aboutsummaryrefslogtreecommitdiffhomepage
path: root/src/core/SkScan_AAAPath.cpp
blob: 3325249833bb9282cf285b67e74750a0dbebead6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
/*
 * Copyright 2016 The Android Open Source Project
 *
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */

#include "SkAntiRun.h"
#include "SkBlitter.h"
#include "SkEdge.h"
#include "SkAnalyticEdge.h"
#include "SkEdgeBuilder.h"
#include "SkGeometry.h"
#include "SkPath.h"
#include "SkQuadClipper.h"
#include "SkRasterClip.h"
#include "SkRegion.h"
#include "SkScan.h"
#include "SkScanPriv.h"
#include "SkTemplates.h"
#include "SkTSort.h"
#include "SkUtils.h"

///////////////////////////////////////////////////////////////////////////////

/*

The following is a high-level overview of our analytic anti-aliasing
algorithm. We consider a path as a collection of line segments, as
quadratic/cubic curves are converted to small line segments. Without loss of
generality, let's assume that the draw region is [0, W] x [0, H].

Our algorithm is based on horizontal scan lines (y = c_i) as the previous
sampling-based algorithm did. However, our algorithm uses non-equal-spaced
scan lines, while the previous method always uses equal-spaced scan lines,
such as (y = 1/2 + 0, 1/2 + 1, 1/2 + 2, ...) in the previous non-AA algorithm,
and (y = 1/8 + 1/4, 1/8 + 2/4, 1/8 + 3/4, ...) in the previous
16-supersampling AA algorithm.

Our algorithm contains scan lines y = c_i for c_i that is either:

1. an integer between [0, H]

2. the y value of a line segment endpoint

3. the y value of an intersection of two line segments

For two consecutive scan lines y = c_i, y = c_{i+1}, we analytically computes
the coverage of this horizontal strip of our path on each pixel. This can be
done very efficiently because the strip of our path now only consists of
trapezoids whose top and bottom edges are y = c_i, y = c_{i+1} (this includes
rectangles and triangles as special cases).

We now describe how the coverage of single pixel is computed against such a
trapezoid. That coverage is essentially the intersection area of a rectangle
(e.g., [0, 1] x [c_i, c_{i+1}]) and our trapezoid. However, that intersection
could be complicated, as shown in the example region A below:

+-----------\----+
|            \  C|
|             \  |
\              \ |
|\      A       \|
| \              \
|  \             |
| B \            |
+----\-----------+

However, we don't have to compute the area of A directly. Instead, we can
compute the excluded area, which are B and C, quite easily, because they're
just triangles. In fact, we can prove that an excluded region (take B as an
example) is either itself a simple trapezoid (including rectangles, triangles,
and empty regions), or its opposite (the opposite of B is A + C) is a simple
trapezoid. In any case, we can compute its area efficiently.

In summary, our algorithm has a higher quality because it generates ground-
truth coverages analytically. It is also faster because it has much fewer
unnessasary horizontal scan lines. For example, given a triangle path, the
number of scan lines in our algorithm is only about 3 + H while the
16-supersampling algorithm has about 4H scan lines.

*/

///////////////////////////////////////////////////////////////////////////////

inline void addAlpha(SkAlpha& alpha, SkAlpha delta) {
    SkASSERT(alpha + (int)delta <= 0xFF);
    alpha += delta;
}

class AdditiveBlitter : public SkBlitter {
public:
    virtual ~AdditiveBlitter() {}

    virtual SkBlitter* getRealBlitter(bool forceRealBlitter = false) = 0;

    virtual void blitAntiH(int x, int y, const SkAlpha antialias[], int len) = 0;
    virtual void blitAntiH(int x, int y, const SkAlpha alpha) = 0;
    virtual void blitAntiH(int x, int y, int width, const SkAlpha alpha) = 0;

    void blitAntiH(int x, int y, const SkAlpha antialias[], const int16_t runs[]) override {
        SkDEBUGFAIL("Please call real blitter's blitAntiH instead.");
    }

    void blitV(int x, int y, int height, SkAlpha alpha) override {
        SkDEBUGFAIL("Please call real blitter's blitV instead.");
    }

    void blitH(int x, int y, int width) override {
        SkDEBUGFAIL("Please call real blitter's blitH instead.");
    }

    void blitRect(int x, int y, int width, int height) override {
        SkDEBUGFAIL("Please call real blitter's blitRect instead.");
    }

    void blitAntiRect(int x, int y, int width, int height,
                      SkAlpha leftAlpha, SkAlpha rightAlpha) override {
        SkDEBUGFAIL("Please call real blitter's blitAntiRect instead.");
    }

    virtual int getWidth() = 0;
};

// We need this mask blitter because it significantly accelerates small path filling.
class MaskAdditiveBlitter : public AdditiveBlitter {
public:
    MaskAdditiveBlitter(SkBlitter* realBlitter, const SkIRect& ir, const SkRegion& clip,
            bool isInverse);
    ~MaskAdditiveBlitter() {
        fRealBlitter->blitMask(fMask, fClipRect);
    }

    // Most of the time, we still consider this mask blitter as the real blitter
    // so we can accelerate blitRect and others. But sometimes we want to return
    // the absolute real blitter (e.g., when we fall back to the old code path).
    SkBlitter* getRealBlitter(bool forceRealBlitter) override {
        return forceRealBlitter ? fRealBlitter : this;
    }

    // Virtual function is slow. So don't use this. Directly add alpha to the mask instead.
    void blitAntiH(int x, int y, const SkAlpha antialias[], int len) override;

    // Allowing following methods are used to blit rectangles during aaa_walk_convex_edges
    // Since there aren't many rectangles, we can still break the slow speed of virtual functions.
    void blitAntiH(int x, int y, const SkAlpha alpha) override;
    void blitAntiH(int x, int y, int width, const SkAlpha alpha) override;
    void blitV(int x, int y, int height, SkAlpha alpha) override;
    void blitRect(int x, int y, int width, int height) override;
    void blitAntiRect(int x, int y, int width, int height,
                      SkAlpha leftAlpha, SkAlpha rightAlpha) override;

    int getWidth() override { return fClipRect.width(); }

    static bool canHandleRect(const SkIRect& bounds) {
        int width = bounds.width();
        int64_t rb = SkAlign4(width);
        // use 64bits to detect overflow
        int64_t storage = rb * bounds.height();

        return (width <= MaskAdditiveBlitter::kMAX_WIDTH) &&
               (storage <= MaskAdditiveBlitter::kMAX_STORAGE);
    }

    // Return a pointer where pointer[x] corresonds to the alpha of (x, y)
    inline uint8_t* getRow(int y) {
        if (y != fY) {
            fY = y;
            fRow = fMask.fImage + (y - fMask.fBounds.fTop) * fMask.fRowBytes - fMask.fBounds.fLeft;
        }
        return fRow;
    }

private:
    // so we don't try to do very wide things, where the RLE blitter would be faster
    static const int kMAX_WIDTH = 32;
    static const int kMAX_STORAGE = 1024;

