1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
|
/*
* Copyright 2011 The Android Open Source Project
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkScan.h"
#include "SkBlitter.h"
#include "SkColorPriv.h"
#include "SkLineClipper.h"
#include "SkRasterClip.h"
#include "SkFDot6.h"
/* Our attempt to compute the worst case "bounds" for the horizontal and
vertical cases has some numerical bug in it, and we sometimes undervalue
our extends. The bug is that when this happens, we will set the clip to
NULL (for speed), and thus draw outside of the clip by a pixel, which might
only look bad, but it might also access memory outside of the valid range
allcoated for the device bitmap.
This define enables our fix to outset our "bounds" by 1, thus avoiding the
chance of the bug, but at the cost of sometimes taking the rectblitter
case (i.e. not setting the clip to NULL) when we might not actually need
to. If we can improve/fix the actual calculations, then we can remove this
step.
*/
#define OUTSET_BEFORE_CLIP_TEST true
#define HLINE_STACK_BUFFER 100
static inline int SmallDot6Scale(int value, int dot6) {
SkASSERT((int16_t)value == value);
SkASSERT((unsigned)dot6 <= 64);
return SkMulS16(value, dot6) >> 6;
}
//#define TEST_GAMMA
#ifdef TEST_GAMMA
static uint8_t gGammaTable[256];
#define ApplyGamma(table, alpha) (table)[alpha]
static void build_gamma_table() {
static bool gInit = false;
if (gInit == false) {
for (int i = 0; i < 256; i++) {
SkFixed n = i * 257;
n += n >> 15;
SkASSERT(n >= 0 && n <= SK_Fixed1);
n = SkFixedSqrt(n);
n = n * 255 >> 16;
// SkDebugf("morph %d -> %d\n", i, n);
gGammaTable[i] = SkToU8(n);
}
gInit = true;
}
}
#else
#define ApplyGamma(table, alpha) SkToU8(alpha)
#endif
///////////////////////////////////////////////////////////////////////////////
static void call_hline_blitter(SkBlitter* blitter, int x, int y, int count,
U8CPU alpha) {
SkASSERT(count > 0);
int16_t runs[HLINE_STACK_BUFFER + 1];
uint8_t aa[HLINE_STACK_BUFFER];
aa[0] = ApplyGamma(gGammaTable, alpha);
do {
int n = count;
if (n > HLINE_STACK_BUFFER) {
n = HLINE_STACK_BUFFER;
}
runs[0] = SkToS16(n);
runs[n] = 0;
blitter->blitAntiH(x, y, aa, runs);
x += n;
count -= n;
} while (count > 0);
}
class SkAntiHairBlitter {
public:
SkAntiHairBlitter() : fBlitter(NULL) {}
SkBlitter* getBlitter() const { return fBlitter; }
void setup(SkBlitter* blitter) {
fBlitter = blitter;
}
virtual SkFixed drawCap(int x, SkFixed fy, SkFixed slope, int mod64) = 0;
virtual SkFixed drawLine(int x, int stopx, SkFixed fy, SkFixed slope) = 0;
private:
SkBlitter* fBlitter;
};
class HLine_SkAntiHairBlitter : public SkAntiHairBlitter {
public:
virtual SkFixed drawCap(int x, SkFixed fy, SkFixed slope, int mod64) SK_OVERRIDE {
fy += SK_Fixed1/2;
int y = fy >> 16;
uint8_t a = (uint8_t)(fy >> 8);
// lower line
unsigned ma = SmallDot6Scale(a, mod64);
if (ma) {
call_hline_blitter(this->getBlitter(), x, y, 1, ma);
}
// upper line
