aboutsummaryrefslogtreecommitdiffhomepage
path: root/src/core/SkRegion.cpp
blob: b48f3bbc0b2378798fcbcd9d31f8893e6a98604c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
/* libs/corecg/SkRegion.cpp
**
** Copyright 2006, The Android Open Source Project
**
** Licensed under the Apache License, Version 2.0 (the "License"); 
** you may not use this file except in compliance with the License. 
** You may obtain a copy of the License at 
**
**     http://www.apache.org/licenses/LICENSE-2.0 
**
** Unless required by applicable law or agreed to in writing, software 
** distributed under the License is distributed on an "AS IS" BASIS, 
** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 
** See the License for the specific language governing permissions and 
** limitations under the License.
*/

#include "SkRegionPriv.h"
#include "SkTemplates.h"
#include "SkThread.h"

SkDEBUGCODE(int32_t gRgnAllocCounter;)

/////////////////////////////////////////////////////////////////////////////////////////////////

/*  Pass in a scanline, beginning with the Left value of the pair (i.e. not the Y beginning)
*/
static SkRegion::RunType* skip_scanline(const SkRegion::RunType runs[])
{
    while (runs[0] != SkRegion::kRunTypeSentinel)
    {
        SkASSERT(runs[0] < runs[1]);    // valid span
        runs += 2;
    }
    return (SkRegion::RunType*)(runs + 1);  // return past the X-sentinel
}

static SkRegion::RunType* find_y(const SkRegion::RunType runs[], int y)
{
    int top = *runs++;
    if (top <= y)
    {
        for (;;)
        {
            int bot = *runs++;
            if (bot > y)
            {
                if (bot == SkRegion::kRunTypeSentinel || *runs == SkRegion::kRunTypeSentinel)
                    break;
                return (SkRegion::RunType*)runs;
            }
            top = bot;
            runs = skip_scanline(runs);
        }
    }
    return NULL;
}

// returns true if runs are just a rect
bool SkRegion::ComputeRunBounds(const SkRegion::RunType runs[], int count, SkIRect* bounds)
{
    assert_sentinel(runs[0], false);    // top

    if (count == kRectRegionRuns)
    {
        assert_sentinel(runs[1], false);    // bottom
        assert_sentinel(runs[2], false);    // left
        assert_sentinel(runs[3], false);    // right
        assert_sentinel(runs[4], true);
        assert_sentinel(runs[5], true);

        SkASSERT(runs[0] < runs[1]);    // valid height
        SkASSERT(runs[2] < runs[3]);    // valid width

        bounds->set(runs[2], runs[0], runs[3], runs[1]);
        return true;
    }

    int left = SK_MaxS32;
    int rite = SK_MinS32;
    int bot;

    bounds->fTop = *runs++;
    do {
        bot = *runs++;
        if (*runs < SkRegion::kRunTypeSentinel)
        {
            if (left > *runs)
                left = *runs;
            runs = skip_scanline(runs);
            if (rite < runs[-2])
                rite = runs[-2];
        }
        else
            runs += 1;  // skip X-sentinel
    } while (runs[0] < SkRegion::kRunTypeSentinel);
    bounds->fLeft = left;
    bounds->fRight = rite;
    bounds->fBottom = bot;
    return false;
}

//////////////////////////////////////////////////////////////////////////

SkRegion::SkRegion()
{
    fBounds.set(0, 0, 0, 0);
    fRunHead = SkRegion_gEmptyRunHeadPtr;
}

SkRegion::SkRegion(const SkRegion& src)
{
    fRunHead = SkRegion_gEmptyRunHeadPtr;   // just need a value that won't trigger sk_free(fRunHead)
    this->setRegion(src);
}

SkRegion::SkRegion(const SkIRect& rect)
{
    fRunHead = SkRegion_gEmptyRunHeadPtr;   // just need a value that won't trigger sk_free(fRunHead)
    this->setRect(rect);
}