    SkBlitter*  fRealBlitter;
    SkMask      fMask;
    SkIRect     fClipRect;
    // we add 2 because we can write 1 extra byte at either end due to precision error
    uint32_t    fStorage[(kMAX_STORAGE >> 2) + 2];

    uint8_t*    fRow;
    int         fY;
};

MaskAdditiveBlitter::MaskAdditiveBlitter(SkBlitter* realBlitter, const SkIRect& ir, const SkRegion& clip,
                                         bool isInverse) {
    SkASSERT(canHandleRect(ir));
    SkASSERT(!isInverse);

    fRealBlitter = realBlitter;

    fMask.fImage    = (uint8_t*)fStorage + 1; // There's 1 extra byte at either end of fStorage
    fMask.fBounds   = ir;
    fMask.fRowBytes = ir.width();
    fMask.fFormat   = SkMask::kA8_Format;

    fY = ir.fTop - 1;
    fRow = nullptr;

    fClipRect = ir;
    if (!fClipRect.intersect(clip.getBounds())) {
        SkASSERT(0);
        fClipRect.setEmpty();
    }

    memset(fStorage, 0, fMask.fBounds.height() * fMask.fRowBytes + 2);
}

void MaskAdditiveBlitter::blitAntiH(int x, int y, const SkAlpha antialias[], int len) {
    SkFAIL("Don't use this; directly add alphas to the mask.");
}

void MaskAdditiveBlitter::blitAntiH(int x, int y, const SkAlpha alpha) {
    SkASSERT(x >= fMask.fBounds.fLeft -1);
    addAlpha(this->getRow(y)[x], alpha);
}

void MaskAdditiveBlitter::blitAntiH(int x, int y, int width, const SkAlpha alpha) {
    SkASSERT(x >= fMask.fBounds.fLeft -1);
    uint8_t* row = this->getRow(y);
    for (int i=0; i<width; i++) {
        addAlpha(row[x + i], alpha);
    }
}

void MaskAdditiveBlitter::blitV(int x, int y, int height, SkAlpha alpha) {
    if (alpha == 0) {
        return;
    }
    SkASSERT(x >= fMask.fBounds.fLeft -1);
    // This must be called as if this is a real blitter.
    // So we directly set alpha rather than adding it.
    uint8_t* row = this->getRow(y);
    for (int i=0; i<height; i++) {
        row[x] = alpha;
        row += fMask.fRowBytes;
    }
}

void MaskAdditiveBlitter::blitRect(int x, int y, int width, int height) {
    SkASSERT(x >= fMask.fBounds.fLeft -1);
    // This must be called as if this is a real blitter.
    // So we directly set alpha rather than adding it.
    uint8_t* row = this->getRow(y);
    for (int i=0; i<height; i++) {
        memset(row + x, 0xFF, width);
        row += fMask.fRowBytes;
    }
}

void MaskAdditiveBlitter::blitAntiRect(int x, int y, int width, int height,
        SkAlpha leftAlpha, SkAlpha rightAlpha) {
    blitV(x, y, height, leftAlpha);
    blitV(x + 1 + width, y, height, rightAlpha);
    blitRect(x + 1, y, width, height);
}

class RunBasedAdditiveBlitter : public AdditiveBlitter {
public:
    RunBasedAdditiveBlitter(SkBlitter* realBlitter, const SkIRect& ir, const SkRegion& clip,
            bool isInverse);
    ~RunBasedAdditiveBlitter();

    SkBlitter* getRealBlitter(bool forceRealBlitter) override;

    void blitAntiH(int x, int y, const SkAlpha antialias[], int len) override;
    void blitAntiH(int x, int y, const SkAlpha alpha) override;
    void blitAntiH(int x, int y, int width, const SkAlpha alpha) override;

    int getWidth() override;

    // This should only be called when forceRLE = true which implies that SkAAClip
    // is calling us.
    // SkAAClip requires that we blit in scan-line order so we have to flush
    // for each row in order. Without this, we may have the first row unflushed,
    // then blit the 2nd and the 3rd row with full alpha (so we won't flush the first row);
    // finally when we blit the fourth row, we trigger the first row to flush, and this
    // would cause SkAAClip to crash.
    inline void flush_if_y_changed(SkFixed y, SkFixed nextY) {
        if (SkFixedFloorToInt(y) != SkFixedFloorToInt(nextY)) {
            this->flush();
        }
    }

private:
    SkBlitter* fRealBlitter;

    /// Current y coordinate
    int         fCurrY;
    /// Widest row of region to be blitted
    int         fWidth;
    /// Leftmost x coordinate in any row
    int         fLeft;
    /// Initial y coordinate (top of bounds).
    int         fTop;

    // The next three variables are used to track a circular buffer that
    // contains the values used in SkAlphaRuns. These variables should only
    // ever be updated in advanceRuns(), and fRuns should always point to
    // a valid SkAlphaRuns...
    int         fRunsToBuffer;
    void*       fRunsBuffer;
    int         fCurrentRun;
    SkAlphaRuns fRuns;

    int         fOffsetX;

    inline bool check(int x, int width) {
        #ifdef SK_DEBUG
        if (x < 0 || x + width > fWidth) {
            SkDebugf("Ignore x = %d, width = %d\n", x, width);
        }
        #endif
        return (x >= 0 && x + width <= fWidth);
    }

    // extra one to store the zero at the end
    inline int getRunsSz() const { return (fWidth + 1 + (fWidth + 2)/2) * sizeof(int16_t); }

    // This function updates the fRuns variable to point to the next buffer space
    // with adequate storage for a SkAlphaRuns. It mostly just advances fCurrentRun
    // and resets fRuns to point to an empty scanline.
    inline void advanceRuns() {
        const size_t kRunsSz = this->getRunsSz();
        fCurrentRun = (fCurrentRun + 1) % fRunsToBuffer;
        fRuns.fRuns = reinterpret_cast<int16_t*>(
            reinterpret_cast<uint8_t*>(fRunsBuffer) + fCurrentRun * kRunsSz);
        fRuns.fAlpha = reinterpret_cast<SkAlpha*>(fRuns.fRuns + fWidth + 1);
        fRuns.reset(fWidth);
    }

    // Blitting 0xFF and 0 is much faster so we snap alphas close to them
    inline SkAlpha snapAlpha(SkAlpha alpha) {
        return alpha > 247 ? 0xFF : alpha < 8 ? 0 : alpha;
    }

    inline void flush() {
        if (fCurrY >= fTop) {
            SkASSERT(fCurrentRun < fRunsToBuffer);
            for (int x = 0; fRuns.fRuns[x]; x += fRuns.fRuns[x]) {
                // It seems that blitting 255 or 0 is much faster than blitting 254 or 1
                fRuns.fAlpha[x] = snapAlpha(fRuns.fAlpha[x]);
            }
            if (!fRuns.empty()) {
                // SkDEBUGCODE(fRuns.dump();)
                fRealBlitter->blitAntiH(fLeft, fCurrY, fRuns.fAlpha, fRuns.fRuns);
                this->advanceRuns();
                fOffsetX = 0;
            }
            fCurrY = fTop - 1;
        }
    }

    inline void checkY(int y) {
        if (y != fCurrY) {
            this->flush();
            fCurrY = y;
        }
    }
};