ma = SmallDot6Scale(255 - a, mod64);
if (ma) {
call_hline_blitter(this->getBlitter(), x, y - 1, 1, ma);
}
return fy - SK_Fixed1/2;
}
virtual SkFixed drawLine(int x, int stopx, SkFixed fy,
SkFixed slope) SK_OVERRIDE {
SkASSERT(x < stopx);
int count = stopx - x;
fy += SK_Fixed1/2;
int y = fy >> 16;
uint8_t a = (uint8_t)(fy >> 8);
// lower line
if (a) {
call_hline_blitter(this->getBlitter(), x, y, count, a);
}
// upper line
a = 255 - a;
if (a) {
call_hline_blitter(this->getBlitter(), x, y - 1, count, a);
}
return fy - SK_Fixed1/2;
}
};
class Horish_SkAntiHairBlitter : public SkAntiHairBlitter {
public:
virtual SkFixed drawCap(int x, SkFixed fy, SkFixed dy, int mod64) SK_OVERRIDE {
int16_t runs[2];
uint8_t aa[1];
runs[0] = 1;
runs[1] = 0;
fy += SK_Fixed1/2;
SkBlitter* blitter = this->getBlitter();
int lower_y = fy >> 16;
uint8_t a = (uint8_t)(fy >> 8);
unsigned ma = SmallDot6Scale(a, mod64);
if (ma) {
aa[0] = ApplyGamma(gamma, ma);
blitter->blitAntiH(x, lower_y, aa, runs);
// the clipping blitters might edit runs, but should not affect us
SkASSERT(runs[0] == 1);
SkASSERT(runs[1] == 0);
}
ma = SmallDot6Scale(255 - a, mod64);
if (ma) {
aa[0] = ApplyGamma(gamma, ma);
blitter->blitAntiH(x, lower_y - 1, aa, runs);
// the clipping blitters might edit runs, but should not affect us
SkASSERT(runs[0] == 1);
SkASSERT(runs[1] == 0);
}
fy += dy;
return fy - SK_Fixed1/2;
}
virtual SkFixed drawLine(int x, int stopx, SkFixed fy, SkFixed dy) SK_OVERRIDE {
SkASSERT(x < stopx);
int16_t runs[2];
uint8_t aa[1];
runs[0] = 1;
runs[1] = 0;
fy += SK_Fixed1/2;
SkBlitter* blitter = this->getBlitter();
do {
int lower_y = fy >> 16;
uint8_t a = (uint8_t)(fy >> 8);
if (a) {
aa[0] = a;
blitter->blitAntiH(x, lower_y, aa, runs);
// the clipping blitters might edit runs, but should not affect us
SkASSERT(runs[0] == 1);
SkASSERT(runs[1] == 0);
}
a = 255 - a;
if (a) {
aa[0] = a;
blitter->blitAntiH(x, lower_y - 1, aa, runs);
// the clipping blitters might edit runs, but should not affect us
SkASSERT(runs[0] == 1);
SkASSERT(runs[1] == 0);
}
fy += dy;
} while (++x < stopx);
return fy - SK_Fixed1/2;
}
};
class VLine_SkAntiHairBlitter : public SkAntiHairBlitter {
public:
virtual SkFixed drawCap(int y, SkFixed fx, SkFixed dx, int mod64) SK_OVERRIDE {
SkASSERT(0 == dx);
fx += SK_Fixed1/2;
int x = fx >> 16;
int a = (uint8_t)(fx >> 8);
unsigned ma = SmallDot6Scale(a, mod64);
if (ma) {
this->getBlitter()->blitV(x, y, 1, ma);
}
ma = SmallDot6Scale(255 - a, mod64);
if (ma) {
this->getBlitter()->blitV(x - 1, y, 1, ma);
}
return fx - SK_Fixed1/2;
}
virtual SkFixed drawLine(int y, int stopy, SkFixed fx, SkFixed dx) SK_OVERRIDE {
SkASSERT(y < stopy);
SkASSERT(0 == dx);
fx += SK_Fixed1/2;
int x = fx >> 16;
int a = (uint8_t)(fx >> 8);
if (a) {
this->getBlitter()->blitV(x, y, stopy - y, a);
}
a = 255 - a;
if (a) {
this->getBlitter()->blitV(x - 1, y, stopy - y, a);
}
return fx - SK_Fixed1/2;
}
};