SkRegion::~SkRegion()
{
    this->freeRuns();
}

void SkRegion::freeRuns()
{
    if (fRunHead->isComplex())
    {
        SkASSERT(fRunHead->fRefCnt >= 1);
        if (sk_atomic_dec(&fRunHead->fRefCnt) == 1)
        {
            //SkASSERT(gRgnAllocCounter > 0);
            //SkDEBUGCODE(sk_atomic_dec(&gRgnAllocCounter));
            //SkDEBUGF(("************** gRgnAllocCounter::free %d\n", gRgnAllocCounter));
            sk_free(fRunHead);
        }
    }
}

void SkRegion::allocateRuns(int count)
{
    fRunHead = RunHead::Alloc(count);
}

SkRegion& SkRegion::operator=(const SkRegion& src)
{
    (void)this->setRegion(src);
    return *this;
}

void SkRegion::swap(SkRegion& other)
{
    SkTSwap<SkIRect>(fBounds, other.fBounds);
    SkTSwap<RunHead*>(fRunHead, other.fRunHead);
}

bool SkRegion::setEmpty()
{
    this->freeRuns();
    fBounds.set(0, 0, 0, 0);
    fRunHead = SkRegion_gEmptyRunHeadPtr;
    return false;
}

bool SkRegion::setRect(int32_t left, int32_t top, int32_t right, int32_t bottom)
{
    if (left >= right || top >= bottom)
        return this->setEmpty();

    this->freeRuns();
    fBounds.set(left, top, right, bottom);
    fRunHead = SkRegion_gRectRunHeadPtr;
    return true;
}

bool SkRegion::setRect(const SkIRect& r)
{
    return this->setRect(r.fLeft, r.fTop, r.fRight, r.fBottom);
}

bool SkRegion::setRegion(const SkRegion& src)
{
    if (this != &src)
    {
        this->freeRuns();

        fBounds = src.fBounds;
        fRunHead = src.fRunHead;
        if (fRunHead->isComplex())
            sk_atomic_inc(&fRunHead->fRefCnt);
    }
    return fRunHead != SkRegion_gEmptyRunHeadPtr;
}

bool SkRegion::op(const SkIRect& rect, const SkRegion& rgn, Op op)
{
    SkRegion tmp(rect);

    return this->op(tmp, rgn, op);
}

bool SkRegion::op(const SkRegion& rgn, const SkIRect& rect, Op op)
{
    SkRegion tmp(rect);

    return this->op(rgn, tmp, op);
}

//////////////////////////////////////////////////////////////////////////////////////

int SkRegion::count_runtype_values(int* itop, int* ibot) const
{
    if (this == NULL)
    {
        *itop = SK_MinS32;
        *ibot = SK_MaxS32;
        return 0;
    }

    int maxT;

    if (this->isRect())
        maxT = 2;
    else
    {
        SkASSERT(this->isComplex());
        // skip the top
        const RunType*  runs = fRunHead->readonly_runs() + 1;
        maxT = 0;

        do {
            const RunType* next = skip_scanline(runs + 1);
            SkASSERT(next > runs);
            int         T = (int)(next - runs - 1);
            if (maxT < T)
                maxT = T;
            runs = next;
        } while (runs[0] < SkRegion::kRunTypeSentinel);
    }
    *itop = fBounds.fTop;
    *ibot = fBounds.fBottom;
    return maxT;
}

bool SkRegion::setRuns(RunType runs[], int count)
{
    SkDEBUGCODE(this->validate();)
    SkASSERT(count > 0);

    if (count <= 2)
    {
    //  SkDEBUGF(("setRuns: empty\n"));
        assert_sentinel(runs[count-1], true);
        return this->setEmpty();
    }

