1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
|
/*
* Copyright 2006 The Android Open Source Project
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkScalerContext.h"
#include "SkAutoPixmapStorage.h"
#include "SkColorPriv.h"
#include "SkDescriptor.h"
#include "SkDraw.h"
#include "SkGlyph.h"
#include "SkMakeUnique.h"
#include "SkMaskFilter.h"
#include "SkMaskGamma.h"
#include "SkMatrix22.h"
#include "SkReadBuffer.h"
#include "SkWriteBuffer.h"
#include "SkPathEffect.h"
#include "SkRasterizer.h"
#include "SkRasterClip.h"
#include "SkStroke.h"
#include "SkStrokeRec.h"
#define ComputeBWRowBytes(width) (((unsigned)(width) + 7) >> 3)
void SkGlyph::toMask(SkMask* mask) const {
SkASSERT(mask);
mask->fImage = (uint8_t*)fImage;
mask->fBounds.set(fLeft, fTop, fLeft + fWidth, fTop + fHeight);
mask->fRowBytes = this->rowBytes();
mask->fFormat = static_cast<SkMask::Format>(fMaskFormat);
}
size_t SkGlyph::computeImageSize() const {
const size_t size = this->rowBytes() * fHeight;
switch (fMaskFormat) {
case SkMask::k3D_Format:
return 3 * size;
default:
return size;
}
}
void SkGlyph::zeroMetrics() {
fAdvanceX = 0;
fAdvanceY = 0;
fWidth = 0;
fHeight = 0;
fTop = 0;
fLeft = 0;
fRsbDelta = 0;
fLsbDelta = 0;
}
///////////////////////////////////////////////////////////////////////////////
#ifdef SK_DEBUG
#define DUMP_RECx
#endif
SkScalerContext::SkScalerContext(sk_sp<SkTypeface> typeface, const SkScalerContextEffects& effects,
const SkDescriptor* desc)
: fRec(*static_cast<const Rec*>(desc->findEntry(kRec_SkDescriptorTag, nullptr)))
, fTypeface(std::move(typeface))
, fPathEffect(sk_ref_sp(effects.fPathEffect))
, fMaskFilter(sk_ref_sp(effects.fMaskFilter))
, fRasterizer(sk_ref_sp(effects.fRasterizer))
// Initialize based on our settings. Subclasses can also force this.
, fGenerateImageFromPath(fRec.fFrameWidth > 0 || fPathEffect != nullptr || fRasterizer != nullptr)
, fPreBlend(fMaskFilter ? SkMaskGamma::PreBlend() : SkScalerContext::GetMaskPreBlend(fRec))
, fPreBlendForFilter(fMaskFilter ? SkScalerContext::GetMaskPreBlend(fRec)
: SkMaskGamma::PreBlend())
{
#ifdef DUMP_REC
desc->assertChecksum();
SkDebugf("SkScalerContext checksum %x count %d length %d\n",
desc->getChecksum(), desc->getCount(), desc->getLength());
SkDebugf(" textsize %g prescale %g preskew %g post [%g %g %g %g]\n",
rec->fTextSize, rec->fPreScaleX, rec->fPreSkewX, rec->fPost2x2[0][0],
rec->fPost2x2[0][1], rec->fPost2x2[1][0], rec->fPost2x2[1][1]);
SkDebugf(" frame %g miter %g hints %d framefill %d format %d join %d cap %d\n",
rec->fFrameWidth, rec->fMiterLimit, rec->fHints, rec->fFrameAndFill,
rec->fMaskFormat, rec->fStrokeJoin, rec->fStrokeCap);
SkDebugf(" pathEffect %x maskFilter %x\n",
desc->findEntry(kPathEffect_SkDescriptorTag, nullptr),
desc->findEntry(kMaskFilter_SkDescriptorTag, nullptr));
#endif
}
SkScalerContext::~SkScalerContext() {}
void SkScalerContext::getAdvance(SkGlyph* glyph) {
// mark us as just having a valid advance
glyph->fMaskFormat = MASK_FORMAT_JUST_ADVANCE;
// we mark the format before making the call, in case the impl
// internally ends up calling its generateMetrics, which is OK
// albeit slower than strictly necessary
generateAdvance(glyph);
}
void SkScalerContext::getMetrics(SkGlyph* glyph) {
generateMetrics(glyph);
// for now we have separate cache entries for devkerning on and off
// in the future we might share caches, but make our measure/draw
// code make the distinction. Thus we zap the values if the caller
// has not asked for them.