class Vertish_SkAntiHairBlitter : public SkAntiHairBlitter {
public:
virtual SkFixed drawCap(int y, SkFixed fx, SkFixed dx, int mod64) SK_OVERRIDE {
int16_t runs[3];
uint8_t aa[2];
runs[0] = 1;
runs[2] = 0;
fx += SK_Fixed1/2;
int x = fx >> 16;
uint8_t a = (uint8_t)(fx >> 8);
aa[0] = SmallDot6Scale(255 - a, mod64);
aa[1] = SmallDot6Scale(a, mod64);
// the clippng blitters might overwrite this guy, so we have to reset it each time
runs[1] = 1;
this->getBlitter()->blitAntiH(x - 1, y, aa, runs);
// the clipping blitters might edit runs, but should not affect us
SkASSERT(runs[0] == 1);
SkASSERT(runs[2] == 0);
fx += dx;
return fx - SK_Fixed1/2;
}
virtual SkFixed drawLine(int y, int stopy, SkFixed fx, SkFixed dx) SK_OVERRIDE {
SkASSERT(y < stopy);
int16_t runs[3];
uint8_t aa[2];
runs[0] = 1;
runs[2] = 0;
fx += SK_Fixed1/2;
do {
int x = fx >> 16;
uint8_t a = (uint8_t)(fx >> 8);
aa[0] = 255 - a;
aa[1] = a;
// the clippng blitters might overwrite this guy, so we have to reset it each time
runs[1] = 1;
this->getBlitter()->blitAntiH(x - 1, y, aa, runs);
// the clipping blitters might edit runs, but should not affect us
SkASSERT(runs[0] == 1);
SkASSERT(runs[2] == 0);
fx += dx;
} while (++y < stopy);
return fx - SK_Fixed1/2;
}
};
static inline SkFixed fastfixdiv(SkFDot6 a, SkFDot6 b) {
SkASSERT((a << 16 >> 16) == a);
SkASSERT(b != 0);
return (a << 16) / b;
}
#define SkBITCOUNT(x) (sizeof(x) << 3)
#if 1
// returns high-bit set iff x==0x8000...
static inline int bad_int(int x) {
return x & -x;
}
static int any_bad_ints(int a, int b, int c, int d) {
return (bad_int(a) | bad_int(b) | bad_int(c) | bad_int(d)) >> (SkBITCOUNT(int) - 1);
}
#else
static inline int good_int(int x) {
return x ^ (1 << (SkBITCOUNT(x) - 1));
}
static int any_bad_ints(int a, int b, int c, int d) {
return !(good_int(a) & good_int(b) & good_int(c) & good_int(d));
}
#endif
static bool canConvertFDot6ToFixed(SkFDot6 x) {
const int maxDot6 = SK_MaxS32 >> (16 - 6);
return SkAbs32(x) <= maxDot6;
}
static void do_anti_hairline(SkFDot6 x0, SkFDot6 y0, SkFDot6 x1, SkFDot6 y1,
const SkIRect* clip, SkBlitter* blitter) {
// check for integer NaN (0x80000000) which we can't handle (can't negate it)
// It appears typically from a huge float (inf or nan) being converted to int.
// If we see it, just don't draw.
if (any_bad_ints(x0, y0, x1, y1)) {
return;
}
// The caller must clip the line to [-32767.0 ... 32767.0] ahead of time
// (in dot6 format)
SkASSERT(canConvertFDot6ToFixed(x0));
SkASSERT(canConvertFDot6ToFixed(y0));
SkASSERT(canConvertFDot6ToFixed(x1));
SkASSERT(canConvertFDot6ToFixed(y1));
if (SkAbs32(x1 - x0) > SkIntToFDot6(511) || SkAbs32(y1 - y0) > SkIntToFDot6(511)) {
/* instead of (x0 + x1) >> 1, we shift each separately. This is less
precise, but avoids overflowing the intermediate result if the
values are huge. A better fix might be to clip the original pts
directly (i.e. do the divide), so we don't spend time subdividing
huge lines at all.