RunBasedAdditiveBlitter::RunBasedAdditiveBlitter(SkBlitter* realBlitter, const SkIRect& ir, const SkRegion& clip,
                                 bool isInverse) {
    fRealBlitter = realBlitter;

    SkIRect sectBounds;
    if (isInverse) {
        // We use the clip bounds instead of the ir, since we may be asked to
        //draw outside of the rect when we're a inverse filltype
        sectBounds = clip.getBounds();
    } else {
        if (!sectBounds.intersect(ir, clip.getBounds())) {
            sectBounds.setEmpty();
        }
    }

    const int left = sectBounds.left();
    const int right = sectBounds.right();

    fLeft = left;
    fWidth = right - left;
    fTop = sectBounds.top();
    fCurrY = fTop - 1;

    fRunsToBuffer = realBlitter->requestRowsPreserved();
    fRunsBuffer = realBlitter->allocBlitMemory(fRunsToBuffer * this->getRunsSz());
    fCurrentRun = -1;

    this->advanceRuns();

    fOffsetX = 0;
}

RunBasedAdditiveBlitter::~RunBasedAdditiveBlitter() {
    this->flush();
}

SkBlitter* RunBasedAdditiveBlitter::getRealBlitter(bool forceRealBlitter) {
    return fRealBlitter;
}

void RunBasedAdditiveBlitter::blitAntiH(int x, int y, const SkAlpha antialias[], int len) {
    checkY(y);
    x -= fLeft;

    if (x < 0) {
        len += x;
        antialias -= x;
        x = 0;
    }
    len = SkTMin(len, fWidth - x);
    SkASSERT(check(x, len));

    if (x < fOffsetX) {
        fOffsetX = 0;
    }

    fOffsetX = fRuns.add(x, 0, len, 0, 0, fOffsetX); // Break the run
    for (int i = 0; i < len; i += fRuns.fRuns[x + i]) {
        for (int j = 1; j < fRuns.fRuns[x + i]; j++) {
            fRuns.fRuns[x + i + j] = 1;
            fRuns.fAlpha[x + i + j] = fRuns.fAlpha[x + i];
        }
        fRuns.fRuns[x + i] = 1;
    }
    for (int i=0; i<len; i++) {
        addAlpha(fRuns.fAlpha[x + i], antialias[i]);
    }
}
void RunBasedAdditiveBlitter::blitAntiH(int x, int y, const SkAlpha alpha) {
    checkY(y);
    x -= fLeft;

    if (x < fOffsetX) {
        fOffsetX = 0;
    }

    if (this->check(x, 1)) {
        fOffsetX = fRuns.add(x, 0, 1, 0, alpha, fOffsetX);
    }
}

void RunBasedAdditiveBlitter::blitAntiH(int x, int y, int width, const SkAlpha alpha) {
    checkY(y);
    x -= fLeft;

    if (x < fOffsetX) {
        fOffsetX = 0;
    }

    if (this->check(x, width)) {
        fOffsetX = fRuns.add(x, 0, width, 0, alpha, fOffsetX);
    }
}

int RunBasedAdditiveBlitter::getWidth() { return fWidth; }

///////////////////////////////////////////////////////////////////////////////

// Return the alpha of a trapezoid whose height is 1
static inline SkAlpha trapezoidToAlpha(SkFixed l1, SkFixed l2) {
    SkASSERT(l1 >= 0 && l2 >= 0);
    return ((l1 + l2) >> 9);
}

// The alpha of right-triangle (a, a*b), in 16 bits
static inline SkFixed partialTriangleToAlpha16(SkFixed a, SkFixed b) {
    SkASSERT(a <= SK_Fixed1);
    // SkFixedMul_lowprec(SkFixedMul_lowprec(a, a), b) >> 1
    // return ((((a >> 8) * (a >> 8)) >> 8) * (b >> 8)) >> 1;
    return (a >> 11) * (a >> 11) * (b >> 11);
}

// The alpha of right-triangle (a, a*b)
static inline SkAlpha partialTriangleToAlpha(SkFixed a, SkFixed b) {
    return partialTriangleToAlpha16(a, b) >> 8;
}

static inline SkAlpha getPartialAlpha(SkAlpha alpha, SkFixed partialHeight) {
    return (alpha * partialHeight) >> 16;
}

static inline SkAlpha getPartialAlpha(SkAlpha alpha, SkAlpha fullAlpha) {
    return ((uint16_t)alpha * fullAlpha) >> 8;
}

// For SkFixed that's close to SK_Fixed1, we can't convert it to alpha by just shifting right.
// For example, when f = SK_Fixed1, right shifting 8 will get 256, but we need 255.
// This is rarely the problem so we'll only use this for blitting rectangles.
static inline SkAlpha f2a(SkFixed f) {
    SkASSERT(f <= SK_Fixed1);
    return getPartialAlpha(0xFF, f);
}

// Suppose that line (l1, y)-(r1, y+1) intersects with (l2, y)-(r2, y+1),
// approximate (very coarsely) the x coordinate of the intersection.
static inline SkFixed approximateIntersection(SkFixed l1, SkFixed r1, SkFixed l2, SkFixed r2) {
    if (l1 > r1) { SkTSwap(l1, r1); }
    if (l2 > r2) { SkTSwap(l2, r2); }
    return (SkTMax(l1, l2) + SkTMin(r1, r2)) >> 1;
}

// Here we always send in l < SK_Fixed1, and the first alpha we want to compute is alphas[0]
static inline void computeAlphaAboveLine(SkAlpha* alphas, SkFixed l, SkFixed r,
                                         SkFixed dY, SkAlpha fullAlpha) {
    SkASSERT(l <= r);
    SkASSERT(l >> 16 == 0);
    int R = SkFixedCeilToInt(r);
    if (R == 0) {
        return;
    } else if (R == 1) {
        alphas[0] = getPartialAlpha(((R << 17) - l - r) >> 9, fullAlpha);
    } else {
        SkFixed first = SK_Fixed1 - l; // horizontal edge length of the left-most triangle
        SkFixed last = r - ((R - 1) << 16); // horizontal edge length of the right-most triangle
        SkFixed firstH = SkFixedMul_lowprec(first, dY); // vertical edge of the left-most triangle
        alphas[0] = SkFixedMul_lowprec(first, firstH) >> 9; // triangle alpha
        SkFixed alpha16 = firstH + (dY >> 1); // rectangle plus triangle
        for (int i = 1; i < R - 1; i++) {
            alphas[i] = alpha16 >> 8;
            alpha16 += dY;
        }
        alphas[R - 1] = fullAlpha - partialTriangleToAlpha(last, dY);
    }
}