if ((fRec.fFlags & SkScalerContext::kDevKernText_Flag) == 0) {
// no devkern, so zap the fields
glyph->fLsbDelta = glyph->fRsbDelta = 0;
}
// if either dimension is empty, zap the image bounds of the glyph
if (0 == glyph->fWidth || 0 == glyph->fHeight) {
glyph->fWidth = 0;
glyph->fHeight = 0;
glyph->fTop = 0;
glyph->fLeft = 0;
glyph->fMaskFormat = 0;
return;
}
if (fGenerateImageFromPath) {
SkPath devPath, fillPath;
SkMatrix fillToDevMatrix;
this->internalGetPath(glyph->getPackedID(), &fillPath, &devPath, &fillToDevMatrix);
if (fRasterizer) {
SkMask mask;
if (fRasterizer->rasterize(fillPath, fillToDevMatrix, nullptr,
fMaskFilter.get(), &mask,
SkMask::kJustComputeBounds_CreateMode)) {
glyph->fLeft = mask.fBounds.fLeft;
glyph->fTop = mask.fBounds.fTop;
glyph->fWidth = SkToU16(mask.fBounds.width());
glyph->fHeight = SkToU16(mask.fBounds.height());
} else {
goto SK_ERROR;
}
} else {
// just use devPath
const SkIRect ir = devPath.getBounds().roundOut();
if (ir.isEmpty() || !ir.is16Bit()) {
goto SK_ERROR;
}
glyph->fLeft = ir.fLeft;
glyph->fTop = ir.fTop;
glyph->fWidth = SkToU16(ir.width());
glyph->fHeight = SkToU16(ir.height());
if (glyph->fWidth > 0) {
switch (fRec.fMaskFormat) {
case SkMask::kLCD16_Format:
glyph->fWidth += 2;
glyph->fLeft -= 1;
break;
default:
break;
}
}
}
}
if (SkMask::kARGB32_Format != glyph->fMaskFormat) {
glyph->fMaskFormat = fRec.fMaskFormat;
}
// If we are going to create the mask, then we cannot keep the color
if ((fGenerateImageFromPath || fMaskFilter) &&
SkMask::kARGB32_Format == glyph->fMaskFormat) {
glyph->fMaskFormat = SkMask::kA8_Format;
}
if (fMaskFilter) {
SkMask src, dst;
SkMatrix matrix;
glyph->toMask(&src);
fRec.getMatrixFrom2x2(&matrix);
src.fImage = nullptr; // only want the bounds from the filter
if (fMaskFilter->filterMask(&dst, src, matrix, nullptr)) {
if (dst.fBounds.isEmpty() || !dst.fBounds.is16Bit()) {
goto SK_ERROR;
}
SkASSERT(dst.fImage == nullptr);
glyph->fLeft = dst.fBounds.fLeft;
glyph->fTop = dst.fBounds.fTop;
glyph->fWidth = SkToU16(dst.fBounds.width());
glyph->fHeight = SkToU16(dst.fBounds.height());
glyph->fMaskFormat = dst.fFormat;
}
}
return;
SK_ERROR:
// draw nothing 'cause we failed
glyph->fLeft = 0;
glyph->fTop = 0;
glyph->fWidth = 0;
glyph->fHeight = 0;
// put a valid value here, in case it was earlier set to
// MASK_FORMAT_JUST_ADVANCE
glyph->fMaskFormat = fRec.fMaskFormat;
}
#define SK_SHOW_TEXT_BLIT_COVERAGE 0
static void applyLUTToA8Mask(const SkMask& mask, const uint8_t* lut) {
uint8_t* SK_RESTRICT dst = (uint8_t*)mask.fImage;
unsigned rowBytes = mask.fRowBytes;
for (int y = mask.fBounds.height() - 1; y >= 0; --y) {
for (int x = mask.fBounds.width() - 1; x >= 0; --x) {
dst[x] = lut[dst[x]];
}
dst += rowBytes;
}
}
template<bool APPLY_PREBLEND>
static void pack4xHToLCD16(const SkPixmap& src, const SkMask& dst,
const SkMaskGamma::PreBlend& maskPreBlend) {
#define SAMPLES_PER_PIXEL 4
#define LCD_PER_PIXEL 3
SkASSERT(kAlpha_8_SkColorType == src.colorType());
SkASSERT(SkMask::kLCD16_Format == dst.fFormat);
const int sample_width = src.width();
const int height = src.height();
uint16_t* dstP = (uint16_t*)dst.fImage;
size_t dstRB = dst.fRowBytes;
// An N tap FIR is defined by
// out[n] = coeff[0]*x[n] + coeff[1]*x[n-1] + ... + coeff[N]*x[n-N]
// or
// out[n] = sum(i, 0, N, coeff[i]*x[n-i])
// The strategy is to use one FIR (different coefficients) for each of r, g, and b.
