aboutsummaryrefslogtreecommitdiffhomepage
path: root/src/core/SkScan_AntiPath.cpp
blob: 95c773d25a31191a9edd0356028e3b8d5cacd3ae (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763

/*
 * Copyright 2006 The Android Open Source Project
 *
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */


#include "SkScanPriv.h"
#include "SkPath.h"
#include "SkMatrix.h"
#include "SkBlitter.h"
#include "SkRegion.h"
#include "SkAntiRun.h"

#define SHIFT   2
#define SCALE   (1 << SHIFT)
#define MASK    (SCALE - 1)

/** @file
    We have two techniques for capturing the output of the supersampler:
    - SUPERMASK, which records a large mask-bitmap
        this is often faster for small, complex objects
    - RLE, which records a rle-encoded scanline
        this is often faster for large objects with big spans

    These blitters use two coordinate systems:
    - destination coordinates, scale equal to the output - often
        abbreviated with 'i' or 'I' in variable names
    - supersampled coordinates, scale equal to the output * SCALE

    NEW_AA is a set of code-changes to try to make both paths produce identical
    results. Its not quite there yet, though the remaining differences may be
    in the subsequent blits, and not in the different masks/runs...

    SK_USE_EXACT_COVERAGE makes coverage_to_partial_alpha() behave similarly to
    coverage_to_exact_alpha(). Enabling it will requrie rebaselining about 1/3
    of GMs for changes in the 3 least significant bits along the edges of
    antialiased spans.
 */
//#define FORCE_SUPERMASK
//#define FORCE_RLE
//#define SK_SUPPORT_NEW_AA
//#define SK_USE_EXACT_COVERAGE

///////////////////////////////////////////////////////////////////////////////

/// Base class for a single-pass supersampled blitter.
class BaseSuperBlitter : public SkBlitter {
public:
    BaseSuperBlitter(SkBlitter* realBlitter, const SkIRect& ir,
                     const SkRegion& clip);

    /// Must be explicitly defined on subclasses.
    virtual void blitAntiH(int x, int y, const SkAlpha antialias[],
                           const int16_t runs[]) SK_OVERRIDE {
        SkDEBUGFAIL("How did I get here?");
    }
    /// May not be called on BaseSuperBlitter because it blits out of order.
    virtual void blitV(int x, int y, int height, SkAlpha alpha) SK_OVERRIDE {
        SkDEBUGFAIL("How did I get here?");
    }

protected:
    SkBlitter*  fRealBlitter;
    /// Current y coordinate, in destination coordinates.
    int         fCurrIY;
    /// Widest row of region to be blitted, in destination coordinates.
    int         fWidth;
    /// Leftmost x coordinate in any row, in destination coordinates.
    int         fLeft;
    /// Leftmost x coordinate in any row, in supersampled coordinates.
    int         fSuperLeft;

    SkDEBUGCODE(int fCurrX;)
    /// Current y coordinate in supersampled coordinates.
    int fCurrY;
    /// Initial y coordinate (top of bounds).
    int fTop;
};

BaseSuperBlitter::BaseSuperBlitter(SkBlitter* realBlitter, const SkIRect& ir,
                                   const SkRegion& clip) {
    fRealBlitter = realBlitter;

    /*
     *  We use the clip bounds instead of the ir, since we may be asked to
     *  draw outside of the rect if we're a inverse filltype
     */
    const int left = clip.getBounds().fLeft;
    const int right = clip.getBounds().fRight;
    
    fLeft = left;
    fSuperLeft = left << SHIFT;
    fWidth = right - left;
#if 0
    fCurrIY = -1;
    fCurrY = -1;
#else
    fTop = ir.fTop;
    fCurrIY = ir.fTop - 1;
    fCurrY = (ir.fTop << SHIFT) - 1;
#endif
    SkDEBUGCODE(fCurrX = -1;)
}

/// Run-length-encoded supersampling antialiased blitter.
class SuperBlitter : public BaseSuperBlitter {
public:
    SuperBlitter(SkBlitter* realBlitter, const SkIRect& ir,
                 const SkRegion& clip);

    virtual ~SuperBlitter() {
        this->flush();
        sk_free(fRuns.fRuns);
    }

    /// Once fRuns contains a complete supersampled row, flush() blits
    /// it out through the wrapped blitter.
    void flush();