// Here we always send in l < SK_Fixed1, and the first alpha we want to compute is alphas[0]
static inline void computeAlphaBelowLine(SkAlpha* alphas, SkFixed l, SkFixed r, SkFixed dY, SkAlpha fullAlpha) {
    SkASSERT(l <= r);
    SkASSERT(l >> 16 == 0);
    int R = SkFixedCeilToInt(r);
    if (R == 0) {
        return;
    } else if (R == 1) {
        alphas[0] = getPartialAlpha(trapezoidToAlpha(l, r), fullAlpha);
    } else {
        SkFixed first = SK_Fixed1 - l; // horizontal edge length of the left-most triangle
        SkFixed last = r - ((R - 1) << 16); // horizontal edge length of the right-most triangle
        SkFixed lastH = SkFixedMul_lowprec(last, dY); // vertical edge of the right-most triangle
        alphas[R-1] = SkFixedMul_lowprec(last, lastH) >> 9; // triangle alpha
        SkFixed alpha16 = lastH + (dY >> 1); // rectangle plus triangle
        for (int i = R - 2; i > 0; i--) {
            alphas[i] = alpha16 >> 8;
            alpha16 += dY;
        }
        alphas[0] = fullAlpha - partialTriangleToAlpha(first, dY);
    }
}

// Note that if fullAlpha != 0xFF, we'll multiply alpha by fullAlpha
static inline void blit_single_alpha(AdditiveBlitter* blitter, int y, int x,
                              SkAlpha alpha, SkAlpha fullAlpha, SkAlpha* maskRow,
                              bool isUsingMask) {
    if (isUsingMask) {
        if (fullAlpha == 0xFF) {
            maskRow[x] = alpha;
        } else {
            addAlpha(maskRow[x], getPartialAlpha(alpha, fullAlpha));
        }
    } else {
        if (fullAlpha == 0xFF) {
            blitter->getRealBlitter()->blitV(x, y, 1, alpha);
        } else {
            blitter->blitAntiH(x, y, getPartialAlpha(alpha, fullAlpha));
        }
    }
}

static inline void blit_two_alphas(AdditiveBlitter* blitter, int y, int x,
                            SkAlpha a1, SkAlpha a2, SkAlpha fullAlpha, SkAlpha* maskRow,
                            bool isUsingMask) {
    if (isUsingMask) {
        addAlpha(maskRow[x], a1);
        addAlpha(maskRow[x + 1], a2);
    } else {
        if (fullAlpha == 0xFF) {
            blitter->getRealBlitter()->blitAntiH2(x, y, a1, a2);
        } else {
            blitter->blitAntiH(x, y, a1);
            blitter->blitAntiH(x + 1, y, a2);
        }
    }
}

// It's important that this is inline. Otherwise it'll be much slower.
static SK_ALWAYS_INLINE void blit_full_alpha(AdditiveBlitter* blitter, int y, int x, int len,
                            SkAlpha fullAlpha, SkAlpha* maskRow, bool isUsingMask) {
    if (isUsingMask) {
        for (int i=0; i<len; i++) {
            addAlpha(maskRow[x + i], fullAlpha);
        }
    } else {
        if (fullAlpha == 0xFF) {
            blitter->getRealBlitter()->blitH(x, y, len);
        } else {
            blitter->blitAntiH(x, y, len, fullAlpha);
        }
    }
}

static void blit_aaa_trapezoid_row(AdditiveBlitter* blitter, int y,
                                   SkFixed ul, SkFixed ur, SkFixed ll, SkFixed lr,
                                   SkFixed lDY, SkFixed rDY, SkAlpha fullAlpha, SkAlpha* maskRow,
                                   bool isUsingMask) {
    int L = SkFixedFloorToInt(ul), R = SkFixedCeilToInt(lr);
    int len = R - L;

    if (len == 1) {
        SkAlpha alpha = trapezoidToAlpha(ur - ul, lr - ll);
        blit_single_alpha(blitter, y, L, alpha, fullAlpha, maskRow, isUsingMask);
        return;
    }

    // SkDebugf("y = %d, len = %d, ul = %f, ur = %f, ll = %f, lr = %f\n", y, len,
    //         SkFixedToFloat(ul), SkFixedToFloat(ur), SkFixedToFloat(ll), SkFixedToFloat(lr));

    const int kQuickLen = 31;
    // This is faster than SkAutoSMalloc<1024>
    char quickMemory[(sizeof(SkAlpha) * 2 + sizeof(int16_t)) * (kQuickLen + 1)];
    SkAlpha* alphas;

    if (len <= kQuickLen) {
        alphas = (SkAlpha*)quickMemory;
    } else {
        alphas = new SkAlpha[(len + 1) * (sizeof(SkAlpha) * 2 + sizeof(int16_t))];
    }

    SkAlpha* tempAlphas = alphas + len + 1;
    int16_t* runs = (int16_t*)(alphas + (len + 1) * 2);

    for (int i = 0; i < len; i++) {
        runs[i] = 1;
        alphas[i] = fullAlpha;
    }
    runs[len] = 0;

    int uL = SkFixedFloorToInt(ul);
    int lL = SkFixedCeilToInt(ll);
    if (uL + 2 == lL) { // We only need to compute two triangles, accelerate this special case
        SkFixed first = (uL << 16) + SK_Fixed1 - ul;
        SkFixed second = ll - ul - first;
        SkAlpha a1 = fullAlpha - partialTriangleToAlpha(first, lDY);
        SkAlpha a2 = partialTriangleToAlpha(second, lDY);
        alphas[0] = alphas[0] > a1 ? alphas[0] - a1 : 0;
        alphas[1] = alphas[1] > a2 ? alphas[1] - a2 : 0;
    } else {
        computeAlphaBelowLine(tempAlphas + uL - L, ul - (uL << 16), ll - (uL << 16),
                lDY, fullAlpha);
        for (int i = uL; i < lL; i++) {
            if (alphas[i - L] > tempAlphas[i - L]) {
                alphas[i - L] -= tempAlphas[i - L];
            } else {
                alphas[i - L] = 0;
            }
        }
    }

    int uR = SkFixedFloorToInt(ur);
    int lR = SkFixedCeilToInt(lr);
    if (uR + 2 == lR) { // We only need to compute two triangles, accelerate this special case
        SkFixed first = (uR << 16) + SK_Fixed1 - ur;
        SkFixed second = lr - ur - first;
        SkAlpha a1 = partialTriangleToAlpha(first, rDY);
        SkAlpha a2 = fullAlpha - partialTriangleToAlpha(second, rDY);
        alphas[len-2] = alphas[len-2] > a1 ? alphas[len-2] - a1 : 0;
        alphas[len-1] = alphas[len-1] > a2 ? alphas[len-1] - a2 : 0;
    } else {
        computeAlphaAboveLine(tempAlphas + uR - L, ur - (uR << 16), lr - (uR << 16),
                rDY, fullAlpha);
        for (int i = uR; i < lR; i++) {
            if (alphas[i - L] > tempAlphas[i - L]) {
                alphas[i - L] -= tempAlphas[i - L];
            } else {
                alphas[i - L] = 0;
            }
        }
    }

    if (isUsingMask) {
        for (int i=0; i<len; i++) {
            addAlpha(maskRow[L + i], alphas[i]);
        }
    } else {
        if (fullAlpha == 0xFF) { // Real blitter is faster than RunBasedAdditiveBlitter
            blitter->getRealBlitter()->blitAntiH(L, y, alphas, runs);
        } else {
            blitter->blitAntiH(L, y, alphas, len);
        }
    }

    if (len > kQuickLen) {
        delete [] alphas;
    }
}

static inline void blit_trapezoid_row(AdditiveBlitter* blitter, int y,
                               SkFixed ul, SkFixed ur, SkFixed ll, SkFixed lr,
                               SkFixed lDY, SkFixed rDY, SkAlpha fullAlpha,
                               SkAlpha* maskRow, bool isUsingMask) {
    SkASSERT(lDY >= 0 && rDY >= 0); // We should only send in the absolte value

    if (ul > ur) {
#ifdef SK_DEBUG
        SkDebugf("ul = %f > ur = %f!\n", SkFixedToFloat(ul), SkFixedToFloat(ur));
#endif
        return;
    }