// This means using every 4th FIR output value of each FIR and discarding the rest.
// The FIRs are aligned, and the coefficients reach 5 samples to each side of their 'center'.
// (For r and b this is technically incorrect, but the coeffs outside round to zero anyway.)
// These are in some fixed point repesentation.
// Adding up to more than one simulates ink spread.
// For implementation reasons, these should never add up to more than two.
// Coefficients determined by a gausian where 5 samples = 3 std deviations (0x110 'contrast').
// Calculated using tools/generate_fir_coeff.py
// With this one almost no fringing is ever seen, but it is imperceptibly blurry.
// The lcd smoothed text is almost imperceptibly different from gray,
// but is still sharper on small stems and small rounded corners than gray.
// This also seems to be about as wide as one can get and only have a three pixel kernel.
// TODO: caculate these at runtime so parameters can be adjusted (esp contrast).
static const unsigned int coefficients[LCD_PER_PIXEL][SAMPLES_PER_PIXEL*3] = {
//The red subpixel is centered inside the first sample (at 1/6 pixel), and is shifted.
{ 0x03, 0x0b, 0x1c, 0x33, 0x40, 0x39, 0x24, 0x10, 0x05, 0x01, 0x00, 0x00, },
//The green subpixel is centered between two samples (at 1/2 pixel), so is symetric
{ 0x00, 0x02, 0x08, 0x16, 0x2b, 0x3d, 0x3d, 0x2b, 0x16, 0x08, 0x02, 0x00, },
//The blue subpixel is centered inside the last sample (at 5/6 pixel), and is shifted.
{ 0x00, 0x00, 0x01, 0x05, 0x10, 0x24, 0x39, 0x40, 0x33, 0x1c, 0x0b, 0x03, },
};
for (int y = 0; y < height; ++y) {
const uint8_t* srcP = src.addr8(0, y);
// TODO: this fir filter implementation is straight forward, but slow.
// It should be possible to make it much faster.