*/
int hx = (x0 >> 1) + (x1 >> 1);
int hy = (y0 >> 1) + (y1 >> 1);
do_anti_hairline(x0, y0, hx, hy, clip, blitter);
do_anti_hairline(hx, hy, x1, y1, clip, blitter);
return;
}
int scaleStart, scaleStop;
int istart, istop;
SkFixed fstart, slope;
HLine_SkAntiHairBlitter hline_blitter;
Horish_SkAntiHairBlitter horish_blitter;
VLine_SkAntiHairBlitter vline_blitter;
Vertish_SkAntiHairBlitter vertish_blitter;
SkAntiHairBlitter* hairBlitter = NULL;
if (SkAbs32(x1 - x0) > SkAbs32(y1 - y0)) { // mostly horizontal
if (x0 > x1) { // we want to go left-to-right
SkTSwap<SkFDot6>(x0, x1);
SkTSwap<SkFDot6>(y0, y1);
}
istart = SkFDot6Floor(x0);
istop = SkFDot6Ceil(x1);
fstart = SkFDot6ToFixed(y0);
if (y0 == y1) { // completely horizontal, take fast case
slope = 0;
hairBlitter = &hline_blitter;
} else {
slope = fastfixdiv(y1 - y0, x1 - x0);
SkASSERT(slope >= -SK_Fixed1 && slope <= SK_Fixed1);
fstart += (slope * (32 - (x0 & 63)) + 32) >> 6;
hairBlitter = &horish_blitter;
}
SkASSERT(istop > istart);
if (istop - istart == 1) {
scaleStart = x1 - x0;
SkASSERT(scaleStart >= 0 && scaleStart <= 64);
scaleStop = 0;
} else {
scaleStart = 64 - (x0 & 63);
scaleStop = x1 & 63;
}
if (clip){
if (istart >= clip->fRight || istop <= clip->fLeft) {
return;
}
if (istart < clip->fLeft) {
fstart += slope * (clip->fLeft - istart);
istart = clip->fLeft;
scaleStart = 64;
}
if (istop > clip->fRight) {
istop = clip->fRight;
scaleStop = 0; // so we don't draw this last column
}
SkASSERT(istart <= istop);
if (istart == istop) {
return;
}
// now test if our Y values are completely inside the clip
int top, bottom;
if (slope >= 0) { // T2B
top = SkFixedFloor(fstart - SK_FixedHalf);
bottom = SkFixedCeil(fstart + (istop - istart - 1) * slope + SK_FixedHalf);
} else { // B2T
bottom = SkFixedCeil(fstart + SK_FixedHalf);
top = SkFixedFloor(fstart + (istop - istart - 1) * slope - SK_FixedHalf);
}
#ifdef OUTSET_BEFORE_CLIP_TEST
top -= 1;
bottom += 1;
#endif
if (top >= clip->fBottom || bottom <= clip->fTop) {
return;
}
if (clip->fTop <= top && clip->fBottom >= bottom) {
clip = NULL;
}
}
} else { // mostly vertical
if (y0 > y1) { // we want to go top-to-bottom
SkTSwap<SkFDot6>(x0, x1);
SkTSwap<SkFDot6>(y0, y1);
}
istart = SkFDot6Floor(y0);
istop = SkFDot6Ceil(y1);
fstart = SkFDot6ToFixed(x0);
if (x0 == x1) {
if (y0 == y1) { // are we zero length?
return; // nothing to do
}
slope = 0;
hairBlitter = &vline_blitter;
} else {
slope = fastfixdiv(x1 - x0, y1 - y0);
SkASSERT(slope <= SK_Fixed1 && slope >= -SK_Fixed1);
fstart += (slope * (32 - (y0 & 63)) + 32) >> 6;
hairBlitter = &vertish_blitter;
}
SkASSERT(istop > istart);
if (istop - istart == 1) {
scaleStart = y1 - y0;
SkASSERT(scaleStart >= 0 && scaleStart <= 64);
scaleStop = 0;
} else {
scaleStart = 64 - (y0 & 63);
scaleStop = y1 & 63;
}
if (clip) {
if (istart >= clip->fBottom || istop <= clip->fTop) {
return;
}
if (istart < clip->fTop) {
fstart += slope * (clip->fTop - istart);
istart = clip->fTop;
scaleStart = 64;
}
if (istop > clip->fBottom) {
istop = clip->fBottom;
scaleStop = 0; // so we don't draw this last row
}
SkASSERT(istart <= istop);
if (istart == istop)
return;
// now test if our X values are completely inside the clip
int left, right;
if (slope >= 0) { // L2R
left = SkFixedFloor(fstart - SK_FixedHalf);
right = SkFixedCeil(fstart + (istop - istart - 1) * slope + SK_FixedHalf);