    /// Blits a row of pixels, with location and width specified
    /// in supersampled coordinates.
    virtual void blitH(int x, int y, int width) SK_OVERRIDE;
    /// Blits a rectangle of pixels, with location and size specified
    /// in supersampled coordinates.
    virtual void blitRect(int x, int y, int width, int height) SK_OVERRIDE;

private:
    SkAlphaRuns fRuns;
    int         fOffsetX;
};

SuperBlitter::SuperBlitter(SkBlitter* realBlitter, const SkIRect& ir,
                           const SkRegion& clip)
        : BaseSuperBlitter(realBlitter, ir, clip) {
    const int width = fWidth;

    // extra one to store the zero at the end
    fRuns.fRuns = (int16_t*)sk_malloc_throw((width + 1 + (width + 2)/2) * sizeof(int16_t));
    fRuns.fAlpha = (uint8_t*)(fRuns.fRuns + width + 1);
    fRuns.reset(width);

    fOffsetX = 0;
}

void SuperBlitter::flush() {
    if (fCurrIY >= fTop) {
        if (!fRuns.empty()) {
        //  SkDEBUGCODE(fRuns.dump();)
            fRealBlitter->blitAntiH(fLeft, fCurrIY, fRuns.fAlpha, fRuns.fRuns);
            fRuns.reset(fWidth);
            fOffsetX = 0;
        }
        fCurrIY = fTop - 1;
        SkDEBUGCODE(fCurrX = -1;)
    }
}

/** coverage_to_partial_alpha() is being used by SkAlphaRuns, which
    *accumulates* SCALE pixels worth of "alpha" in [0,(256/SCALE)]
    to produce a final value in [0, 255] and handles clamping 256->255
    itself, with the same (alpha - (alpha >> 8)) correction as
    coverage_to_exact_alpha().
*/
static inline int coverage_to_partial_alpha(int aa) {
#ifdef SK_USE_EXACT_COVERAGE
    return aa << (8 - 2 * SHIFT);
#else
    aa <<= 8 - 2*SHIFT;
    aa -= aa >> (8 - SHIFT - 1);
    return aa;
#endif
}

/** coverage_to_exact_alpha() is being used by our blitter, which wants
    a final value in [0, 255].
*/
static inline int coverage_to_exact_alpha(int aa) {
    int alpha = (256 >> SHIFT) * aa;
    // clamp 256->255
    return alpha - (alpha >> 8);
}

void SuperBlitter::blitH(int x, int y, int width) {
    SkASSERT(width > 0);

    int iy = y >> SHIFT;
    SkASSERT(iy >= fCurrIY);

    x -= fSuperLeft;
    // hack, until I figure out why my cubics (I think) go beyond the bounds
    if (x < 0) {
        width += x;
        x = 0;
    }

#ifdef SK_DEBUG
    SkASSERT(y != fCurrY || x >= fCurrX);
#endif
    SkASSERT(y >= fCurrY);
    if (fCurrY != y) {
        fOffsetX = 0;
        fCurrY = y;
    }
    
    if (iy != fCurrIY) {  // new scanline
        this->flush();
        fCurrIY = iy;
    }

    int start = x;
    int stop = x + width;

    SkASSERT(start >= 0 && stop > start);
    // integer-pixel-aligned ends of blit, rounded out
    int fb = start & MASK;
    int fe = stop & MASK;
    int n = (stop >> SHIFT) - (start >> SHIFT) - 1;

    if (n < 0) {
        fb = fe - fb;
        n = 0;
        fe = 0;
    } else {
        if (fb == 0) {
            n += 1;
        } else {
            fb = SCALE - fb;
        }
    }

    fOffsetX = fRuns.add(x >> SHIFT, coverage_to_partial_alpha(fb),
                         n, coverage_to_partial_alpha(fe),
                         (1 << (8 - SHIFT)) - (((y & MASK) + 1) >> SHIFT),
                         fOffsetX);

#ifdef SK_DEBUG
    fRuns.assertValid(y & MASK, (1 << (8 - SHIFT)));
    fCurrX = x + width;
#endif
}

static void set_left_rite_runs(SkAlphaRuns& runs, int ileft, U8CPU leftA,
                               int n, U8CPU riteA) {
    SkASSERT(leftA <= 0xFF);
    SkASSERT(riteA <= 0xFF);

    int16_t* run = runs.fRuns;
    uint8_t* aa = runs.fAlpha;

    if (ileft > 0) {
        run[0] = ileft;
        aa[0] = 0;
        run += ileft;
        aa += ileft;
    }