for (int sample_x = -4, pixel_x = 0; sample_x < sample_width + 4; sample_x += 4, ++pixel_x) {
int fir[LCD_PER_PIXEL] = { 0 };
for (int sample_index = SkMax32(0, sample_x - 4), coeff_index = sample_index - (sample_x - 4)
; sample_index < SkMin32(sample_x + 8, sample_width)
; ++sample_index, ++coeff_index)
{
int sample_value = srcP[sample_index];
for (int subpxl_index = 0; subpxl_index < LCD_PER_PIXEL; ++subpxl_index) {
fir[subpxl_index] += coefficients[subpxl_index][coeff_index] * sample_value;
}
}
for (int subpxl_index = 0; subpxl_index < LCD_PER_PIXEL; ++subpxl_index) {
fir[subpxl_index] /= 0x100;
fir[subpxl_index] = SkMin32(fir[subpxl_index], 255);
}
U8CPU r = sk_apply_lut_if<APPLY_PREBLEND>(fir[0], maskPreBlend.fR);
U8CPU g = sk_apply_lut_if<APPLY_PREBLEND>(fir[1], maskPreBlend.fG);
U8CPU b = sk_apply_lut_if<APPLY_PREBLEND>(fir[2], maskPreBlend.fB);
#if SK_SHOW_TEXT_BLIT_COVERAGE
r = SkMax32(r, 10); g = SkMax32(g, 10); b = SkMax32(b, 10);
#endif
dstP[pixel_x] = SkPack888ToRGB16(r, g, b);
}
dstP = (uint16_t*)((char*)dstP + dstRB);
}
}
static inline int convert_8_to_1(unsigned byte) {
SkASSERT(byte <= 0xFF);
return byte >> 7;
}
static uint8_t pack_8_to_1(const uint8_t alpha[8]) {
unsigned bits = 0;
for (int i = 0; i < 8; ++i) {
bits <<= 1;
bits |= convert_8_to_1(alpha[i]);
}
return SkToU8(bits);
}
static void packA8ToA1(const SkMask& mask, const uint8_t* src, size_t srcRB) {
const int height = mask.fBounds.height();
const int width = mask.fBounds.width();
const int octs = width >> 3;
const int leftOverBits = width & 7;
uint8_t* dst = mask.fImage;
const int dstPad = mask.fRowBytes - SkAlign8(width)/8;
SkASSERT(dstPad >= 0);
SkASSERT(width >= 0);
SkASSERT(srcRB >= (size_t)width);
const size_t srcPad = srcRB - width;
for (int y = 0; y < height; ++y) {
for (int i = 0; i < octs; ++i) {
*dst++ = pack_8_to_1(src);
src += 8;
}
if (leftOverBits > 0) {
unsigned bits = 0;
int shift = 7;
for (int i = 0; i < leftOverBits; ++i, --shift) {
bits |= convert_8_to_1(*src++) << shift;
}
*dst++ = bits;
}
src += srcPad;
dst += dstPad;
}
}
static void generateMask(const SkMask& mask, const SkPath& path,
const SkMaskGamma::PreBlend& maskPreBlend) {
SkPaint paint;
int srcW = mask.fBounds.width();
int srcH = mask.fBounds.height();
int dstW = srcW;
int dstH = srcH;
int dstRB = mask.fRowBytes;
SkMatrix matrix;
matrix.setTranslate(-SkIntToScalar(mask.fBounds.fLeft),
-SkIntToScalar(mask.fBounds.fTop));
paint.setAntiAlias(SkMask::kBW_Format != mask.fFormat);
switch (mask.fFormat) {
case SkMask::kBW_Format:
dstRB = 0; // signals we need a copy
break;
case SkMask::kA8_Format:
break;
case SkMask::kLCD16_Format:
// TODO: trigger off LCD orientation
dstW = 4*dstW - 8;
matrix.setTranslate(-SkIntToScalar(mask.fBounds.fLeft + 1),
-SkIntToScalar(mask.fBounds.fTop));
matrix.postScale(SkIntToScalar(4), SK_Scalar1);
dstRB = 0; // signals we need a copy
break;
default:
SkDEBUGFAIL("unexpected mask format");
}
SkRasterClip clip;
clip.setRect(SkIRect::MakeWH(dstW, dstH));
const SkImageInfo info = SkImageInfo::MakeA8(dstW, dstH);
SkAutoPixmapStorage dst;
if (0 == dstRB) {
if (!dst.tryAlloc(info)) {
// can't allocate offscreen, so empty the mask and return
sk_bzero(mask.fImage, mask.computeImageSize());
return;
}
} else {
dst.reset(info, mask.fImage, dstRB);
}
sk_bzero(dst.writable_addr(), dst.getSafeSize());
SkDraw draw;
draw.fDst = dst;
draw.fRC = &clip;
draw.fMatrix = &matrix;
draw.drawPath(path, paint);
switch (mask.fFormat) {
case SkMask::kBW_Format:
packA8ToA1(mask, dst.addr8(0, 0), dst.rowBytes());
break;
case SkMask::kA8_Format:
if (maskPreBlend.isApplicable()) {
applyLUTToA8Mask(mask, maskPreBlend.fG);
}
break;
case SkMask::kLCD16_Format:
if (maskPreBlend.isApplicable()) {
pack4xHToLCD16<true>(dst, mask, maskPreBlend);
} else {
pack4xHToLCD16<false>(dst, mask, maskPreBlend);
}
break;
default:
break;
}
}
static void extract_alpha(const SkMask& dst,
const SkPMColor* srcRow, size_t srcRB) {
int width = dst.fBounds.width();
int height = dst.fBounds.height();
int dstRB = dst.fRowBytes;
uint8_t* dstRow = dst.fImage;
for (int y = 0; y < height; ++y) {
for (int x = 0; x < width; ++x) {
dstRow[x] = SkGetPackedA32(srcRow[x]);
}
// zero any padding on each row
for (int x = width; x < dstRB; ++x) {
dstRow[x] = 0;
}
dstRow += dstRB;
srcRow = (const SkPMColor*)((const char*)srcRow + srcRB);
}
}
void SkScalerContext::getImage(const SkGlyph& origGlyph) {
const SkGlyph* glyph = &origGlyph;
SkGlyph tmpGlyph;
// in case we need to call generateImage on a mask-format that is different
// (i.e. larger) than what our caller allocated by looking at origGlyph.