} else { // R2L
right = SkFixedCeil(fstart + SK_FixedHalf);
left = SkFixedFloor(fstart + (istop - istart - 1) * slope - SK_FixedHalf);
}
#ifdef OUTSET_BEFORE_CLIP_TEST
left -= 1;
right += 1;
#endif
if (left >= clip->fRight || right <= clip->fLeft) {
return;
}
if (clip->fLeft <= left && clip->fRight >= right) {
clip = NULL;
}
}
}
SkRectClipBlitter rectClipper;
if (clip) {
rectClipper.init(blitter, *clip);
blitter = &rectClipper;
}
SkASSERT(hairBlitter);
hairBlitter->setup(blitter);
fstart = hairBlitter->drawCap(istart, fstart, slope, scaleStart);
istart += 1;
int fullSpans = istop - istart - (scaleStop > 0);
if (fullSpans > 0) {
fstart = hairBlitter->drawLine(istart, istart + fullSpans, fstart, slope);
}
if (scaleStop > 0) {
hairBlitter->drawCap(istop - 1, fstart, slope, scaleStop);
}
}
void SkScan::AntiHairLineRgn(const SkPoint& pt0, const SkPoint& pt1,
const SkRegion* clip, SkBlitter* blitter) {
if (clip && clip->isEmpty()) {
return;
}
SkASSERT(clip == NULL || !clip->getBounds().isEmpty());
#ifdef TEST_GAMMA
build_gamma_table();
#endif
SkPoint pts[2] = { pt0, pt1 };
#ifdef SK_SCALAR_IS_FLOAT
// We have to pre-clip the line to fit in a SkFixed, so we just chop
// the line. TODO find a way to actually draw beyond that range.
{
SkRect fixedBounds;
const SkScalar max = SkIntToScalar(32767);
fixedBounds.set(-max, -max, max, max);
if (!SkLineClipper::IntersectLine(pts, fixedBounds, pts)) {
return;
}
}
#endif
if (clip) {
SkRect clipBounds;
clipBounds.set(clip->getBounds());
/* We perform integral clipping later on, but we do a scalar clip first
to ensure that our coordinates are expressible in fixed/integers.
antialiased hairlines can draw up to 1/2 of a pixel outside of
their bounds, so we need to outset the clip before calling the
clipper. To make the numerics safer, we outset by a whole pixel,
since the 1/2 pixel boundary is important to the antihair blitter,
we don't want to risk numerical fate by chopping on that edge.
*/
clipBounds.inset(-SK_Scalar1, -SK_Scalar1);
if (!SkLineClipper::IntersectLine(pts, clipBounds, pts)) {
return;
}
}
SkFDot6 x0 = SkScalarToFDot6(pts[0].fX);
SkFDot6 y0 = SkScalarToFDot6(pts[0].fY);
SkFDot6 x1 = SkScalarToFDot6(pts[1].fX);
SkFDot6 y1 = SkScalarToFDot6(pts[1].fY);
if (clip) {
SkFDot6 left = SkMin32(x0, x1);
SkFDot6 top = SkMin32(y0, y1);
SkFDot6 right = SkMax32(x0, x1);
SkFDot6 bottom = SkMax32(y0, y1);
SkIRect ir;
ir.set( SkFDot6Floor(left) - 1,
SkFDot6Floor(top) - 1,
SkFDot6Ceil(right) + 1,
SkFDot6Ceil(bottom) + 1);
if (clip->quickReject(ir)) {
return;
}
if (!clip->quickContains(ir)) {
SkRegion::Cliperator iter(*clip, ir);
const SkIRect* r = &iter.rect();
while (!iter.done()) {
do_anti_hairline(x0, y0, x1, y1, r, blitter);
iter.next();
}
return;
}
// fall through to no-clip case
}
do_anti_hairline(x0, y0, x1, y1, NULL, blitter);
}
void SkScan::AntiHairRect(const SkRect& rect, const SkRasterClip& clip,
SkBlitter* blitter) {
SkPoint p0, p1;
p0.set(rect.fLeft, rect.fTop);
p1.set(rect.fRight, rect.fTop);
SkScan::AntiHairLine(p0, p1, clip, blitter);
p0.set(rect.fRight, rect.fBottom);
SkScan::AntiHairLine(p0, p1, clip, blitter);
p1.set(rect.fLeft, rect.fBottom);
SkScan::AntiHairLine(p0, p1, clip, blitter);
p0.set(rect.fLeft, rect.fTop);
SkScan::AntiHairLine(p0, p1, clip, blitter);
}
///////////////////////////////////////////////////////////////////////////////