    // trim off any empty spans from the top and bottom
    // weird I should need this, perhaps op() could be smarter...
    if (count > kRectRegionRuns)
    {
        RunType* stop = runs + count;
        assert_sentinel(runs[0], false);    // top
        assert_sentinel(runs[1], false);    // bottom
        if (runs[2] == SkRegion::kRunTypeSentinel)    // should be first left...
        {
            runs += 2;  // skip empty initial span
            runs[0] = runs[-1]; // set new top to prev bottom
            assert_sentinel(runs[1], false);    // bot: a sentinal would mean two in a row
            assert_sentinel(runs[2], false);    // left
            assert_sentinel(runs[3], false);    // right
        }

        // now check for a trailing empty span
        assert_sentinel(stop[-1], true);
        assert_sentinel(stop[-2], true);
        assert_sentinel(stop[-3], false);   // should be last right
        if (stop[-4] == SkRegion::kRunTypeSentinel)   // eek, stop[-3] was a bottom with no x-runs
        {
            stop[-3] = SkRegion::kRunTypeSentinel;    // kill empty last span
            stop -= 2;
            assert_sentinel(stop[-1], true);
            assert_sentinel(stop[-2], true);
            assert_sentinel(stop[-3], false);
            assert_sentinel(stop[-4], false);
            assert_sentinel(stop[-5], false);
        }
        count = (int)(stop - runs);
    }

    SkASSERT(count >= kRectRegionRuns);

    if (ComputeRunBounds(runs, count, &fBounds))
    {
    //  SkDEBUGF(("setRuns: rect[%d %d %d %d]\n", fBounds.fLeft, fBounds.fTop, fBounds.fRight, fBounds.fBottom));
        return this->setRect(fBounds);
    }

    //  if we get here, we need to become a complex region

    if (!fRunHead->isComplex() || fRunHead->fRunCount != count)
    {
#ifdef SK_DEBUGx
        SkDebugf("setRuns: rgn [");
        {
            const RunType* r = runs;

            SkDebugf(" top: %d\n", *r++);
            while (*r < SkRegion::kRunTypeSentinel)
            {
                SkDebugf(" bottom: %d", *r++);
                while (*r < SkRegion::kRunTypeSentinel)
                {
                    SkDebugf(" [%d %d]", r[0], r[1]);
                    r += 2;
                }
                SkDebugf("\n");
            }
        }
#endif
        this->freeRuns();
        this->allocateRuns(count);
    }
    
    // must call this before we can write directly into runs()
    // in case we are sharing the buffer with another region (copy on write)
    fRunHead = fRunHead->ensureWritable();
    memcpy(fRunHead->writable_runs(), runs, count * sizeof(RunType));

    SkDEBUGCODE(this->validate();)

    return true;
}

void SkRegion::BuildRectRuns(const SkIRect& bounds,
                             RunType runs[kRectRegionRuns])
{
    runs[0] = bounds.fTop;
    runs[1] = bounds.fBottom;
    runs[2] = bounds.fLeft;
    runs[3] = bounds.fRight;
    runs[4] = kRunTypeSentinel;
    runs[5] = kRunTypeSentinel;
}

static SkRegion::RunType* find_scanline(const SkRegion::RunType runs[], int y)
{
    SkASSERT(y >= runs[0]); // if this fails, we didn't do a quick check on the boudns

    runs += 1;  // skip top-Y
    for (;;)
    {
        if (runs[0] == SkRegion::kRunTypeSentinel)
            break;
        if (y < runs[0])
            return (SkRegion::RunType*)&runs[1];
        runs = skip_scanline(runs + 1); // skip the Y value before calling
    }
    return NULL;
}

bool SkRegion::contains(int x, int y) const
{
    if (!fBounds.contains(x, y))
        return false;

    if (this->isRect())
        return true;

    SkASSERT(this->isComplex());
    const RunType* runs = find_scanline(fRunHead->readonly_runs(), y);

    if (runs)
    {   for (;;)
        {   if (x < runs[0])
                break;
            if (x < runs[1])
                return true;
            runs += 2;
        }
    }
    return false;
}

bool SkRegion::contains(const SkIRect& r) const
{
    SkRegion tmp(r);
    
    return this->contains(tmp);
}

bool SkRegion::contains(const SkRegion& rgn) const
{
    if (this->isEmpty() || rgn.isEmpty() || !fBounds.contains(rgn.fBounds))
        return false;

    if (this->isRect())
        return true;