SkAutoMalloc tmpGlyphImageStorage;
// If we are going to draw-from-path, then we cannot generate color, since
// the path only makes a mask. This case should have been caught up in
// generateMetrics().
SkASSERT(!fGenerateImageFromPath ||
SkMask::kARGB32_Format != origGlyph.fMaskFormat);
if (fMaskFilter) { // restore the prefilter bounds
tmpGlyph.initWithGlyphID(origGlyph.getPackedID());
// need the original bounds, sans our maskfilter
SkMaskFilter* mf = fMaskFilter.release(); // temp disable
this->getMetrics(&tmpGlyph);
fMaskFilter = sk_sp<SkMaskFilter>(mf); // restore
// we need the prefilter bounds to be <= filter bounds
SkASSERT(tmpGlyph.fWidth <= origGlyph.fWidth);
SkASSERT(tmpGlyph.fHeight <= origGlyph.fHeight);
if (tmpGlyph.fMaskFormat == origGlyph.fMaskFormat) {
tmpGlyph.fImage = origGlyph.fImage;
} else {
tmpGlyphImageStorage.reset(tmpGlyph.computeImageSize());
tmpGlyph.fImage = tmpGlyphImageStorage.get();
}
glyph = &tmpGlyph;
}
if (fGenerateImageFromPath) {
SkPath devPath, fillPath;
SkMatrix fillToDevMatrix;
SkMask mask;
this->internalGetPath(glyph->getPackedID(), &fillPath, &devPath, &fillToDevMatrix);
glyph->toMask(&mask);
if (fRasterizer) {
mask.fFormat = SkMask::kA8_Format;
sk_bzero(glyph->fImage, mask.computeImageSize());
if (!fRasterizer->rasterize(fillPath, fillToDevMatrix, nullptr,
fMaskFilter.get(), &mask,
SkMask::kJustRenderImage_CreateMode)) {
return;
}
if (fPreBlend.isApplicable()) {
applyLUTToA8Mask(mask, fPreBlend.fG);
}
} else {
SkASSERT(SkMask::kARGB32_Format != mask.fFormat);
generateMask(mask, devPath, fPreBlend);
}
} else {
generateImage(*glyph);
}
if (fMaskFilter) {
SkMask srcM, dstM;
SkMatrix matrix;
// the src glyph image shouldn't be 3D
SkASSERT(SkMask::k3D_Format != glyph->fMaskFormat);
SkAutoSMalloc<32*32> a8storage;
glyph->toMask(&srcM);
if (SkMask::kARGB32_Format == srcM.fFormat) {
// now we need to extract the alpha-channel from the glyph's image
// and copy it into a temp buffer, and then point srcM at that temp.