    // Edge crosses. Approximate it. This should only happend due to precision limit,
    // so the approximation could be very coarse.
    if (ll > lr) {
#ifdef SK_DEBUG
        SkDebugf("approximate intersection: %d %f %f\n", y,
                 SkFixedToFloat(ll), SkFixedToFloat(lr));
#endif
        ll = lr = approximateIntersection(ul, ll, ur, lr);
    }

    if (ul == ur && ll == lr) {
        return; // empty trapzoid
    }

    // We're going to use the left line ul-ll and the rite line ur-lr
    // to exclude the area that's not covered by the path.
    // Swapping (ul, ll) or (ur, lr) won't affect that exclusion
    // so we'll do that for simplicity.
    if (ul > ll) { SkTSwap(ul, ll); }
    if (ur > lr) { SkTSwap(ur, lr); }

    SkFixed joinLeft = SkFixedCeilToFixed(ll);
    SkFixed joinRite = SkFixedFloorToFixed(ur);
    if (joinLeft <= joinRite) { // There's a rect from joinLeft to joinRite that we can blit
        if (ul < joinLeft) {
            int len = SkFixedCeilToInt(joinLeft - ul);
            if (len == 1) {
                SkAlpha alpha = trapezoidToAlpha(joinLeft - ul, joinLeft - ll);
                blit_single_alpha(blitter, y, ul >> 16, alpha, fullAlpha, maskRow, isUsingMask);
            } else if (len == 2) {
                SkFixed first = joinLeft - SK_Fixed1 - ul;
                SkFixed second = ll - ul - first;
                SkAlpha a1 = partialTriangleToAlpha(first, lDY);
                SkAlpha a2 = fullAlpha - partialTriangleToAlpha(second, lDY);
                blit_two_alphas(blitter, y, ul >> 16, a1, a2, fullAlpha, maskRow, isUsingMask);
            } else {
                blit_aaa_trapezoid_row(blitter, y, ul, joinLeft, ll, joinLeft, lDY, SK_MaxS32,
                                       fullAlpha, maskRow, isUsingMask);
            }
        }
        // SkAAClip requires that we blit from left to right.
        // Hence we must blit [ul, joinLeft] before blitting [joinLeft, joinRite]
        if (joinLeft < joinRite) {
            blit_full_alpha(blitter, y, SkFixedFloorToInt(joinLeft),
                            SkFixedFloorToInt(joinRite - joinLeft),
                            fullAlpha, maskRow, isUsingMask);
        }
        if (lr > joinRite) {
            int len = SkFixedCeilToInt(lr - joinRite);
            if (len == 1) {
                SkAlpha alpha = trapezoidToAlpha(ur - joinRite, lr - joinRite);
                blit_single_alpha(blitter, y, joinRite >> 16, alpha, fullAlpha, maskRow,
                                  isUsingMask);
            } else if (len == 2) {
                SkFixed first = joinRite + SK_Fixed1 - ur;
                SkFixed second = lr - ur - first;
                SkAlpha a1 = fullAlpha - partialTriangleToAlpha(first, rDY);
                SkAlpha a2 = partialTriangleToAlpha(second, rDY);
                blit_two_alphas(blitter, y, joinRite >> 16, a1, a2, fullAlpha, maskRow,
                                isUsingMask);
            } else {
                blit_aaa_trapezoid_row(blitter, y, joinRite, ur, joinRite, lr, SK_MaxS32, rDY,
                                       fullAlpha, maskRow, isUsingMask);
            }
        }
    } else {
        blit_aaa_trapezoid_row(blitter, y, ul, ur, ll, lr, lDY, rDY, fullAlpha, maskRow,
                               isUsingMask);
    }
}

///////////////////////////////////////////////////////////////////////////////

static bool operator<(const SkAnalyticEdge& a, const SkAnalyticEdge& b) {
    int valuea = a.fUpperY;
    int valueb = b.fUpperY;

    if (valuea == valueb) {
        valuea = a.fX;
        valueb = b.fX;
    }

    if (valuea == valueb) {
        valuea = a.fDX;
        valueb = b.fDX;
    }

    return valuea < valueb;
}

static SkAnalyticEdge* sort_edges(SkAnalyticEdge* list[], int count, SkAnalyticEdge** last) {
    SkTQSort(list, list + count - 1);

    // now make the edges linked in sorted order
    for (int i = 1; i < count; i++) {
        list[i - 1]->fNext = list[i];
        list[i]->fPrev = list[i - 1];
    }

    *last = list[count - 1];
    return list[0];
}

#ifdef SK_DEBUG
    static void validate_sort(const SkAnalyticEdge* edge) {
        SkFixed y = SkIntToFixed(-32768);

        while (edge->fUpperY != SK_MaxS32) {
            edge->validate();
            SkASSERT(y <= edge->fUpperY);

            y = edge->fUpperY;
            edge = (SkAnalyticEdge*)edge->fNext;
        }
    }
#else
    #define validate_sort(edge)
#endif

// return true if we're done with this edge
static bool update_edge(SkAnalyticEdge* edge, SkFixed last_y) {
    if (last_y >= edge->fLowerY) {
        if (edge->fCurveCount < 0) {
            if (static_cast<SkAnalyticCubicEdge*>(edge)->updateCubic()) {
                return false;
            }
        } else if (edge->fCurveCount > 0) {
            if (static_cast<SkAnalyticQuadraticEdge*>(edge)->updateQuadratic()) {
                return false;
            }
        }
        return true;
    }
    SkASSERT(false);
    return false;
}

// For an edge, we consider it smooth if the Dx doesn't change much, and Dy is large enough
// For curves that are updating, the Dx is not changing much if fQDx/fCDx and fQDy/fCDy are
// relatively large compared to fQDDx/QCDDx and fQDDy/fCDDy
static inline bool isSmoothEnough(SkAnalyticEdge* thisEdge, SkAnalyticEdge* nextEdge, int stop_y) {
    if (thisEdge->fCurveCount < 0) {
        const SkCubicEdge& cEdge = static_cast<SkAnalyticCubicEdge*>(thisEdge)->fCEdge;
        int ddshift = cEdge.fCurveShift;
        return SkAbs32(cEdge.fCDx) >> 1 >= SkAbs32(cEdge.fCDDx) >> ddshift &&
                SkAbs32(cEdge.fCDy) >> 1 >= SkAbs32(cEdge.fCDDy) >> ddshift &&
                // current Dy is (fCDy - (fCDDy >> ddshift)) >> dshift
                (cEdge.fCDy - (cEdge.fCDDy >> ddshift)) >> cEdge.fCubicDShift >= SK_Fixed1;
    } else if (thisEdge->fCurveCount > 0) {
        const SkQuadraticEdge& qEdge = static_cast<SkAnalyticQuadraticEdge*>(thisEdge)->fQEdge;
        return SkAbs32(qEdge.fQDx) >> 1 >= SkAbs32(qEdge.fQDDx) &&
                SkAbs32(qEdge.fQDy) >> 1 >= SkAbs32(qEdge.fQDDy) &&
                // current Dy is (fQDy - fQDDy) >> shift
                (qEdge.fQDy - qEdge.fQDDy) >> qEdge.fCurveShift
                >= SK_Fixed1;
    }
    return SkAbs32(nextEdge->fDX - thisEdge->fDX) <= SK_Fixed1 && // DDx should be small
            nextEdge->fLowerY - nextEdge->fUpperY >= SK_Fixed1; // Dy should be large
}