    SkASSERT(leftA < 0xFF);
    if (leftA > 0) {
        *run++ = 1;
        *aa++ = leftA;
    }

    if (n > 0) {
        run[0] = n;
        aa[0] = 0xFF;
        run += n;
        aa += n;
    }

    SkASSERT(riteA < 0xFF);
    if (riteA > 0) {
        *run++ = 1;
        *aa++ = riteA;
    }
    run[0] = 0;
}

void SuperBlitter::blitRect(int x, int y, int width, int height) {
    SkASSERT(width > 0);
    SkASSERT(height > 0);

    // blit leading rows
    while ((y & MASK)) {
        this->blitH(x, y++, width);
        if (--height <= 0) {
            return;
        }
    }
    SkASSERT(height > 0);

    // Since this is a rect, instead of blitting supersampled rows one at a
    // time and then resolving to the destination canvas, we can blit
    // directly to the destintion canvas one row per SCALE supersampled rows.
    int start_y = y >> SHIFT;
    int stop_y = (y + height) >> SHIFT;
    int count = stop_y - start_y;
    if (count > 0) {
        y += count << SHIFT;
        height -= count << SHIFT;

        // save original X for our tail blitH() loop at the bottom
        int origX = x;

        x -= fSuperLeft;
        // hack, until I figure out why my cubics (I think) go beyond the bounds
        if (x < 0) {
            width += x;
            x = 0;
        }

        // There is always a left column, a middle, and a right column.
        // ileft is the destination x of the first pixel of the entire rect.
        // xleft is (SCALE - # of covered supersampled pixels) in that
        // destination pixel.
        int ileft = x >> SHIFT;
        int xleft = x & MASK;
        // irite is the destination x of the last pixel of the OPAQUE section.
        // xrite is the number of supersampled pixels extending beyond irite;
        // xrite/SCALE should give us alpha.
        int irite = (x + width) >> SHIFT;
        int xrite = (x + width) & MASK;
        if (!xrite) {
            xrite = SCALE;
            irite--;
        }

        // Need to call flush() to clean up pending draws before we
        // even consider blitV(), since otherwise it can look nonmonotonic.
        SkASSERT(start_y > fCurrIY);
        this->flush();

        int n = irite - ileft - 1;
        if (n < 0) {
            // If n < 0, we'll only have a single partially-transparent column
            // of pixels to render.
            xleft = xrite - xleft;
            SkASSERT(xleft <= SCALE);
            SkASSERT(xleft > 0);
            xrite = 0;
            fRealBlitter->blitV(ileft + fLeft, start_y, count,
                coverage_to_exact_alpha(xleft));
        } else {
            // With n = 0, we have two possibly-transparent columns of pixels
            // to render; with n > 0, we have opaque columns between them.

            xleft = SCALE - xleft;

            // Using coverage_to_exact_alpha is not consistent with blitH()
            const int coverageL = coverage_to_exact_alpha(xleft);
            const int coverageR = coverage_to_exact_alpha(xrite);

            SkASSERT(coverageL > 0 || n > 0 || coverageR > 0);
            SkASSERT((coverageL != 0) + n + (coverageR != 0) <= fWidth);

            fRealBlitter->blitAntiRect(ileft + fLeft, start_y, n, count,
                                       coverageL, coverageR);
        }

        // preamble for our next call to blitH()
        fCurrIY = stop_y - 1;
        fOffsetX = 0;
        fCurrY = y - 1;
        fRuns.reset(fWidth);
        x = origX;
    }

    // catch any remaining few rows
    SkASSERT(height <= MASK);
    while (--height >= 0) {
        this->blitH(x, y++, width);
    }
}

///////////////////////////////////////////////////////////////////////////////

/// Masked supersampling antialiased blitter.
class MaskSuperBlitter : public BaseSuperBlitter {
public:
    MaskSuperBlitter(SkBlitter* realBlitter, const SkIRect& ir,
                     const SkRegion& clip);
    virtual ~MaskSuperBlitter() {
        fRealBlitter->blitMask(fMask, fClipRect);
    }

    virtual void blitH(int x, int y, int width) SK_OVERRIDE;

    static bool CanHandleRect(const SkIRect& bounds) {
#ifdef FORCE_RLE
        return false;
#endif
        int width = bounds.width();
        int64_t rb = SkAlign4(width);
        // use 64bits to detect overflow
        int64_t storage = rb * bounds.height();

        return (width <= MaskSuperBlitter::kMAX_WIDTH) &&
               (storage <= MaskSuperBlitter::kMAX_STORAGE);
    }

private:
    enum {
#ifdef FORCE_SUPERMASK
        kMAX_WIDTH = 2048,
        kMAX_STORAGE = 1024 * 1024 * 2
#else
        kMAX_WIDTH = 32,    // so we don't try to do very wide things, where the RLE blitter would be faster
        kMAX_STORAGE = 1024
#endif
    };