srcM.fFormat = SkMask::kA8_Format;
srcM.fRowBytes = SkAlign4(srcM.fBounds.width());
size_t size = srcM.computeImageSize();
a8storage.reset(size);
srcM.fImage = (uint8_t*)a8storage.get();
extract_alpha(srcM,
(const SkPMColor*)glyph->fImage, glyph->rowBytes());
}
fRec.getMatrixFrom2x2(&matrix);
if (fMaskFilter->filterMask(&dstM, srcM, matrix, nullptr)) {
int width = SkFastMin32(origGlyph.fWidth, dstM.fBounds.width());
int height = SkFastMin32(origGlyph.fHeight, dstM.fBounds.height());
int dstRB = origGlyph.rowBytes();
int srcRB = dstM.fRowBytes;
const uint8_t* src = (const uint8_t*)dstM.fImage;
uint8_t* dst = (uint8_t*)origGlyph.fImage;
if (SkMask::k3D_Format == dstM.fFormat) {
// we have to copy 3 times as much
height *= 3;
}
// clean out our glyph, since it may be larger than dstM
//sk_bzero(dst, height * dstRB);
while (--height >= 0) {
memcpy(dst, src, width);
src += srcRB;
dst += dstRB;
}
SkMask::FreeImage(dstM.fImage);
if (fPreBlendForFilter.isApplicable()) {
applyLUTToA8Mask(srcM, fPreBlendForFilter.fG);
}
}
}
}
void SkScalerContext::getPath(SkPackedGlyphID glyphID, SkPath* path) {
this->internalGetPath(glyphID, nullptr, path, nullptr);
}
void SkScalerContext::getFontMetrics(SkPaint::FontMetrics* fm) {
this->generateFontMetrics(fm);
}
SkUnichar SkScalerContext::generateGlyphToChar(uint16_t glyph) {
return 0;
}
///////////////////////////////////////////////////////////////////////////////
void SkScalerContext::internalGetPath(SkPackedGlyphID glyphID, SkPath* fillPath,
SkPath* devPath, SkMatrix* fillToDevMatrix) {
SkPath path;
generatePath(glyphID.code(), &path);
if (fRec.fFlags & SkScalerContext::kSubpixelPositioning_Flag) {
SkFixed dx = glyphID.getSubXFixed();
SkFixed dy = glyphID.getSubYFixed();
if (dx | dy) {
path.offset(SkFixedToScalar(dx), SkFixedToScalar(dy));
}
}
if (fRec.fFrameWidth > 0 || fPathEffect != nullptr) {
// need the path in user-space, with only the point-size applied
// so that our stroking and effects will operate the same way they
// would if the user had extracted the path themself, and then
// called drawPath
SkPath localPath;
SkMatrix matrix, inverse;
fRec.getMatrixFrom2x2(&matrix);
if (!matrix.invert(&inverse)) {
// assume fillPath and devPath are already empty.
return;
}
path.transform(inverse, &localPath);
// now localPath is only affected by the paint settings, and not the canvas matrix
SkStrokeRec rec(SkStrokeRec::kFill_InitStyle);
if (fRec.fFrameWidth > 0) {
rec.setStrokeStyle(fRec.fFrameWidth,
SkToBool(fRec.fFlags & kFrameAndFill_Flag));
// glyphs are always closed contours, so cap type is ignored,
// so we just pass something.
rec.setStrokeParams((SkPaint::Cap)fRec.fStrokeCap,
(SkPaint::Join)fRec.fStrokeJoin,
fRec.fMiterLimit);
}
if (fPathEffect) {
SkPath effectPath;
if (fPathEffect->filterPath(&effectPath, localPath, &rec, nullptr)) {
localPath.swap(effectPath);
}
}
if (rec.needToApply()) {
SkPath strokePath;
if (rec.applyToPath(&strokePath, localPath)) {
localPath.swap(strokePath);
}
}
// now return stuff to the caller
if (fillToDevMatrix) {
*fillToDevMatrix = matrix;
}
if (devPath) {
localPath.transform(matrix, devPath);
}
if (fillPath) {
fillPath->swap(localPath);
}
} else { // nothing tricky to do
if (fillToDevMatrix) {
fillToDevMatrix->reset();
}
if (devPath) {
if (fillPath == nullptr) {
devPath->swap(path);
} else {
*devPath = path;
}
}
if (fillPath) {
fillPath->swap(path);
}
}
if (devPath) {
devPath->updateBoundsCache();
}
if (fillPath) {
fillPath->updateBoundsCache();
}
}
void SkScalerContextRec::getMatrixFrom2x2(SkMatrix* dst) const {
dst->setAll(fPost2x2[0][0], fPost2x2[0][1], 0,
fPost2x2[1][0], fPost2x2[1][1], 0,
0, 0, 1);
}
void SkScalerContextRec::getLocalMatrix(SkMatrix* m) const {
SkPaint::SetTextMatrix(m, fTextSize, fPreScaleX, fPreSkewX);
}
void SkScalerContextRec::getSingleMatrix(SkMatrix* m) const {
this->getLocalMatrix(m);
// now concat the device matrix
SkMatrix deviceMatrix;
this->getMatrixFrom2x2(&deviceMatrix);
m->postConcat(deviceMatrix);
}
bool SkScalerContextRec::computeMatrices(PreMatrixScale preMatrixScale, SkVector* s, SkMatrix* sA,
SkMatrix* GsA, SkMatrix* G_inv, SkMatrix* A_out)
{
// A is the 'total' matrix.
