1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
|
/*
* Copyright 2015 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkSharedMutex.h"
#include "SkAtomics.h"
#include "SkTSAN.h"
#include "SkTypes.h"
#include "SkSemaphore.h"
#ifdef SK_DEBUG
#include "SkThreadID.h"
#include "SkTDArray.h"
class SkSharedMutex::ThreadIDSet {
public:
// Returns true if threadID is in the set.
bool find(SkThreadID threadID) const {
for (auto& t : fThreadIDs) {
if (t == threadID) return true;
}
return false;
}
// Returns true if did not already exist.
bool tryAdd(SkThreadID threadID) {
for (auto& t : fThreadIDs) {
if (t == threadID) return false;
}
fThreadIDs.append(1, &threadID);
return true;
}
// Returns true if already exists in Set.
bool tryRemove(SkThreadID threadID) {
for (int i = 0; i < fThreadIDs.count(); ++i) {
if (fThreadIDs[i] == threadID) {
fThreadIDs.remove(i);
return true;
}
}
return false;
}
void swap(ThreadIDSet& other) {
fThreadIDs.swap(other.fThreadIDs);
}
int count() const {
return fThreadIDs.count();
}
private:
SkTDArray<SkThreadID> fThreadIDs;
};
SkSharedMutex::SkSharedMutex()
: fCurrentShared(new ThreadIDSet)
, fWaitingExclusive(new ThreadIDSet)
, fWaitingShared(new ThreadIDSet){
ANNOTATE_RWLOCK_CREATE(this);
}
SkSharedMutex::~SkSharedMutex() { ANNOTATE_RWLOCK_DESTROY(this); }
void SkSharedMutex::acquire() {
SkThreadID threadID(SkGetThreadID());
int currentSharedCount;
int waitingExclusiveCount;
{
SkAutoMutexAcquire l(&fMu);
if (!fWaitingExclusive->tryAdd(threadID)) {
SkDEBUGFAILF("Thread %lx already has an exclusive lock\n", threadID);
}
currentSharedCount = fCurrentShared->count();
waitingExclusiveCount = fWaitingExclusive->count();
}
if (currentSharedCount > 0 || waitingExclusiveCount > 1) {
fExclusiveQueue.wait();
}
ANNOTATE_RWLOCK_ACQUIRED(this, 1);
}
// Implementation Detail:
// The shared threads need two seperate queues to keep the threads that were added after the
// exclusive lock separate from the threads added before.
void SkSharedMutex::release() {
ANNOTATE_RWLOCK_RELEASED(this, 1);
SkThreadID threadID(SkGetThreadID());
int sharedWaitingCount;
int exclusiveWaitingCount;
int sharedQueueSelect;
{
SkAutoMutexAcquire l(&fMu);
SkASSERT(0 == fCurrentShared->count());
if (!fWaitingExclusive->tryRemove(threadID)) {
SkDEBUGFAILF("Thread %lx did not have the lock held.\n", threadID);
}
exclusiveWaitingCount = fWaitingExclusive->count();
sharedWaitingCount = fWaitingShared->count();
fWaitingShared.swap(fCurrentShared);
sharedQueueSelect = fSharedQueueSelect;
if (sharedWaitingCount > 0) {
fSharedQueueSelect = 1 - fSharedQueueSelect;
}
}
if (sharedWaitingCount > 0) {
fSharedQueue[sharedQueueSelect].signal(sharedWaitingCount);
} else if (exclusiveWaitingCount > 0) {
fExclusiveQueue.signal();
}
}
void SkSharedMutex::assertHeld() const {
SkThreadID threadID(SkGetThreadID());
SkAutoMutexAcquire l(&fMu);
SkASSERT(0 == fCurrentShared->count());
SkASSERT(fWaitingExclusive->find(threadID));
}
void SkSharedMutex::acquireShared() {
SkThreadID threadID(SkGetThreadID());
int exclusiveWaitingCount;
int sharedQueueSelect;
{
SkAutoMutexAcquire l(&fMu);
exclusiveWaitingCount = fWaitingExclusive->count();
if (exclusiveWaitingCount > 0) {
if (!fWaitingShared->tryAdd(threadID)) {
SkDEBUGFAILF("Thread %lx was already waiting!\n", threadID);
}
} else {
if (!fCurrentShared->tryAdd(threadID)) {
SkDEBUGFAILF("Thread %lx already holds a shared lock!\n", threadID);
}
}
sharedQueueSelect = fSharedQueueSelect;
}
if (exclusiveWaitingCount > 0) {
fSharedQueue[sharedQueueSelect].wait();
}
ANNOTATE_RWLOCK_ACQUIRED(this, 0);
}
void SkSharedMutex::releaseShared() {
ANNOTATE_RWLOCK_RELEASED(this, 0);
SkThreadID threadID(SkGetThreadID());
int currentSharedCount;
int waitingExclusiveCount;
{
SkAutoMutexAcquire l(&fMu);
if (!fCurrentShared->tryRemove(threadID)) {
SkDEBUGFAILF("Thread %lx does not hold a shared lock.\n", threadID);
}
currentSharedCount = fCurrentShared->count();
waitingExclusiveCount = fWaitingExclusive->count();
}
if (0 == currentSharedCount && waitingExclusiveCount > 0) {
fExclusiveQueue.signal();
}
}
void SkSharedMutex::assertHeldShared() const {
SkThreadID threadID(SkGetThreadID());
SkAutoMutexAcquire l(&fMu);
SkASSERT(fCurrentShared->find(threadID));
}
#else
// The fQueueCounts fields holds many counts in an int32_t in order to make managing them atomic.