    SkMask      fMask;
    SkIRect     fClipRect;
    // we add 1 because add_aa_span can write (unchanged) 1 extra byte at the end, rather than
    // perform a test to see if stopAlpha != 0
    uint32_t    fStorage[(kMAX_STORAGE >> 2) + 1];
};

MaskSuperBlitter::MaskSuperBlitter(SkBlitter* realBlitter, const SkIRect& ir,
                                   const SkRegion& clip)
        : BaseSuperBlitter(realBlitter, ir, clip) {
    SkASSERT(CanHandleRect(ir));

    fMask.fImage    = (uint8_t*)fStorage;
    fMask.fBounds   = ir;
    fMask.fRowBytes = ir.width();
    fMask.fFormat   = SkMask::kA8_Format;
            
    fClipRect = ir;
    fClipRect.intersect(clip.getBounds());

    // For valgrind, write 1 extra byte at the end so we don't read
    // uninitialized memory. See comment in add_aa_span and fStorage[].
    memset(fStorage, 0, fMask.fBounds.height() * fMask.fRowBytes + 1);
}

static void add_aa_span(uint8_t* alpha, U8CPU startAlpha) {
    /*  I should be able to just add alpha[x] + startAlpha.
        However, if the trailing edge of the previous span and the leading
        edge of the current span round to the same super-sampled x value,
        I might overflow to 256 with this add, hence the funny subtract.
    */
    unsigned tmp = *alpha + startAlpha;
    SkASSERT(tmp <= 256);
    *alpha = SkToU8(tmp - (tmp >> 8));
}

static inline uint32_t quadplicate_byte(U8CPU value) {
    uint32_t pair = (value << 8) | value;
    return (pair << 16) | pair;
}

// minimum count before we want to setup an inner loop, adding 4-at-a-time
#define MIN_COUNT_FOR_QUAD_LOOP  16

static void add_aa_span(uint8_t* alpha, U8CPU startAlpha, int middleCount,
                        U8CPU stopAlpha, U8CPU maxValue) {
    SkASSERT(middleCount >= 0);

    /*  I should be able to just add alpha[x] + startAlpha.
        However, if the trailing edge of the previous span and the leading
        edge of the current span round to the same super-sampled x value,
        I might overflow to 256 with this add, hence the funny subtract.
    */
#ifdef SK_SUPPORT_NEW_AA
    if (startAlpha) {
        unsigned tmp = *alpha + startAlpha;
        SkASSERT(tmp <= 256);
        *alpha++ = SkToU8(tmp - (tmp >> 8));
    }
#else
    unsigned tmp = *alpha + startAlpha;
    SkASSERT(tmp <= 256);
    *alpha++ = SkToU8(tmp - (tmp >> 8));
#endif

    if (middleCount >= MIN_COUNT_FOR_QUAD_LOOP) {
        // loop until we're quad-byte aligned
        while (SkTCast<intptr_t>(alpha) & 0x3) {
            alpha[0] = SkToU8(alpha[0] + maxValue);
            alpha += 1;
            middleCount -= 1;
        }

        int bigCount = middleCount >> 2;
        uint32_t* qptr = reinterpret_cast<uint32_t*>(alpha);
        uint32_t qval = quadplicate_byte(maxValue);
        do {
            *qptr++ += qval;
        } while (--bigCount > 0);

        middleCount &= 3;
        alpha = reinterpret_cast<uint8_t*> (qptr);
        // fall through to the following while-loop
    }

    while (--middleCount >= 0) {
        alpha[0] = SkToU8(alpha[0] + maxValue);
        alpha += 1;
    }

    // potentially this can be off the end of our "legal" alpha values, but that
    // only happens if stopAlpha is also 0. Rather than test for stopAlpha != 0
    // every time (slow), we just do it, and ensure that we've allocated extra space
    // (see the + 1 comment in fStorage[]
    *alpha = SkToU8(*alpha + stopAlpha);
}

void MaskSuperBlitter::blitH(int x, int y, int width) {
    int iy = (y >> SHIFT);