// Check if the leftE and riteE are changing smoothly in terms of fDX.
// If yes, we can later skip the fractional y and directly jump to integer y.
static inline bool isSmoothEnough(SkAnalyticEdge* leftE, SkAnalyticEdge* riteE,
                           SkAnalyticEdge* currE, int stop_y) {
    if (currE->fUpperY >= stop_y << 16) {
        return false; // We're at the end so we won't skip anything
    }
    if (leftE->fLowerY + SK_Fixed1 < riteE->fLowerY) {
        return isSmoothEnough(leftE, currE, stop_y); // Only leftE is changing
    } else if (leftE->fLowerY > riteE->fLowerY + SK_Fixed1) {
        return isSmoothEnough(riteE, currE, stop_y); // Only riteE is changing
    }

    // Now both edges are changing, find the second next edge
    SkAnalyticEdge* nextCurrE = currE->fNext;
    if (nextCurrE->fUpperY >= stop_y << 16) { // Check if we're at the end
        return false;
    }
    if (*nextCurrE < *currE) {
        SkTSwap(currE, nextCurrE);
    }
    return isSmoothEnough(leftE, currE, stop_y) && isSmoothEnough(riteE, nextCurrE, stop_y);
}

static inline void aaa_walk_convex_edges(SkAnalyticEdge* prevHead, AdditiveBlitter* blitter,
                           int start_y, int stop_y, SkFixed leftBound, SkFixed riteBound,
                           bool isUsingMask, bool forceRLE) {
    validate_sort((SkAnalyticEdge*)prevHead->fNext);

    SkAnalyticEdge* leftE = (SkAnalyticEdge*) prevHead->fNext;
    SkAnalyticEdge* riteE = (SkAnalyticEdge*) leftE->fNext;
    SkAnalyticEdge* currE = (SkAnalyticEdge*) riteE->fNext;

    SkFixed y = SkTMax(leftE->fUpperY, riteE->fUpperY);

    #ifdef SK_DEBUG
    int frac_y_cnt = 0;
    int total_y_cnt = 0;
    #endif

    for (;;) {
        // We have to check fLowerY first because some edges might be alone (e.g., there's only
        // a left edge but no right edge in a given y scan line) due to precision limit.
        while (leftE->fLowerY <= y) { // Due to smooth jump, we may pass multiple short edges
            if (update_edge(leftE, y)) {
                if (SkFixedFloorToInt(currE->fUpperY) >= stop_y) {
                    goto END_WALK;
                }
                leftE = currE;
                currE = (SkAnalyticEdge*)currE->fNext;
            }
        }
        while (riteE->fLowerY <= y) { // Due to smooth jump, we may pass multiple short edges
            if (update_edge(riteE, y)) {
                if (SkFixedFloorToInt(currE->fUpperY) >= stop_y) {
                    goto END_WALK;
                }
                riteE = currE;
                currE = (SkAnalyticEdge*)currE->fNext;
            }
        }

        SkASSERT(leftE);
        SkASSERT(riteE);

        // check our bottom clip
        if (SkFixedFloorToInt(y) >= stop_y) {
            break;
        }

        SkASSERT(SkFixedFloorToInt(leftE->fUpperY) <= stop_y);
        SkASSERT(SkFixedFloorToInt(riteE->fUpperY) <= stop_y);

        leftE->goY(y);
        riteE->goY(y);

        if (leftE->fX > riteE->fX || (leftE->fX == riteE->fX &&
                                      leftE->fDX > riteE->fDX)) {
            SkTSwap(leftE, riteE);
        }

        SkFixed local_bot_fixed = SkMin32(leftE->fLowerY, riteE->fLowerY);
        // Skip the fractional y if edges are changing smoothly.
        // If forceRLE is true, we won't skip the fractional y because it
        // implies that SkAAClip is calling us and there are strict
        // assertions inside SkAAClip.
        if (isSmoothEnough(leftE, riteE, currE, stop_y) && !forceRLE) {
            local_bot_fixed = SkFixedCeilToFixed(local_bot_fixed);
        }
        local_bot_fixed = SkMin32(local_bot_fixed, SkIntToFixed(stop_y + 1));

        SkFixed left = leftE->fX;
        SkFixed dLeft = leftE->fDX;
        SkFixed rite = riteE->fX;
        SkFixed dRite = riteE->fDX;
        if (0 == (dLeft | dRite)) {
            int     fullLeft    = SkFixedCeilToInt(left);
            int     fullRite    = SkFixedFloorToInt(rite);
            SkFixed partialLeft = SkIntToFixed(fullLeft) - left;
            SkFixed partialRite = rite - SkIntToFixed(fullRite);
            int     fullTop     = SkFixedCeilToInt(y);
            int     fullBot     = SkFixedFloorToInt(local_bot_fixed);
            SkFixed partialTop  = SkIntToFixed(fullTop) - y;
            SkFixed partialBot  = local_bot_fixed - SkIntToFixed(fullBot);
            if (fullTop > fullBot) { // The rectangle is within one pixel height...
                partialTop -= (SK_Fixed1 - partialBot);
                partialBot = 0;
            }

            if (fullRite >= fullLeft) {
                if (partialTop > 0) { // blit first partial row
                    if (partialLeft > 0) {
                        blitter->blitAntiH(fullLeft - 1, fullTop - 1,
                                f2a(SkFixedMul_lowprec(partialTop, partialLeft)));
                    }
                    blitter->blitAntiH(fullLeft, fullTop - 1, fullRite - fullLeft,
                                       f2a(partialTop));
                    if (partialRite > 0) {
                        blitter->blitAntiH(fullRite, fullTop - 1,
                                f2a(SkFixedMul_lowprec(partialTop, partialRite)));
                    }
                    if (forceRLE) {
                        ((RunBasedAdditiveBlitter*)blitter)->flush_if_y_changed(y, y + partialTop);
                    }
                }