typedef int FDot8; // 24.8 integer fixed point
static inline FDot8 SkFixedToFDot8(SkFixed x) {
return (x + 0x80) >> 8;
}
static void do_scanline(FDot8 L, int top, FDot8 R, U8CPU alpha,
SkBlitter* blitter) {
SkASSERT(L < R);
if ((L >> 8) == ((R - 1) >> 8)) { // 1x1 pixel
blitter->blitV(L >> 8, top, 1, SkAlphaMul(alpha, R - L));
return;
}
int left = L >> 8;
if (L & 0xFF) {
blitter->blitV(left, top, 1, SkAlphaMul(alpha, 256 - (L & 0xFF)));
left += 1;
}
int rite = R >> 8;
int width = rite - left;
if (width > 0) {
call_hline_blitter(blitter, left, top, width, alpha);
}
if (R & 0xFF) {
blitter->blitV(rite, top, 1, SkAlphaMul(alpha, R & 0xFF));
}
}
static void antifilldot8(FDot8 L, FDot8 T, FDot8 R, FDot8 B, SkBlitter* blitter,
bool fillInner) {
// check for empty now that we're in our reduced precision space
if (L >= R || T >= B) {
return;
}
int top = T >> 8;
if (top == ((B - 1) >> 8)) { // just one scanline high
do_scanline(L, top, R, B - T - 1, blitter);
return;
}
if (T & 0xFF) {
do_scanline(L, top, R, 256 - (T & 0xFF), blitter);
top += 1;
}
int bot = B >> 8;
int height = bot - top;
if (height > 0) {
int left = L >> 8;
if (left == ((R - 1) >> 8)) { // just 1-pixel wide
blitter->blitV(left, top, height, R - L - 1);
} else {
if (L & 0xFF) {
blitter->blitV(left, top, height, 256 - (L & 0xFF));
left += 1;
}
int rite = R >> 8;
int width = rite - left;
if (width > 0 && fillInner) {
blitter->blitRect(left, top, width, height);
}
if (R & 0xFF) {
blitter->blitV(rite, top, height, R & 0xFF);
}
}
}
if (B & 0xFF) {
do_scanline(L, bot, R, B & 0xFF, blitter);
}
}
static void antifillrect(const SkXRect& xr, SkBlitter* blitter) {
antifilldot8(SkFixedToFDot8(xr.fLeft), SkFixedToFDot8(xr.fTop),
SkFixedToFDot8(xr.fRight), SkFixedToFDot8(xr.fBottom),
blitter, true);
}
///////////////////////////////////////////////////////////////////////////////
void SkScan::AntiFillXRect(const SkXRect& xr, const SkRegion* clip,
SkBlitter* blitter) {
if (NULL == clip) {
antifillrect(xr, blitter);
} else {
SkIRect outerBounds;
XRect_roundOut(xr, &outerBounds);
if (clip->isRect()) {
const SkIRect& clipBounds = clip->getBounds();
if (clipBounds.contains(outerBounds)) {
antifillrect(xr, blitter);
} else {
SkXRect tmpR;
// this keeps our original edges fractional
XRect_set(&tmpR, clipBounds);
if (tmpR.intersect(xr)) {
antifillrect(tmpR, blitter);
}
}
} else {
SkRegion::Cliperator clipper(*clip, outerBounds);
const SkIRect& rr = clipper.rect();
while (!clipper.done()) {
SkXRect tmpR;
// this keeps our original edges fractional
XRect_set(&tmpR, rr);
if (tmpR.intersect(xr)) {
antifillrect(tmpR, blitter);
}
clipper.next();
}
}
}
}
void SkScan::AntiFillXRect(const SkXRect& xr, const SkRasterClip& clip,
SkBlitter* blitter) {
if (clip.isBW()) {
AntiFillXRect(xr, &clip.bwRgn(), blitter);
} else {
SkIRect outerBounds;
XRect_roundOut(xr, &outerBounds);
if (clip.quickContains(outerBounds)) {
AntiFillXRect(xr, NULL, blitter);
} else {
SkAAClipBlitterWrapper wrapper(clip, blitter);
blitter = wrapper.getBlitter();
AntiFillXRect(xr, &wrapper.getRgn(), wrapper.getBlitter());
}
}
}
#ifdef SK_SCALAR_IS_FLOAT
/* This guy takes a float-rect, but with the key improvement that it has
already been clipped, so we know that it is safe to convert it into a
XRect (fixedpoint), as it won't overflow.