    SkRegion    tmp;
    
    tmp.op(*this, rgn, kUnion_Op);
    return tmp == *this;
}

const SkRegion::RunType* SkRegion::getRuns(RunType tmpStorage[], int* count) const
{
    SkASSERT(tmpStorage && count);
    const RunType* runs = tmpStorage;

    if (this->isEmpty())
    {
        tmpStorage[0] = kRunTypeSentinel;
        *count = 1;
    }
    else if (this->isRect())
    {
        BuildRectRuns(fBounds, tmpStorage);
        *count = kRectRegionRuns;
    }
    else
    {
        *count = fRunHead->fRunCount;
        runs = fRunHead->readonly_runs();
    }
    return runs;
}

/////////////////////////////////////////////////////////////////////////////////////

bool SkRegion::intersects(const SkIRect& r) const {
    if (this->isEmpty() || r.isEmpty()) {
        return false;
    }
    
    if (!SkIRect::Intersects(fBounds, r)) {
        return false;
    }

    if (this->isRect()) {
        return true;
    }
    
    // we are complex
    SkRegion tmp;
    return tmp.op(*this, r, kIntersect_Op);
}

bool SkRegion::intersects(const SkRegion& rgn) const {
    if (this->isEmpty() || rgn.isEmpty()) {
        return false;
    }
    
    if (!SkIRect::Intersects(fBounds, rgn.fBounds)) {
        return false;
    }
    
    if (this->isRect() && rgn.isRect()) {
        return true;
    }
    
    // one or both of us is complex
    // TODO: write a faster version that aborts as soon as we write the first
    //       non-empty span, to avoid build the entire result
    SkRegion tmp;
    return tmp.op(*this, rgn, kIntersect_Op);
}

/////////////////////////////////////////////////////////////////////////////////////

int operator==(const SkRegion& a, const SkRegion& b)
{
    SkDEBUGCODE(a.validate();)
    SkDEBUGCODE(b.validate();)

    if (&a == &b)
        return true;
    if (a.fBounds != b.fBounds)
        return false;
    
    const SkRegion::RunHead* ah = a.fRunHead;
    const SkRegion::RunHead* bh = b.fRunHead;

    // this catches empties and rects being equal
    if (ah == bh) 
        return true;
    
    // now we insist that both are complex (but different ptrs)
    if (!ah->isComplex() || !bh->isComplex())
        return false;

    return  ah->fRunCount == bh->fRunCount &&
            !memcmp(ah->readonly_runs(), bh->readonly_runs(),
                    ah->fRunCount * sizeof(SkRegion::RunType));
}

void SkRegion::translate(int dx, int dy, SkRegion* dst) const
{
    SkDEBUGCODE(this->validate();)

    if (NULL == dst)
        return;

    if (this->isEmpty())
        dst->setEmpty();
    else if (this->isRect())
        dst->setRect(fBounds.fLeft + dx, fBounds.fTop + dy,
                     fBounds.fRight + dx, fBounds.fBottom + dy);
    else
    {
        if (this == dst)
        {
            dst->fRunHead = dst->fRunHead->ensureWritable();
        }
        else
        {
            SkRegion    tmp;
            tmp.allocateRuns(fRunHead->fRunCount);
            tmp.fBounds = fBounds;
            dst->swap(tmp);
        }

        dst->fBounds.offset(dx, dy);
        
        const RunType*  sruns = fRunHead->readonly_runs();
        RunType*        druns = dst->fRunHead->writable_runs();