SkMatrix A;
this->getSingleMatrix(&A);
// The caller may find the 'total' matrix useful when dealing directly with EM sizes.
if (A_out) {
*A_out = A;
}
// If the 'total' matrix is singular, set the 'scale' to something finite and zero the matrices.
// All underlying ports have issues with zero text size, so use the matricies to zero.
// Map the vectors [0,1], [1,0], [1,1] and [1,-1] (the EM) through the 'total' matrix.
// If the length of one of these vectors is less than 1/256 then an EM filling square will
// never affect any pixels.
SkVector diag[4] = { { A.getScaleX() , A.getSkewY() },
{ A.getSkewX(), A.getScaleY() },
{ A.getScaleX() + A.getSkewX(), A.getScaleY() + A.getSkewY() },
{ A.getScaleX() - A.getSkewX(), A.getScaleY() - A.getSkewY() }, };
if (diag[0].lengthSqd() <= SK_ScalarNearlyZero * SK_ScalarNearlyZero ||
diag[1].lengthSqd() <= SK_ScalarNearlyZero * SK_ScalarNearlyZero ||
diag[2].lengthSqd() <= SK_ScalarNearlyZero * SK_ScalarNearlyZero ||
diag[3].lengthSqd() <= SK_ScalarNearlyZero * SK_ScalarNearlyZero)
{
s->fX = SK_Scalar1;
s->fY = SK_Scalar1;
sA->setScale(0, 0);
if (GsA) {
GsA->setScale(0, 0);
}
if (G_inv) {
G_inv->reset();
}
return false;
}
// GA is the matrix A with rotation removed.
SkMatrix GA;
bool skewedOrFlipped = A.getSkewX() || A.getSkewY() || A.getScaleX() < 0 || A.getScaleY() < 0;
if (skewedOrFlipped) {
// h is where A maps the horizontal baseline.
SkPoint h = SkPoint::Make(SK_Scalar1, 0);
A.mapPoints(&h, 1);
// G is the Givens Matrix for A (rotational matrix where GA[0][1] == 0).
SkMatrix G;
SkComputeGivensRotation(h, &G);
GA = G;
GA.preConcat(A);
// The 'remainingRotation' is G inverse, which is fairly simple since G is 2x2 rotational.
if (G_inv) {
G_inv->setAll(
G.get(SkMatrix::kMScaleX), -G.get(SkMatrix::kMSkewX), G.get(SkMatrix::kMTransX),
-G.get(SkMatrix::kMSkewY), G.get(SkMatrix::kMScaleY), G.get(SkMatrix::kMTransY),
G.get(SkMatrix::kMPersp0), G.get(SkMatrix::kMPersp1), G.get(SkMatrix::kMPersp2));
}
} else {
GA = A;
if (G_inv) {
G_inv->reset();
}
}
// At this point, given GA, create s.