    SkASSERT(iy >= fMask.fBounds.fTop && iy < fMask.fBounds.fBottom);
    iy -= fMask.fBounds.fTop;   // make it relative to 0

    // This should never happen, but it does.  Until the true cause is
    // discovered, let's skip this span instead of crashing.
    // See http://crbug.com/17569.
    if (iy < 0) {
        return;
    }

#ifdef SK_DEBUG
    {
        int ix = x >> SHIFT;
        SkASSERT(ix >= fMask.fBounds.fLeft && ix < fMask.fBounds.fRight);
    }
#endif

    x -= (fMask.fBounds.fLeft << SHIFT);

    // hack, until I figure out why my cubics (I think) go beyond the bounds
    if (x < 0) {
        width += x;
        x = 0;
    }

    uint8_t* row = fMask.fImage + iy * fMask.fRowBytes + (x >> SHIFT);

    int start = x;
    int stop = x + width;

    SkASSERT(start >= 0 && stop > start);
    int fb = start & MASK;
    int fe = stop & MASK;
    int n = (stop >> SHIFT) - (start >> SHIFT) - 1;


    if (n < 0) {
        SkASSERT(row >= fMask.fImage);
        SkASSERT(row < fMask.fImage + kMAX_STORAGE + 1);
        add_aa_span(row, coverage_to_partial_alpha(fe - fb));
    } else {
#ifdef SK_SUPPORT_NEW_AA
        if (0 == fb) {
            n += 1;
        } else {
            fb = SCALE - fb;
        }
#else
        fb = SCALE - fb;
#endif
        SkASSERT(row >= fMask.fImage);
        SkASSERT(row + n + 1 < fMask.fImage + kMAX_STORAGE + 1);
        add_aa_span(row,  coverage_to_partial_alpha(fb),
                    n, coverage_to_partial_alpha(fe),
                    (1 << (8 - SHIFT)) - (((y & MASK) + 1) >> SHIFT));
    }

#ifdef SK_DEBUG
    fCurrX = x + width;
#endif
}

///////////////////////////////////////////////////////////////////////////////

static bool fitsInsideLimit(const SkRect& r, SkScalar max) {
    const SkScalar min = -max;
    return  r.fLeft > min && r.fTop > min &&
            r.fRight < max && r.fBottom < max;
}

static int overflows_short_shift(int value, int shift) {
    const int s = 16 + shift;
    return (value << s >> s) - value;
}

/**
  Would any of the coordinates of this rectangle not fit in a short,
  when left-shifted by shift?
*/
static int rect_overflows_short_shift(SkIRect rect, int shift) {
    SkASSERT(!overflows_short_shift(8191, SHIFT));
    SkASSERT(overflows_short_shift(8192, SHIFT));
    SkASSERT(!overflows_short_shift(32767, 0));
    SkASSERT(overflows_short_shift(32768, 0));

    // Since we expect these to succeed, we bit-or together
    // for a tiny extra bit of speed.
    return overflows_short_shift(rect.fLeft, SHIFT) |
           overflows_short_shift(rect.fRight, SHIFT) |
           overflows_short_shift(rect.fTop, SHIFT) |
           overflows_short_shift(rect.fBottom, SHIFT);
}

static bool safeRoundOut(const SkRect& src, SkIRect* dst, int32_t maxInt) {
#ifdef SK_SCALAR_IS_FIXED
    // the max-int (shifted) is exactly what we want to compare against, to know
    // if we can survive shifting our fixed-point coordinates
    const SkFixed maxScalar = maxInt;
#else
    const SkScalar maxScalar = SkIntToScalar(maxInt);
#endif
    if (fitsInsideLimit(src, maxScalar)) {
        src.roundOut(dst);
        return true;
    }
    return false;
}

void SkScan::AntiFillPath(const SkPath& path, const SkRegion& origClip,
                          SkBlitter* blitter, bool forceRLE) {
    if (origClip.isEmpty()) {
        return;
    }

    SkIRect ir;

    if (!safeRoundOut(path.getBounds(), &ir, SK_MaxS32 >> SHIFT)) {
#if 0
        const SkRect& r = path.getBounds();
        SkDebugf("--- bounds can't fit in SkIRect\n", r.fLeft, r.fTop, r.fRight, r.fBottom);
#endif
        return;
    }
    if (ir.isEmpty()) {
        if (path.isInverseFillType()) {
            blitter->blitRegion(origClip);
        }
        return;
    }