        *druns++ = (SkRegion::RunType)(*sruns++ + dy);    // top
        for (;;)
        {
            int bottom = *sruns++;
            if (bottom == kRunTypeSentinel)
                break;
            *druns++ = (SkRegion::RunType)(bottom + dy);  // bottom;
            for (;;)
            {
                int x = *sruns++;
                if (x == kRunTypeSentinel)
                    break;
                *druns++ = (SkRegion::RunType)(x + dx);
                *druns++ = (SkRegion::RunType)(*sruns++ + dx);
            }
            *druns++ = kRunTypeSentinel;    // x sentinel
        }
        *druns++ = kRunTypeSentinel;    // y sentinel

        SkASSERT(sruns - fRunHead->readonly_runs() == fRunHead->fRunCount);
        SkASSERT(druns - dst->fRunHead->readonly_runs() == dst->fRunHead->fRunCount);
    }

    SkDEBUGCODE(this->validate();)
}

/////////////////////////////////////////////////////////////////////////////////////

#if defined _WIN32 && _MSC_VER >= 1300  // disable warning : local variable used without having been initialized
#pragma warning ( push )
#pragma warning ( disable : 4701 )
#endif

#ifdef SK_DEBUG
static void assert_valid_pair(int left, int rite)
{
    SkASSERT(left == SkRegion::kRunTypeSentinel || left < rite);
}
#else
    #define assert_valid_pair(left, rite)
#endif

struct spanRec {
    const SkRegion::RunType*    fA_runs;
    const SkRegion::RunType*    fB_runs;
    int                         fA_left, fA_rite, fB_left, fB_rite;
    int                         fLeft, fRite, fInside;
    
    void init(const SkRegion::RunType a_runs[], const SkRegion::RunType b_runs[])
    {        
        fA_left = *a_runs++;
        fA_rite = *a_runs++;
        fB_left = *b_runs++;
        fB_rite = *b_runs++;

        fA_runs = a_runs;
        fB_runs = b_runs;
    }
    
    bool done() const
    {
        SkASSERT(fA_left <= SkRegion::kRunTypeSentinel);
        SkASSERT(fB_left <= SkRegion::kRunTypeSentinel);
        return fA_left == SkRegion::kRunTypeSentinel && fB_left == SkRegion::kRunTypeSentinel;
    }

    void next()
    {
        assert_valid_pair(fA_left, fA_rite);
        assert_valid_pair(fB_left, fB_rite);

        int     inside, left, rite SK_INIT_TO_AVOID_WARNING;
        bool    a_flush = false;
        bool    b_flush = false;
        
        int a_left = fA_left;
        int a_rite = fA_rite;
        int b_left = fB_left;
        int b_rite = fB_rite;

        if (a_left < b_left)
        {
            inside = 1;
            left = a_left;
            if (a_rite <= b_left)   // [...] <...>
            {
                rite = a_rite;
                a_flush = true;
            }
            else // [...<..]...> or [...<...>...]
                rite = a_left = b_left;
        }
        else if (b_left < a_left)
        {
            inside = 2;
            left = b_left;
            if (b_rite <= a_left)   // [...] <...>
            {
                rite = b_rite;
                b_flush = true;
            }
            else // [...<..]...> or [...<...>...]
                rite = b_left = a_left;
        }
        else    // a_left == b_left
        {
            inside = 3;
            left = a_left;  // or b_left
            if (a_rite <= b_rite)
            {
                rite = b_left = a_rite;
                a_flush = true;
            }
            if (b_rite <= a_rite)
            {
                rite = a_left = b_rite;
                b_flush = true;
            }
        }

        if (a_flush)
        {
            a_left = *fA_runs++;
            a_rite = *fA_runs++;
        }
        if (b_flush)
        {
            b_left = *fB_runs++;
            b_rite = *fB_runs++;
        }

        SkASSERT(left <= rite);
        