*/
static void antifillrect(const SkRect& r, SkBlitter* blitter) {
SkXRect xr;
XRect_set(&xr, r);
antifillrect(xr, blitter);
}
/* We repeat the clipping logic of AntiFillXRect because the float rect might
overflow if we blindly converted it to an XRect. This sucks that we have to
repeat the clipping logic, but I don't see how to share the code/logic.
We clip r (as needed) into one or more (smaller) float rects, and then pass
those to our version of antifillrect, which converts it into an XRect and
then calls the blit.
*/
void SkScan::AntiFillRect(const SkRect& origR, const SkRegion* clip,
SkBlitter* blitter) {
if (clip) {
SkRect newR;
newR.set(clip->getBounds());
if (!newR.intersect(origR)) {
return;
}
SkIRect outerBounds;
newR.roundOut(&outerBounds);
if (clip->isRect()) {
antifillrect(newR, blitter);
} else {
SkRegion::Cliperator clipper(*clip, outerBounds);
while (!clipper.done()) {
newR.set(clipper.rect());
if (newR.intersect(origR)) {
antifillrect(newR, blitter);
}
clipper.next();
}
}
} else {
antifillrect(origR, blitter);
}
}
void SkScan::AntiFillRect(const SkRect& r, const SkRasterClip& clip,
SkBlitter* blitter) {
if (clip.isBW()) {
AntiFillRect(r, &clip.bwRgn(), blitter);
} else {
SkAAClipBlitterWrapper wrap(clip, blitter);
AntiFillRect(r, &wrap.getRgn(), wrap.getBlitter());
}
}
#endif // SK_SCALAR_IS_FLOAT
///////////////////////////////////////////////////////////////////////////////
#define SkAlphaMulRound(a, b) SkMulDiv255Round(a, b)
// calls blitRect() if the rectangle is non-empty
static void fillcheckrect(int L, int T, int R, int B, SkBlitter* blitter) {
if (L < R && T < B) {
blitter->blitRect(L, T, R - L, B - T);
}
}
static inline FDot8 SkScalarToFDot8(SkScalar x) {
#ifdef SK_SCALAR_IS_FLOAT
return (int)(x * 256);
#else
return x >> 8;
#endif
}
static inline int FDot8Floor(FDot8 x) {
return x >> 8;
}
static inline int FDot8Ceil(FDot8 x) {
return (x + 0xFF) >> 8;
}
// 1 - (1 - a)*(1 - b)
static inline U8CPU InvAlphaMul(U8CPU a, U8CPU b) {
// need precise rounding (not just SkAlphaMul) so that values like
// a=228, b=252 don't overflow the result
return SkToU8(a + b - SkAlphaMulRound(a, b));
}
static void inner_scanline(FDot8 L, int top, FDot8 R, U8CPU alpha,
SkBlitter* blitter) {
SkASSERT(L < R);
if ((L >> 8) == ((R - 1) >> 8)) { // 1x1 pixel
blitter->blitV(L >> 8, top, 1, InvAlphaMul(alpha, R - L));
return;
}
int left = L >> 8;
if (L & 0xFF) {
blitter->blitV(left, top, 1, InvAlphaMul(alpha, L & 0xFF));
left += 1;
}
int rite = R >> 8;
int width = rite - left;
if (width > 0) {
call_hline_blitter(blitter, left, top, width, alpha);
}
if (R & 0xFF) {
blitter->blitV(rite, top, 1, InvAlphaMul(alpha, ~R & 0xFF));
}
}
static void innerstrokedot8(FDot8 L, FDot8 T, FDot8 R, FDot8 B,
SkBlitter* blitter) {
SkASSERT(L < R && T < B);
int top = T >> 8;
if (top == ((B - 1) >> 8)) { // just one scanline high