// These three counts must be the same size, so each gets 10 bits. The 10 bits represent
// the log of the count which is 1024.
//
// The three counts held in fQueueCounts are:
// * Shared - the number of shared lock holders currently running.
// * WaitingExclusive - the number of threads waiting for an exclusive lock.
// * WaitingShared - the number of threads waiting to run while waiting for an exclusive thread
// to finish.
static const int kLogThreadCount = 10;
enum {
kSharedOffset = (0 * kLogThreadCount),
kWaitingExlusiveOffset = (1 * kLogThreadCount),
kWaitingSharedOffset = (2 * kLogThreadCount),
kSharedMask = ((1 << kLogThreadCount) - 1) << kSharedOffset,
kWaitingExclusiveMask = ((1 << kLogThreadCount) - 1) << kWaitingExlusiveOffset,
kWaitingSharedMask = ((1 << kLogThreadCount) - 1) << kWaitingSharedOffset,
};
SkSharedMutex::SkSharedMutex() : fQueueCounts(0) { ANNOTATE_RWLOCK_CREATE(this); }
SkSharedMutex::~SkSharedMutex() { ANNOTATE_RWLOCK_DESTROY(this); }
void SkSharedMutex::acquire() {
// Increment the count of exclusive queue waiters.
int32_t oldQueueCounts = fQueueCounts.fetch_add(1 << kWaitingExlusiveOffset,
sk_memory_order_acquire);
// If there are no other exclusive waiters and no shared threads are running then run
// else wait.
if ((oldQueueCounts & kWaitingExclusiveMask) > 0 || (oldQueueCounts & kSharedMask) > 0) {
fExclusiveQueue.wait();
}
ANNOTATE_RWLOCK_ACQUIRED(this, 1);
}
void SkSharedMutex::release() {
ANNOTATE_RWLOCK_RELEASED(this, 1);
int32_t oldQueueCounts = fQueueCounts.load(sk_memory_order_relaxed);
int32_t waitingShared;
int32_t newQueueCounts;
do {
newQueueCounts = oldQueueCounts;
// Decrement exclusive waiters.
newQueueCounts -= 1 << kWaitingExlusiveOffset;
// The number of threads waiting to acquire a shared lock.
waitingShared = (oldQueueCounts & kWaitingSharedMask) >> kWaitingSharedOffset;
// If there are any move the counts of all the shared waiters to actual shared. They are
// going to run next.
if (waitingShared > 0) {
// Set waiting shared to zero.
newQueueCounts &= ~kWaitingSharedMask;
// Because this is the exclusive release, then there are zero readers. So, the bits
// for shared locks should be zero. Since those bits are zero, we can just |= in the
// waitingShared count instead of clearing with an &= and then |= the count.
newQueueCounts |= waitingShared << kSharedOffset;
}
} while (!fQueueCounts.compare_exchange(&oldQueueCounts, newQueueCounts,
sk_memory_order_release, sk_memory_order_relaxed));
if (waitingShared > 0) {
// Run all the shared.
fSharedQueue.signal(waitingShared);
} else if ((newQueueCounts & kWaitingExclusiveMask) > 0) {
// Run a single exclusive waiter.
fExclusiveQueue.signal();
}
}
void SkSharedMutex::acquireShared() {
int32_t oldQueueCounts = fQueueCounts.load(sk_memory_order_relaxed);
int32_t newQueueCounts;
do {
newQueueCounts = oldQueueCounts;
// If there are waiting exclusives then this shared lock waits else it runs.
if ((newQueueCounts & kWaitingExclusiveMask) > 0) {
newQueueCounts += 1 << kWaitingSharedOffset;
} else {
newQueueCounts += 1 << kSharedOffset;
}
} while (!fQueueCounts.compare_exchange(&oldQueueCounts, newQueueCounts,
sk_memory_order_acquire, sk_memory_order_relaxed));
// If there are waiting exclusives, then this shared waits until after it runs.
if ((newQueueCounts & kWaitingExclusiveMask) > 0) {
fSharedQueue.wait();
}
ANNOTATE_RWLOCK_ACQUIRED(this, 0);
}
void SkSharedMutex::releaseShared() {
ANNOTATE_RWLOCK_RELEASED(this, 0);
// Decrement the shared count.
int32_t oldQueueCounts = fQueueCounts.fetch_sub(1 << kSharedOffset,
sk_memory_order_release);
// If shared count is going to zero (because the old count == 1) and there are exclusive
// waiters, then run a single exclusive waiter.
if (((oldQueueCounts & kSharedMask) >> kSharedOffset) == 1
&& (oldQueueCounts & kWaitingExclusiveMask) > 0) {
fExclusiveQueue.signal();
}
}
#endif
|