
path->quadTo(stroke[1].fX, stroke[1].fY, stroke[2].fX, stroke[2].fY);
return true;
}
if (kDegenerate_ResultType == resultType) {
if (!quadPts->fOppositeTangents) {
addDegenerateLine(quadPts);
return true;
}
}
}
if (!SkScalarIsFinite(quadPts->fQuad[2].fX) || !SkScalarIsFinite(quadPts->fQuad[2].fY)) {
return false; // just abort if projected quad isn't representable
}
#if QUAD_STROKE_APPROX_EXTENDED_DEBUGGING
SkDEBUGCODE(gMaxRecursion[fFoundTangents] = SkTMax(gMaxRecursion[fFoundTangents],
fRecursionDepth + 1));
#endif
if (++fRecursionDepth > kRecursiveLimits[fFoundTangents]) {
return false; // just abort if projected quad isn't representable
}
SkQuadConstruct half;
if (!half.initWithStart(quadPts)) {
addDegenerateLine(quadPts);
return true;
}
if (!this->cubicStroke(cubic, &half)) {
return false;
}
if (!half.initWithEnd(quadPts)) {
addDegenerateLine(quadPts);
return true;
}
if (!this->cubicStroke(cubic, &half)) {
return false;
}
--fRecursionDepth;
return true;
}
bool SkPathStroker::conicStroke(const SkConic& conic, SkQuadConstruct* quadPts) {
ResultType resultType = this->compareQuadConic(conic, quadPts);
if (kQuad_ResultType == resultType) {
const SkPoint* stroke = quadPts->fQuad;
SkPath* path = fStrokeType == kOuter_StrokeType ? &fOuter : &fInner;
path->quadTo(stroke[1].fX, stroke[1].fY, stroke[2].fX, stroke[2].fY);
return true;
}
if (kDegenerate_ResultType == resultType) {
addDegenerateLine(quadPts);
return true;
}
#if QUAD_STROKE_APPROX_EXTENDED_DEBUGGING
SkDEBUGCODE(gMaxRecursion[kConic_RecursiveLimit] = SkTMax(gMaxRecursion[kConic_RecursiveLimit],
fRecursionDepth + 1));
#endif
if (++fRecursionDepth > kRecursiveLimits[kConic_RecursiveLimit]) {
return false; // just abort if projected quad isn't representable
}
SkQuadConstruct half;
(void) half.initWithStart(quadPts);
if (!this->conicStroke(conic, &half)) {
return false;
}
(void) half.initWithEnd(quadPts);
if (!this->conicStroke(conic, &half)) {
return false;
}
--fRecursionDepth;
return true;
}
bool SkPathStroker::quadStroke(const SkPoint quad[3], SkQuadConstruct* quadPts) {
ResultType resultType = this->compareQuadQuad(quad, quadPts);
if (kQuad_ResultType == resultType) {
const SkPoint* stroke = quadPts->fQuad;
SkPath* path = fStrokeType == kOuter_StrokeType ? &fOuter : &fInner;
path->quadTo(stroke[1].fX, stroke[1].fY, stroke[2].fX, stroke[2].fY);
return true;
}
if (kDegenerate_ResultType == resultType) {
addDegenerateLine(quadPts);
return true;
}
#if QUAD_STROKE_APPROX_EXTENDED_DEBUGGING
SkDEBUGCODE(gMaxRecursion[kQuad_RecursiveLimit] = SkTMax(gMaxRecursion[kQuad_RecursiveLimit],
fRecursionDepth + 1));
#endif
if (++fRecursionDepth > kRecursiveLimits[kQuad_RecursiveLimit]) {
return false; // just abort if projected quad isn't representable
}
SkQuadConstruct half;
(void) half.initWithStart(quadPts);
if (!this->quadStroke(quad, &half)) {
return false;
}
(void) half.initWithEnd(quadPts);
if (!this->quadStroke(quad, &half)) {
return false;
}
--fRecursionDepth;
return true;
}
void SkPathStroker::cubicTo(const SkPoint& pt1, const SkPoint& pt2,
const SkPoint& pt3) {
const SkPoint cubic[4] = { fPrevPt, pt1, pt2, pt3 };
SkPoint reduction[3];