// We want the inverse of B-T, since we're the inner-stroke
int alpha = 256 - (B - T);
if (alpha) {
inner_scanline(L, top, R, alpha, blitter);
}
return;
}
if (T & 0xFF) {
inner_scanline(L, top, R, T & 0xFF, blitter);
top += 1;
}
int bot = B >> 8;
int height = bot - top;
if (height > 0) {
if (L & 0xFF) {
blitter->blitV(L >> 8, top, height, L & 0xFF);
}
if (R & 0xFF) {
blitter->blitV(R >> 8, top, height, ~R & 0xFF);
}
}
if (B & 0xFF) {
inner_scanline(L, bot, R, ~B & 0xFF, blitter);
}
}
void SkScan::AntiFrameRect(const SkRect& r, const SkPoint& strokeSize,
const SkRegion* clip, SkBlitter* blitter) {
SkASSERT(strokeSize.fX >= 0 && strokeSize.fY >= 0);
SkScalar rx = SkScalarHalf(strokeSize.fX);
SkScalar ry = SkScalarHalf(strokeSize.fY);
// outset by the radius
FDot8 L = SkScalarToFDot8(r.fLeft - rx);
FDot8 T = SkScalarToFDot8(r.fTop - ry);
FDot8 R = SkScalarToFDot8(r.fRight + rx);
FDot8 B = SkScalarToFDot8(r.fBottom + ry);
SkIRect outer;
// set outer to the outer rect of the outer section
outer.set(FDot8Floor(L), FDot8Floor(T), FDot8Ceil(R), FDot8Ceil(B));
SkBlitterClipper clipper;
if (clip) {
if (clip->quickReject(outer)) {
return;
}
if (!clip->contains(outer)) {
blitter = clipper.apply(blitter, clip, &outer);
}
// now we can ignore clip for the rest of the function
}
// stroke the outer hull
antifilldot8(L, T, R, B, blitter, false);
// set outer to the outer rect of the middle section
outer.set(FDot8Ceil(L), FDot8Ceil(T), FDot8Floor(R), FDot8Floor(B));
// in case we lost a bit with diameter/2
rx = strokeSize.fX - rx;
ry = strokeSize.fY - ry;
// inset by the radius
L = SkScalarToFDot8(r.fLeft + rx);
T = SkScalarToFDot8(r.fTop + ry);
R = SkScalarToFDot8(r.fRight - rx);
B = SkScalarToFDot8(r.fBottom - ry);
if (L >= R || T >= B) {
fillcheckrect(outer.fLeft, outer.fTop, outer.fRight, outer.fBottom,
blitter);
} else {
SkIRect inner;
// set inner to the inner rect of the middle section
inner.set(FDot8Floor(L), FDot8Floor(T), FDot8Ceil(R), FDot8Ceil(B));
// draw the frame in 4 pieces
fillcheckrect(outer.fLeft, outer.fTop, outer.fRight, inner.fTop,
blitter);
fillcheckrect(outer.fLeft, inner.fTop, inner.fLeft, inner.fBottom,
blitter);
fillcheckrect(inner.fRight, inner.fTop, outer.fRight, inner.fBottom,
blitter);
fillcheckrect(outer.fLeft, inner.fBottom, outer.fRight, outer.fBottom,
blitter);
// now stroke the inner rect, which is similar to antifilldot8() except that
// it treats the fractional coordinates with the inverse bias (since its
// inner).
innerstrokedot8(L, T, R, B, blitter);
}
}
void SkScan::AntiFrameRect(const SkRect& r, const SkPoint& strokeSize,
const SkRasterClip& clip, SkBlitter* blitter) {
if (clip.isBW()) {
AntiFrameRect(r, strokeSize, &clip.bwRgn(), blitter);
} else {
SkAAClipBlitterWrapper wrap(clip, blitter);
AntiFrameRect(r, strokeSize, &wrap.getRgn(), wrap.getBlitter());
}
}
|