                // Blit all full-height rows from fullTop to fullBot
                if (fullBot > fullTop) {
                    blitter->getRealBlitter()->blitAntiRect(fullLeft - 1, fullTop,
                                                            fullRite - fullLeft, fullBot - fullTop,
                                                            f2a(partialLeft), f2a(partialRite));
                }

                if (partialBot > 0) { // blit last partial row
                    if (partialLeft > 0) {
                        blitter->blitAntiH(fullLeft - 1, fullBot,
                                           f2a(SkFixedMul_lowprec(partialBot, partialLeft)));
                    }
                    blitter->blitAntiH(fullLeft, fullBot, fullRite - fullLeft, f2a(partialBot));
                    if (partialRite > 0) {
                        blitter->blitAntiH(fullRite, fullBot,
                                           f2a(SkFixedMul_lowprec(partialBot, partialRite)));
                    }
                }
            } else { // left and rite are within the same pixel
                if (partialTop > 0) {
                    blitter->getRealBlitter()->blitV(fullLeft - 1, fullTop - 1, 1,
                            f2a(SkFixedMul_lowprec(partialTop, rite - left)));
                    if (forceRLE) {
                        ((RunBasedAdditiveBlitter*)blitter)->flush_if_y_changed(y, y + partialTop);
                    }
                }
                if (fullBot >= fullTop) {
                    blitter->getRealBlitter()->blitV(fullLeft - 1, fullTop, fullBot - fullTop,
                            f2a(rite - left));
                }
                if (partialBot > 0) {
                    blitter->getRealBlitter()->blitV(fullLeft - 1, fullBot, 1,
                            f2a(SkFixedMul_lowprec(partialBot, rite - left)));
                }
            }

            y = local_bot_fixed;
        } else {
            // The following constant are used to snap X
            // We snap X mainly for speedup (no tiny triangle) and
            // avoiding edge cases caused by precision errors
            const SkFixed kSnapDigit = SK_Fixed1 >> 4;
            const SkFixed kSnapHalf = kSnapDigit >> 1;
            const SkFixed kSnapMask = (-1 ^ (kSnapDigit - 1));
            left += kSnapHalf; rite += kSnapHalf; // For fast rounding

            // Number of blit_trapezoid_row calls we'll have
            int count = SkFixedCeilToInt(local_bot_fixed) - SkFixedFloorToInt(y);
            #ifdef SK_DEBUG
            total_y_cnt += count;
            frac_y_cnt += ((int)(y & 0xFFFF0000) != y);
            if ((int)(y & 0xFFFF0000) != y) {
                // SkDebugf("frac_y = %f\n", SkFixedToFloat(y));
            }
            #endif

            // If we're using mask blitter, we advance the mask row in this function
            // to save some "if" condition checks.
            SkAlpha* maskRow = nullptr;
            if (isUsingMask) {
                maskRow = static_cast<MaskAdditiveBlitter*>(blitter)->getRow(y >> 16);
            }

            // Instead of writing one loop that handles both partial-row blit_trapezoid_row
            // and full-row trapezoid_row together, we use the following 3-stage flow to
            // handle partial-row blit and full-row blit separately. It will save us much time
            // on changing y, left, and rite.
            if (count > 1) {
                if ((int)(y & 0xFFFF0000) != y) { // There's a partial-row on the top
                    count--;
                    SkFixed nextY = SkFixedCeilToFixed(y + 1);
                    SkFixed dY = nextY - y;
                    SkFixed nextLeft = left + SkFixedMul_lowprec(dLeft, dY);
                    SkFixed nextRite = rite + SkFixedMul_lowprec(dRite, dY);
                    blit_trapezoid_row(blitter, y >> 16, left & kSnapMask, rite & kSnapMask,
                            nextLeft & kSnapMask, nextRite & kSnapMask, leftE->fDY, riteE->fDY,
                            getPartialAlpha(0xFF, dY), maskRow, isUsingMask);
                    if (forceRLE) {
                        ((RunBasedAdditiveBlitter*)blitter)->flush_if_y_changed(y, nextY);
                    }
                    left = nextLeft; rite = nextRite; y = nextY;
                }

                while (count > 1) { // Full rows in the middle
                    count--;
                    if (isUsingMask) {
                        maskRow = static_cast<MaskAdditiveBlitter*>(blitter)->getRow(y >> 16);
                    }
                    SkFixed nextY = y + SK_Fixed1, nextLeft = left + dLeft, nextRite = rite + dRite;
                    blit_trapezoid_row(blitter, y >> 16, left & kSnapMask, rite & kSnapMask,
                            nextLeft & kSnapMask, nextRite & kSnapMask,
                            leftE->fDY, riteE->fDY, 0xFF, maskRow, isUsingMask);
                    if (forceRLE) {
                        ((RunBasedAdditiveBlitter*)blitter)->flush_if_y_changed(y, nextY);
                    }
                    left = nextLeft; rite = nextRite; y = nextY;
                }
            }

            if (isUsingMask) {
                maskRow = static_cast<MaskAdditiveBlitter*>(blitter)->getRow(y >> 16);
            }

            SkFixed dY = local_bot_fixed - y; // partial-row on the bottom
            SkASSERT(dY <= SK_Fixed1);
            // Smooth jumping to integer y may make the last nextLeft/nextRite out of bound.
            // Take them back into the bound here.
            // Note that we substract kSnapHalf later so we have to add them to leftBound/riteBound
            SkFixed nextLeft = SkTMax(left + SkFixedMul_lowprec(dLeft, dY), leftBound + kSnapHalf);
            SkFixed nextRite = SkTMin(rite + SkFixedMul_lowprec(dRite, dY), riteBound + kSnapHalf);
            blit_trapezoid_row(blitter, y >> 16, left & kSnapMask, rite & kSnapMask,
                    nextLeft & kSnapMask, nextRite & kSnapMask, leftE->fDY, riteE->fDY,
                    getPartialAlpha(0xFF, dY), maskRow, isUsingMask);
            if (forceRLE) {
                ((RunBasedAdditiveBlitter*)blitter)->flush_if_y_changed(y, local_bot_fixed);
            }
            left = nextLeft; rite = nextRite; y = local_bot_fixed;
            left -= kSnapHalf; rite -= kSnapHalf;
        }

        leftE->fX = left;
        riteE->fX = rite;
        leftE->fY = riteE->fY = y;
    }

END_WALK:
    ;
    #ifdef SK_DEBUG
    // SkDebugf("frac_y_cnt = %d, total_y_cnt = %d\n", frac_y_cnt, total_y_cnt);
    #endif
}

void SkScan::aaa_fill_path(const SkPath& path, const SkIRect* clipRect, AdditiveBlitter* blitter,
                   int start_y, int stop_y, const SkRegion& clipRgn, bool isUsingMask,
                   bool forceRLE) { // forceRLE implies that SkAAClip is calling us
    SkASSERT(blitter);

    // we only implemented the convex shapes yet
    SkASSERT(!path.isInverseFillType() && path.isConvex());

    SkEdgeBuilder   builder;

    // If we're convex, then we need both edges, even the right edge is past the clip
    const bool canCullToTheRight = !path.isConvex();

    SkASSERT(gSkUseAnalyticAA.load());
    int count = builder.build(path, clipRect, 0, canCullToTheRight, true);
    SkASSERT(count >= 0);

    SkAnalyticEdge** list = (SkAnalyticEdge**)builder.analyticEdgeList();