const SkPoint* tangentPt;
ReductionType reductionType = CheckCubicLinear(cubic, reduction, &tangentPt);
if (kPoint_ReductionType == reductionType) {
/* If the stroke consists of a moveTo followed by a degenerate curve, treat it
as if it were followed by a zero-length line. Lines without length
can have square and round end caps. */
this->lineTo(pt3);
return;
}
if (kLine_ReductionType == reductionType) {
this->lineTo(pt3);
return;
}
if (kDegenerate_ReductionType <= reductionType && kDegenerate3_ReductionType >= reductionType) {
this->lineTo(reduction[0]);
SkStrokerPriv::JoinProc saveJoiner = fJoiner;
fJoiner = SkStrokerPriv::JoinFactory(SkPaint::kRound_Join);
if (kDegenerate2_ReductionType <= reductionType) {
this->lineTo(reduction[1]);
}
if (kDegenerate3_ReductionType == reductionType) {
this->lineTo(reduction[2]);
}
this->lineTo(pt3);
fJoiner = saveJoiner;
return;
}
SkASSERT(kQuad_ReductionType == reductionType);
SkVector normalAB, unitAB, normalCD, unitCD;
if (!this->preJoinTo(*tangentPt, &normalAB, &unitAB, false)) {
this->lineTo(pt3);
return;
}
SkScalar tValues[2];
int count = SkFindCubicInflections(cubic, tValues);
SkScalar lastT = 0;
for (int index = 0; index <= count; ++index) {
SkScalar nextT = index < count ? tValues[index] : 1;
SkQuadConstruct quadPts;
this->init(kOuter_StrokeType, &quadPts, lastT, nextT);
(void) this->cubicStroke(cubic, &quadPts);
this->init(kInner_StrokeType, &quadPts, lastT, nextT);
(void) this->cubicStroke(cubic, &quadPts);
lastT = nextT;
}
// emit the join even if one stroke succeeded but the last one failed
// this avoids reversing an inner stroke with a partial path followed by another moveto
this->setCubicEndNormal(cubic, normalAB, unitAB, &normalCD, &unitCD);
this->postJoinTo(pt3, normalCD, unitCD);
}
///////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////
#include "SkPaintDefaults.h"
SkStroke::SkStroke() {
fWidth = SK_Scalar1;
fMiterLimit = SkPaintDefaults_MiterLimit;
fResScale = 1;
fCap = SkPaint::kDefault_Cap;
fJoin = SkPaint::kDefault_Join;
fDoFill = false;
}
SkStroke::SkStroke(const SkPaint& p) {
fWidth = p.getStrokeWidth();
fMiterLimit = p.getStrokeMiter();
fResScale = 1;
fCap = (uint8_t)p.getStrokeCap();
fJoin = (uint8_t)p.getStrokeJoin();
fDoFill = SkToU8(p.getStyle() == SkPaint::kStrokeAndFill_Style);
}
SkStroke::SkStroke(const SkPaint& p, SkScalar width) {
fWidth = width;
fMiterLimit = p.getStrokeMiter();
fResScale = 1;
fCap = (uint8_t)p.getStrokeCap();
fJoin = (uint8_t)p.getStrokeJoin();
fDoFill = SkToU8(p.getStyle() == SkPaint::kStrokeAndFill_Style);
}
void SkStroke::setWidth(SkScalar width) {
SkASSERT(width >= 0);
fWidth = width;
}
void SkStroke::setMiterLimit(SkScalar miterLimit) {
SkASSERT(miterLimit >= 0);
fMiterLimit = miterLimit;
}
void SkStroke::setCap(SkPaint::Cap cap) {
SkASSERT((unsigned)cap < SkPaint::kCapCount);
fCap = SkToU8(cap);
}
void SkStroke::setJoin(SkPaint::Join join) {
SkASSERT((unsigned)join < SkPaint::kJoinCount);
fJoin = SkToU8(join);
}
///////////////////////////////////////////////////////////////////////////////
// If src==dst, then we use a tmp path to record the stroke, and then swap
// its contents with src when we're done.
