1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
|
/* libs/graphics/sgl/SkScan_Hairline.cpp
**
** Copyright 2006, The Android Open Source Project
**
** Licensed under the Apache License, Version 2.0 (the "License");
** you may not use this file except in compliance with the License.
** You may obtain a copy of the License at
**
** http://www.apache.org/licenses/LICENSE-2.0
**
** Unless required by applicable law or agreed to in writing, software
** distributed under the License is distributed on an "AS IS" BASIS,
** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
** See the License for the specific language governing permissions and
** limitations under the License.
*/
#include "SkScan.h"
#include "SkBlitter.h"
#include "SkRegion.h"
#include "SkFDot6.h"
static void horiline(int x, int stopx, SkFixed fy, SkFixed dy, SkBlitter* blitter)
{
SkASSERT(x < stopx);
do {
blitter->blitH(x, fy >> 16, 1);
fy += dy;
} while (++x < stopx);
}
static void vertline(int y, int stopy, SkFixed fx, SkFixed dx, SkBlitter* blitter)
{
SkASSERT(y < stopy);
do {
blitter->blitH(fx >> 16, y, 1);
fx += dx;
} while (++y < stopy);
}
void SkScan::HairLine(const SkPoint& pt0, const SkPoint& pt1, const SkRegion* clip, SkBlitter* blitter)
{
SkBlitterClipper clipper;
SkFDot6 x0 = SkScalarToFDot6(pt0.fX);
SkFDot6 y0 = SkScalarToFDot6(pt0.fY);
SkFDot6 x1 = SkScalarToFDot6(pt1.fX);
SkFDot6 y1 = SkScalarToFDot6(pt1.fY);
if (clip)
{
SkRect r;
SkIRect ir;
SkPoint pts[2];
pts[0] = pt0;
pts[1] = pt1;
r.set(pts, 2);
r.roundOut(&ir);
// if we're given a horizontal or vertical line
// this rect could be empty (in area), in which case
// clip->quickReject() will always return true.
// hence we bloat the rect to avoid that case
if (ir.width() == 0)
ir.fRight += 1;
if (ir.height() == 0)
ir.fBottom += 1;
if (clip->quickReject(ir))
return;
if (clip->quickContains(ir))
clip = NULL;
else
{
blitter = clipper.apply(blitter, clip);
}
}
SkFDot6 dx = x1 - x0;
SkFDot6 dy = y1 - y0;
if (SkAbs32(dx) > SkAbs32(dy)) // mostly horizontal
{
if (x0 > x1) // we want to go left-to-right
{
SkTSwap<SkFDot6>(x0, x1);
SkTSwap<SkFDot6>(y0, y1);
}
int ix0 = SkFDot6Round(x0);
int ix1 = SkFDot6Round(x1);
if (ix0 == ix1) // too short to draw
return;
SkFixed slope = SkFixedDiv(dy, dx);
SkFixed startY = SkFDot6ToFixed(y0) + (slope * ((32 - x0) & 63) >> 6);
horiline(ix0, ix1, startY, slope, blitter);
}
else // mostly vertical
{
if (y0 > y1) // we want to go top-to-bottom
{
SkTSwap<SkFDot6>(x0, x1);
SkTSwap<SkFDot6>(y0, y1);
}
int iy0 = SkFDot6Round(y0);
int iy1 = SkFDot6Round(y1);
if (iy0 == iy1) // too short to draw
return;
SkFixed slope = SkFixedDiv(dx, dy);
SkFixed startX = SkFDot6ToFixed(x0) + (slope * ((32 - y0) & 63) >> 6);
vertline(iy0, iy1, startX, slope, blitter);
}
}
// we don't just draw 4 lines, 'cause that can leave a gap in the bottom-right
// and double-hit the top-left.
void SkScan::HairRect(const SkRect& rect, const SkRegion* clip, SkBlitter* blitter)
{
SkBlitterClipper clipper;
SkIRect r;
r.set(SkScalarToFixed(rect.fLeft) >> 16,
SkScalarToFixed(rect.fTop) >> 16,
(SkScalarToFixed(rect.fRight) >> 16) + 1,
(SkScalarToFixed(rect.fBottom) >> 16) + 1);
if (clip)
{
if (clip->quickReject(r))
return;
if (!clip->quickContains(r))
blitter = clipper.apply(blitter, clip);
}
int width = r.width();
int height = r.height();
if ((width | height) == 0)
return;
if (width <= 2 || height <= 2)
{
blitter->blitRect(r.fLeft, r.fTop, width, height);
return;
}
// if we get here, we know we have 4 segments to draw
blitter->blitH(r.fLeft, r.fTop, width); // top
blitter->blitRect(r.fLeft, r.fTop + 1, 1, height - 2); // left
blitter->blitRect(r.fRight - 1, r.fTop + 1, 1, height - 2); // right
blitter->blitH(r.fLeft, r.fBottom - 1, width); // bottom
}
/////////////////////////////////////////////////////////////////////////////////////////////////
#include "SkPath.h"
#include "SkGeometry.h"
static bool quad_too_curvy(const SkPoint pts[3])
{
return true;
}
static int compute_int_quad_dist(const SkPoint pts[3]) {
// compute the vector between the control point ([1]) and the middle of the
// line connecting the start and end ([0] and [2])
SkScalar dx = SkScalarHalf(pts[0].fX + pts[2].fX) - pts[1].fX;
SkScalar dy = SkScalarHalf(pts[0].fY + pts[2].fY) - pts[1].fY;
// we want everyone to be positive