    SkIRect rect = clipRgn.getBounds();
    if (0 == count) {
        if (path.isInverseFillType()) {
            /*
             *  Since we are in inverse-fill, our caller has already drawn above
             *  our top (start_y) and will draw below our bottom (stop_y). Thus
             *  we need to restrict our drawing to the intersection of the clip
             *  and those two limits.
             */
            if (rect.fTop < start_y) {
                rect.fTop = start_y;
            }
            if (rect.fBottom > stop_y) {
                rect.fBottom = stop_y;
            }
            if (!rect.isEmpty()) {
                blitter->blitRect(rect.fLeft, rect.fTop, rect.width(), rect.height());
            }
        }
        return;
    }

    SkAnalyticEdge headEdge, tailEdge, *last;
    // this returns the first and last edge after they're sorted into a dlink list
    SkAnalyticEdge* edge = sort_edges(list, count, &last);

    headEdge.fPrev = nullptr;
    headEdge.fNext = edge;
    headEdge.fUpperY = headEdge.fLowerY = SK_MinS32;
    headEdge.fX = SK_MinS32;
    headEdge.fDX = 0;
    headEdge.fDY = SK_MaxS32;
    headEdge.fUpperX = SK_MinS32;
    edge->fPrev = &headEdge;

    tailEdge.fPrev = last;
    tailEdge.fNext = nullptr;
    tailEdge.fUpperY = tailEdge.fLowerY = SK_MaxS32;
    headEdge.fX = SK_MaxS32;
    headEdge.fDX = 0;
    headEdge.fDY = SK_MaxS32;
    headEdge.fUpperX = SK_MaxS32;
    last->fNext = &tailEdge;

    // now edge is the head of the sorted linklist

    if (clipRect && start_y < clipRect->fTop) {
        start_y = clipRect->fTop;
    }
    if (clipRect && stop_y > clipRect->fBottom) {
        stop_y = clipRect->fBottom;
    }

    if (!path.isInverseFillType() && path.isConvex()) {
        SkASSERT(count >= 2);   // convex walker does not handle missing right edges
        aaa_walk_convex_edges(&headEdge, blitter, start_y, stop_y,
                              rect.fLeft << 16, rect.fRight << 16, isUsingMask,
                              forceRLE);
    } else {
        SkFAIL("Concave AAA is not yet implemented!");
    }
}

///////////////////////////////////////////////////////////////////////////////

static int overflows_short_shift(int value, int shift) {
    const int s = 16 + shift;
    return (SkLeftShift(value, s) >> s) - value;
}

/**
  Would any of the coordinates of this rectangle not fit in a short,
  when left-shifted by shift?
*/
static int rect_overflows_short_shift(SkIRect rect, int shift) {
    SkASSERT(!overflows_short_shift(8191, 2));
    SkASSERT(overflows_short_shift(8192, 2));
    SkASSERT(!overflows_short_shift(32767, 0));
    SkASSERT(overflows_short_shift(32768, 0));

    // Since we expect these to succeed, we bit-or together
    // for a tiny extra bit of speed.
    return overflows_short_shift(rect.fLeft, 2) |
           overflows_short_shift(rect.fRight, 2) |
           overflows_short_shift(rect.fTop, 2) |
           overflows_short_shift(rect.fBottom, 2);
}

void SkScan::AAAFillPath(const SkPath& path, const SkRegion& origClip, SkBlitter* blitter,
                         bool forceRLE) {
    if (origClip.isEmpty()) {
        return;
    }
    if (path.isInverseFillType() || !path.isConvex()) {
        // Fall back as we only implemented the algorithm for convex shapes yet.
        SkScan::AntiFillPath(path, origClip, blitter, forceRLE);
        return;
    }

    const bool isInverse = path.isInverseFillType();
    SkIRect ir;
    path.getBounds().roundOut(&ir);
    if (ir.isEmpty()) {
        if (isInverse) {
            blitter->blitRegion(origClip);
        }
        return;
    }

    SkIRect clippedIR;
    if (isInverse) {
       // If the path is an inverse fill, it's going to fill the entire
       // clip, and we care whether the entire clip exceeds our limits.
       clippedIR = origClip.getBounds();
    } else {
       if (!clippedIR.intersect(ir, origClip.getBounds())) {
           return;
       }
    }
    // If the intersection of the path bounds and the clip bounds
    // will overflow 32767 when << by 2, our SkFixed will overflow,
    // so draw without antialiasing.
    if (rect_overflows_short_shift(clippedIR, 2)) {
        SkScan::FillPath(path, origClip, blitter);
        return;
    }

    // Our antialiasing can't handle a clip larger than 32767, so we restrict
    // the clip to that limit here. (the runs[] uses int16_t for its index).
    //
    // A more general solution (one that could also eliminate the need to
    // disable aa based on ir bounds (see overflows_short_shift) would be
    // to tile the clip/target...
    SkRegion tmpClipStorage;
    const SkRegion* clipRgn = &origClip;
    {
        static const int32_t kMaxClipCoord = 32767;
        const SkIRect& bounds = origClip.getBounds();
        if (bounds.fRight > kMaxClipCoord || bounds.fBottom > kMaxClipCoord) {
            SkIRect limit = { 0, 0, kMaxClipCoord, kMaxClipCoord };
            tmpClipStorage.op(origClip, limit, SkRegion::kIntersect_Op);
            clipRgn = &tmpClipStorage;
        }
    }
    // for here down, use clipRgn, not origClip

    SkScanClipper   clipper(blitter, clipRgn, ir);
    const SkIRect*  clipRect = clipper.getClipRect();

    if (clipper.getBlitter() == nullptr) { // clipped out
        if (isInverse) {
            blitter->blitRegion(*clipRgn);
        }
        return;
    }

    // now use the (possibly wrapped) blitter
    blitter = clipper.getBlitter();

    if (isInverse) {
        // Currently, we use the old path to render the inverse path,
        // so we don't need this.
        // sk_blit_above(blitter, ir, *clipRgn);
    }

    SkASSERT(SkIntToScalar(ir.fTop) <= path.getBounds().fTop);

    if (MaskAdditiveBlitter::canHandleRect(ir) && !isInverse && !forceRLE) {
        MaskAdditiveBlitter additiveBlitter(blitter, ir, *clipRgn, isInverse);
        aaa_fill_path(path, clipRect, &additiveBlitter, ir.fTop, ir.fBottom, *clipRgn, true,
                      forceRLE);
    } else {
        RunBasedAdditiveBlitter additiveBlitter(blitter, ir, *clipRgn, isInverse);
        aaa_fill_path(path, clipRect, &additiveBlitter, ir.fTop, ir.fBottom, *clipRgn, false,
                      forceRLE);
    }

    if (isInverse) {
        // Currently, we use the old path to render the inverse path,
        // so we don't need this.
        // sk_blit_below(blitter, ir, *clipRgn);
    }
}

// This almost copies SkScan::AntiFillPath
void SkScan::AAAFillPath(const SkPath& path, const SkRasterClip& clip, SkBlitter* blitter) {
    if (clip.isEmpty()) {
        return;
    }

    if (clip.isBW()) {
        AAAFillPath(path, clip.bwRgn(), blitter);
    } else {
        SkRegion        tmp;
        SkAAClipBlitter aaBlitter;

        tmp.setRect(clip.getBounds());
        aaBlitter.init(blitter, &clip.aaRgn());
        AAAFillPath(path, tmp, &aaBlitter, true);
    }
}