switch (preMatrixScale) {
case kFull_PreMatrixScale:
s->fX = SkScalarAbs(GA.get(SkMatrix::kMScaleX));
s->fY = SkScalarAbs(GA.get(SkMatrix::kMScaleY));
break;
case kVertical_PreMatrixScale: {
SkScalar yScale = SkScalarAbs(GA.get(SkMatrix::kMScaleY));
s->fX = yScale;
s->fY = yScale;
break;
}
case kVerticalInteger_PreMatrixScale: {
SkScalar realYScale = SkScalarAbs(GA.get(SkMatrix::kMScaleY));
SkScalar intYScale = SkScalarRoundToScalar(realYScale);
if (intYScale == 0) {
intYScale = SK_Scalar1;
}
s->fX = intYScale;
s->fY = intYScale;
break;
}
}
// The 'remaining' matrix sA is the total matrix A without the scale.
if (!skewedOrFlipped && (
(kFull_PreMatrixScale == preMatrixScale) ||
(kVertical_PreMatrixScale == preMatrixScale && A.getScaleX() == A.getScaleY())))
{
// If GA == A and kFull_PreMatrixScale, sA is identity.
// If GA == A and kVertical_PreMatrixScale and A.scaleX == A.scaleY, sA is identity.
sA->reset();
} else if (!skewedOrFlipped && kVertical_PreMatrixScale == preMatrixScale) {
// If GA == A and kVertical_PreMatrixScale, sA.scaleY is SK_Scalar1.
sA->reset();
sA->setScaleX(A.getScaleX() / s->fY);
} else {
// TODO: like kVertical_PreMatrixScale, kVerticalInteger_PreMatrixScale with int scales.
*sA = A;
sA->preScale(SkScalarInvert(s->fX), SkScalarInvert(s->fY));
}
// The 'remainingWithoutRotation' matrix GsA is the non-rotational part of A without the scale.
if (GsA) {
*GsA = GA;
// G is rotational so reorders with the scale.
GsA->preScale(SkScalarInvert(s->fX), SkScalarInvert(s->fY));
}
return true;
}
SkAxisAlignment SkScalerContext::computeAxisAlignmentForHText() {
// Why fPost2x2 can be used here.
// getSingleMatrix multiplies in getLocalMatrix, which consists of
// * fTextSize (a scale, which has no effect)
// * fPreScaleX (a scale in x, which has no effect)
// * fPreSkewX (has no effect, but would on vertical text alignment).
// In other words, making the text bigger, stretching it along the
// horizontal axis, or fake italicizing it does not move the baseline.
if (0 == fRec.fPost2x2[1][0]) {
// The x axis is mapped onto the x axis.
return kX_SkAxisAlignment;
}
if (0 == fRec.fPost2x2[0][0]) {
// The x axis is mapped onto the y axis.
return kY_SkAxisAlignment;
}
return kNone_SkAxisAlignment;
}
///////////////////////////////////////////////////////////////////////////////
class SkScalerContext_Empty : public SkScalerContext {
public:
SkScalerContext_Empty(sk_sp<SkTypeface> typeface, const SkScalerContextEffects& effects,
const SkDescriptor* desc)
: SkScalerContext(std::move(typeface), effects, desc) {}
protected:
unsigned generateGlyphCount() override {
return 0;
}
uint16_t generateCharToGlyph(SkUnichar uni) override {
return 0;
}
void generateAdvance(SkGlyph* glyph) override {
glyph->zeroMetrics();
}
void generateMetrics(SkGlyph* glyph) override {
glyph->zeroMetrics();
}
void generateImage(const SkGlyph& glyph) override {}
void generatePath(SkGlyphID glyph, SkPath* path) override {}
void generateFontMetrics(SkPaint::FontMetrics* metrics) override {
if (metrics) {
sk_bzero(metrics, sizeof(*metrics));
}
}
};
extern SkScalerContext* SkCreateColorScalerContext(const SkDescriptor* desc);
std::unique_ptr<SkScalerContext> SkTypeface::createScalerContext(
const SkScalerContextEffects& effects, const SkDescriptor* desc, bool allowFailure) const
{
std::unique_ptr<SkScalerContext> c(this->onCreateScalerContext(effects, desc));
if (!c && !allowFailure) {
c = skstd::make_unique<SkScalerContext_Empty>(sk_ref_sp(const_cast<SkTypeface*>(this)),
effects, desc);
}
return c;
}
|