dx = SkScalarAbs(dx);
dy = SkScalarAbs(dy);
// convert to whole pixel values (use ceiling to be conservative)
int idx = SkScalarCeil(dx);
int idy = SkScalarCeil(dy);
// use the cheap approx for distance
if (idx > idy) {
return idx + (idy >> 1);
} else {
return idy + (idx >> 1);
}
}
static void hairquad(const SkPoint pts[3], const SkRegion* clip, SkBlitter* blitter, int level,
void (*lineproc)(const SkPoint&, const SkPoint&, const SkRegion* clip, SkBlitter*))
{
#if 1
if (level > 0 && quad_too_curvy(pts))
{
SkPoint tmp[5];
SkChopQuadAtHalf(pts, tmp);
hairquad(tmp, clip, blitter, level - 1, lineproc);
hairquad(&tmp[2], clip, blitter, level - 1, lineproc);
}
else
lineproc(pts[0], pts[2], clip, blitter);
#else
int count = 1 << level;
const SkScalar dt = SkFixedToScalar(SK_Fixed1 >> level);
SkScalar t = dt;
SkPoint prevPt = pts[0];
for (int i = 1; i < count; i++) {
SkPoint nextPt;
SkEvalQuadAt(pts, t, &nextPt);
lineproc(prevPt, nextPt, clip, blitter);
t += dt;
prevPt = nextPt;
}
// draw the last line explicitly to 1.0, in case t didn't match that exactly
lineproc(prevPt, pts[2], clip, blitter);
#endif
}
static bool cubic_too_curvy(const SkPoint pts[4])
{
return true;
}
static void haircubic(const SkPoint pts[4], const SkRegion* clip, SkBlitter* blitter, int level,
void (*lineproc)(const SkPoint&, const SkPoint&, const SkRegion*, SkBlitter*))
{
if (level > 0 && cubic_too_curvy(pts))
{
SkPoint tmp[7];
SkChopCubicAt(pts, tmp, SK_Scalar1/2);
haircubic(tmp, clip, blitter, level - 1, lineproc);
haircubic(&tmp[3], clip, blitter, level - 1, lineproc);
}
else
lineproc(pts[0], pts[3], clip, blitter);
}
#define kMaxCubicSubdivideLevel 6
#define kMaxQuadSubdivideLevel 5
static void hair_path(const SkPath& path, const SkRegion* clip, SkBlitter* blitter,
void (*lineproc)(const SkPoint&, const SkPoint&, const SkRegion*, SkBlitter*))
{
if (path.isEmpty())
return;
const SkIRect* clipR = NULL;
if (clip)
{
SkRect bounds;
SkIRect ibounds;
path.computeBounds(&bounds, SkPath::kFast_BoundsType);
bounds.roundOut(&ibounds);
ibounds.inset(-1, -1);
if (clip->quickReject(ibounds))
return;
if (clip->quickContains(ibounds))
clip = NULL;
else
clipR = &clip->getBounds();
}
SkPath::Iter iter(path, false);
SkPoint pts[4];
SkPath::Verb verb;
while ((verb = iter.next(pts)) != SkPath::kDone_Verb)
{
switch (verb) {
case SkPath::kLine_Verb:
lineproc(pts[0], pts[1], clip, blitter);
break;
case SkPath::kQuad_Verb: {
int d = compute_int_quad_dist(pts);
/* quadratics approach the line connecting their start and end points
4x closer with each subdivision, so we compute the number of
subdivisions to be the minimum need to get that distance to be less
than a pixel.
*/
int level = (33 - SkCLZ(d)) >> 1;
// SkDebugf("----- distance %d computedLevel %d\n", d, computedLevel);
// sanity check on level (from the previous version)
if (level > kMaxQuadSubdivideLevel) {
level = kMaxQuadSubdivideLevel;
}
hairquad(pts, clip, blitter, level, lineproc);
break;
}
case SkPath::kCubic_Verb:
haircubic(pts, clip, blitter, kMaxCubicSubdivideLevel, lineproc);
break;
default:
break;
}
}
}
void SkScan::HairPath(const SkPath& path, const SkRegion* clip, SkBlitter* blitter)
{
hair_path(path, clip, blitter, SkScan::HairLine);
}
void SkScan::AntiHairPath(const SkPath& path, const SkRegion* clip, SkBlitter* blitter)
{
hair_path(path, clip, blitter, SkScan::AntiHairLine);
}
////////////////////////////////////////////////////////////////////////////////
void SkScan::FrameRect(const SkRect& r, SkScalar diameter, const SkRegion* clip, SkBlitter* blitter)
{
SkASSERT(diameter > 0);
if (r.isEmpty())
return;
SkScalar radius = diameter / 2;
SkRect outer, tmp;
outer.set( r.fLeft - radius, r.fTop - radius,
r.fRight + radius, r.fBottom + radius);
if (r.width() <= diameter || r.height() <= diameter)
{
SkScan::FillRect(outer, clip, blitter);
return;
}
tmp.set(outer.fLeft, outer.fTop, outer.fRight, outer.fTop + diameter);
SkScan::FillRect(tmp, clip, blitter);
tmp.fTop = outer.fBottom - diameter;
tmp.fBottom = outer.fBottom;
SkScan::FillRect(tmp, clip, blitter);
tmp.set(outer.fLeft, outer.fTop + diameter, outer.fLeft + diameter, outer.fBottom - diameter);
SkScan::FillRect(tmp, clip, blitter);
tmp.fLeft = outer.fRight - diameter;
tmp.fRight = outer.fRight;
SkScan::FillRect(tmp, clip, blitter);
}
|