class AutoTmpPath {
public:
AutoTmpPath(const SkPath& src, SkPath** dst) : fSrc(src) {
if (&src == *dst) {
*dst = &fTmpDst;
fSwapWithSrc = true;
} else {
(*dst)->reset();
fSwapWithSrc = false;
}
}
~AutoTmpPath() {
if (fSwapWithSrc) {
fTmpDst.swap(*const_cast<SkPath*>(&fSrc));
}
}
private:
SkPath fTmpDst;
const SkPath& fSrc;
bool fSwapWithSrc;
};
void SkStroke::strokePath(const SkPath& src, SkPath* dst) const {
SkASSERT(dst);
SkScalar radius = SkScalarHalf(fWidth);
AutoTmpPath tmp(src, &dst);
if (radius <= 0) {
return;
}
// If src is really a rect, call our specialty strokeRect() method
{
SkRect rect;
bool isClosed;
SkPath::Direction dir;
if (src.isRect(&rect, &isClosed, &dir) && isClosed) {
this->strokeRect(rect, dst, dir);
// our answer should preserve the inverseness of the src
if (src.isInverseFillType()) {
SkASSERT(!dst->isInverseFillType());
dst->toggleInverseFillType();
}
return;
}
}
// We can always ignore centers for stroke and fill convex line-only paths
// TODO: remove the line-only restriction
bool ignoreCenter = fDoFill && (src.getSegmentMasks() == SkPath::kLine_SegmentMask) &&
src.isLastContourClosed() && src.isConvex();
SkPathStroker stroker(src, radius, fMiterLimit, this->getCap(), this->getJoin(),
fResScale, ignoreCenter);
SkPath::Iter iter(src, false);
SkPath::Verb lastSegment = SkPath::kMove_Verb;
for (;;) {
SkPoint pts[4];
switch (iter.next(pts, false)) {
case SkPath::kMove_Verb:
stroker.moveTo(pts[0]);
break;
case SkPath::kLine_Verb:
stroker.lineTo(pts[1], &iter);
lastSegment = SkPath::kLine_Verb;
break;
case SkPath::kQuad_Verb:
stroker.quadTo(pts[1], pts[2]);
lastSegment = SkPath::kQuad_Verb;
break;
case SkPath::kConic_Verb: {
stroker.conicTo(pts[1], pts[2], iter.conicWeight());
lastSegment = SkPath::kConic_Verb;
break;
} break;
case SkPath::kCubic_Verb:
stroker.cubicTo(pts[1], pts[2], pts[3]);
lastSegment = SkPath::kCubic_Verb;
break;
case SkPath::kClose_Verb:
if (SkPaint::kButt_Cap != this->getCap()) {
/* If the stroke consists of a moveTo followed by a close, treat it
as if it were followed by a zero-length line. Lines without length
can have square and round end caps. */
if (stroker.hasOnlyMoveTo()) {
stroker.lineTo(stroker.moveToPt());
goto ZERO_LENGTH;
}
/* If the stroke consists of a moveTo followed by one or more zero-length
verbs, then followed by a close, treat is as if it were followed by a
zero-length line. Lines without length can have square & round end caps. */
if (stroker.isCurrentContourEmpty()) {
ZERO_LENGTH:
lastSegment = SkPath::kLine_Verb;
break;
}
}
stroker.close(lastSegment == SkPath::kLine_Verb);
break;
case SkPath::kDone_Verb:
goto DONE;
}
}
DONE:
stroker.done(dst, lastSegment == SkPath::kLine_Verb);
if (fDoFill && !ignoreCenter) {
if (SkPathPriv::CheapIsFirstDirection(src, SkPathPriv::kCCW_FirstDirection)) {
dst->reverseAddPath(src);
} else {
dst->addPath(src);
}
} else {
// Seems like we can assume that a 2-point src would always result in
// a convex stroke, but testing has proved otherwise.