    // If the intersection of the path bounds and the clip bounds
    // will overflow 32767 when << by SHIFT, we can't supersample,
    // so draw without antialiasing.
    SkIRect clippedIR;
    if (path.isInverseFillType()) {
       // If the path is an inverse fill, it's going to fill the entire
       // clip, and we care whether the entire clip exceeds our limits.
       clippedIR = origClip.getBounds();
    } else {
       if (!clippedIR.intersect(ir, origClip.getBounds())) {
           return;
       }
    }
    if (rect_overflows_short_shift(clippedIR, SHIFT)) {
        SkScan::FillPath(path, origClip, blitter);
        return;
    }

    // Our antialiasing can't handle a clip larger than 32767, so we restrict
    // the clip to that limit here. (the runs[] uses int16_t for its index).
    //
    // A more general solution (one that could also eliminate the need to
    // disable aa based on ir bounds (see overflows_short_shift) would be
    // to tile the clip/target...
    SkRegion tmpClipStorage;
    const SkRegion* clipRgn = &origClip;
    {
        static const int32_t kMaxClipCoord = 32767;
        const SkIRect& bounds = origClip.getBounds();
        if (bounds.fRight > kMaxClipCoord || bounds.fBottom > kMaxClipCoord) {
            SkIRect limit = { 0, 0, kMaxClipCoord, kMaxClipCoord };
            tmpClipStorage.op(origClip, limit, SkRegion::kIntersect_Op);
            clipRgn = &tmpClipStorage;
        }
    }
    // for here down, use clipRgn, not origClip

    SkScanClipper   clipper(blitter, clipRgn, ir);
    const SkIRect*  clipRect = clipper.getClipRect();

    if (clipper.getBlitter() == NULL) { // clipped out
        if (path.isInverseFillType()) {
            blitter->blitRegion(*clipRgn);
        }
        return;
    }

    // now use the (possibly wrapped) blitter
    blitter = clipper.getBlitter();

    if (path.isInverseFillType()) {
        sk_blit_above(blitter, ir, *clipRgn);
    }

    SkIRect superRect, *superClipRect = NULL;

    if (clipRect) {
        superRect.set(  clipRect->fLeft << SHIFT, clipRect->fTop << SHIFT,
                        clipRect->fRight << SHIFT, clipRect->fBottom << SHIFT);
        superClipRect = &superRect;
    }

    SkASSERT(SkIntToScalar(ir.fTop) <= path.getBounds().fTop);

    // MaskSuperBlitter can't handle drawing outside of ir, so we can't use it
    // if we're an inverse filltype
    if (!path.isInverseFillType() && MaskSuperBlitter::CanHandleRect(ir) && !forceRLE) {
        MaskSuperBlitter    superBlit(blitter, ir, *clipRgn);
        SkASSERT(SkIntToScalar(ir.fTop) <= path.getBounds().fTop);
        sk_fill_path(path, superClipRect, &superBlit, ir.fTop, ir.fBottom, SHIFT, *clipRgn);
    } else {
        SuperBlitter    superBlit(blitter, ir, *clipRgn);
        sk_fill_path(path, superClipRect, &superBlit, ir.fTop, ir.fBottom, SHIFT, *clipRgn);
    }

    if (path.isInverseFillType()) {
        sk_blit_below(blitter, ir, *clipRgn);
    }
}

///////////////////////////////////////////////////////////////////////////////

#include "SkRasterClip.h"

void SkScan::FillPath(const SkPath& path, const SkRasterClip& clip,
                          SkBlitter* blitter) {
    if (clip.isEmpty()) {
        return;
    }
    
    if (clip.isBW()) {
        FillPath(path, clip.bwRgn(), blitter);
    } else {
        SkRegion        tmp;
        SkAAClipBlitter aaBlitter;
        
        tmp.setRect(clip.getBounds());
        aaBlitter.init(blitter, &clip.aaRgn());
        SkScan::FillPath(path, tmp, &aaBlitter);
    }
}

void SkScan::AntiFillPath(const SkPath& path, const SkRasterClip& clip,
                          SkBlitter* blitter) {
    if (clip.isEmpty()) {
        return;
    }

    if (clip.isBW()) {
        AntiFillPath(path, clip.bwRgn(), blitter);
    } else {
        SkRegion        tmp;
        SkAAClipBlitter aaBlitter;

        tmp.setRect(clip.getBounds());
        aaBlitter.init(blitter, &clip.aaRgn());
        SkScan::AntiFillPath(path, tmp, &aaBlitter, true);
    }
}