// TODO: fix the stroker to make this assumption true (without making
// it slower that the work that will be done in computeConvexity())
#if 0
// this test results in a non-convex stroke :(
static void test(SkCanvas* canvas) {
SkPoint pts[] = { 146.333328, 192.333328, 300.333344, 293.333344 };
SkPaint paint;
paint.setStrokeWidth(7);
paint.setStrokeCap(SkPaint::kRound_Cap);
canvas->drawLine(pts[0].fX, pts[0].fY, pts[1].fX, pts[1].fY, paint);
}
#endif
#if 0
if (2 == src.countPoints()) {
dst->setIsConvex(true);
}
#endif
}
// our answer should preserve the inverseness of the src
if (src.isInverseFillType()) {
SkASSERT(!dst->isInverseFillType());
dst->toggleInverseFillType();
}
}
static SkPath::Direction reverse_direction(SkPath::Direction dir) {
static const SkPath::Direction gOpposite[] = { SkPath::kCCW_Direction, SkPath::kCW_Direction };
return gOpposite[dir];
}
static void addBevel(SkPath* path, const SkRect& r, const SkRect& outer, SkPath::Direction dir) {
SkPoint pts[8];
if (SkPath::kCW_Direction == dir) {
pts[0].set(r.fLeft, outer.fTop);
pts[1].set(r.fRight, outer.fTop);
pts[2].set(outer.fRight, r.fTop);
pts[3].set(outer.fRight, r.fBottom);
pts[4].set(r.fRight, outer.fBottom);
pts[5].set(r.fLeft, outer.fBottom);
pts[6].set(outer.fLeft, r.fBottom);
pts[7].set(outer.fLeft, r.fTop);
} else {
pts[7].set(r.fLeft, outer.fTop);
pts[6].set(r.fRight, outer.fTop);
pts[5].set(outer.fRight, r.fTop);
pts[4].set(outer.fRight, r.fBottom);
pts[3].set(r.fRight, outer.fBottom);
pts[2].set(r.fLeft, outer.fBottom);
pts[1].set(outer.fLeft, r.fBottom);
pts[0].set(outer.fLeft, r.fTop);
}
path->addPoly(pts, 8, true);
}
void SkStroke::strokeRect(const SkRect& origRect, SkPath* dst,
SkPath::Direction dir) const {
SkASSERT(dst != nullptr);
dst->reset();
SkScalar radius = SkScalarHalf(fWidth);
if (radius <= 0) {
return;
}
SkScalar rw = origRect.width();
SkScalar rh = origRect.height();
if ((rw < 0) ^ (rh < 0)) {
dir = reverse_direction(dir);
}
SkRect rect(origRect);
rect.sort();
// reassign these, now that we know they'll be >= 0
rw = rect.width();
rh = rect.height();
SkRect r(rect);
r.outset(radius, radius);
SkPaint::Join join = (SkPaint::Join)fJoin;
if (SkPaint::kMiter_Join == join && fMiterLimit < SK_ScalarSqrt2) {
join = SkPaint::kBevel_Join;
}
switch (join) {
case SkPaint::kMiter_Join:
dst->addRect(r, dir);
break;
case SkPaint::kBevel_Join:
addBevel(dst, rect, r, dir);
break;
case SkPaint::kRound_Join:
dst->addRoundRect(r, radius, radius, dir);
break;
default:
break;
}
if (fWidth < SkMinScalar(rw, rh) && !fDoFill) {
r = rect;
r.inset(radius, radius);
dst->addRect(r, reverse_direction(dir));
}
}
|