        // now update our state
        fA_left = a_left;
        fA_rite = a_rite;
        fB_left = b_left;
        fB_rite = b_rite;
        
        fLeft = left;
        fRite = rite;
        fInside = inside;
    }
};

static SkRegion::RunType* operate_on_span(const SkRegion::RunType a_runs[],
                                          const SkRegion::RunType b_runs[],
                                          SkRegion::RunType dst[],
                                          int min, int max)
{
    spanRec rec;
    bool    firstInterval = true;
    
    rec.init(a_runs, b_runs);

    while (!rec.done())
    {
        rec.next();
        
        int left = rec.fLeft;
        int rite = rec.fRite;
        
        // add left,rite to our dst buffer (checking for coincidence
        if ((unsigned)(rec.fInside - min) <= (unsigned)(max - min) &&
            left < rite)    // skip if equal
        {
            if (firstInterval || dst[-1] < left)
            {
                *dst++ = (SkRegion::RunType)(left);
                *dst++ = (SkRegion::RunType)(rite);
                firstInterval = false;
            }
            else    // update the right edge
                dst[-1] = (SkRegion::RunType)(rite);
        }
    }

    *dst++ = SkRegion::kRunTypeSentinel;
    return dst;
}

#if defined _WIN32 && _MSC_VER >= 1300
#pragma warning ( pop )
#endif

static const struct {
    uint8_t fMin;
    uint8_t fMax;
} gOpMinMax[] = {
    { 1, 1 },   // Difference
    { 3, 3 },   // Intersection
    { 1, 3 },   // Union
    { 1, 2 }    // XOR
};

class RgnOper {
public:
    RgnOper(int top, SkRegion::RunType dst[], SkRegion::Op op)
    {
        // need to ensure that the op enum lines up with our minmax array
        SkASSERT(SkRegion::kDifference_Op == 0);
        SkASSERT(SkRegion::kIntersect_Op == 1);
        SkASSERT(SkRegion::kUnion_Op == 2);
        SkASSERT(SkRegion::kXOR_Op == 3);
        SkASSERT((unsigned)op <= 3);

        fStartDst = dst;
        fPrevDst = dst + 1;
        fPrevLen = 0;       // will never match a length from operate_on_span
        fTop = (SkRegion::RunType)(top);    // just a first guess, we might update this

        fMin = gOpMinMax[op].fMin;
        fMax = gOpMinMax[op].fMax;
    }

    void addSpan(int bottom, const SkRegion::RunType a_runs[], const SkRegion::RunType b_runs[])
    {
        SkRegion::RunType*  start = fPrevDst + fPrevLen + 1;    // skip X values and slot for the next Y
        SkRegion::RunType*  stop = operate_on_span(a_runs, b_runs, start, fMin, fMax);
        size_t              len = stop - start;

        if (fPrevLen == len && !memcmp(fPrevDst, start, len * sizeof(SkRegion::RunType)))   // update Y value
            fPrevDst[-1] = (SkRegion::RunType)(bottom);
        else    // accept the new span
        {
            if (len == 1 && fPrevLen == 0) {
                fTop = (SkRegion::RunType)(bottom); // just update our bottom
            } else {
                start[-1] = (SkRegion::RunType)(bottom);
                fPrevDst = start;
                fPrevLen = len;
            }
        }
    }
    
    int flush()
    {
        fStartDst[0] = fTop;
        fPrevDst[fPrevLen] = SkRegion::kRunTypeSentinel;
        return (int)(fPrevDst - fStartDst + fPrevLen + 1);
    }

    uint8_t fMin, fMax;

private:
    SkRegion::RunType*  fStartDst;
    SkRegion::RunType*  fPrevDst;
    size_t              fPrevLen;
    SkRegion::RunType   fTop;
};

static int operate( const SkRegion::RunType a_runs[],
                    const SkRegion::RunType b_runs[],
                    SkRegion::RunType dst[],
                    SkRegion::Op op)
{
    const SkRegion::RunType sentinel = SkRegion::kRunTypeSentinel;

    int a_top = *a_runs++;
    int a_bot = *a_runs++;
    int b_top = *b_runs++;
    int b_bot = *b_runs++;

    assert_sentinel(a_top, false);
    assert_sentinel(a_bot, false);
    assert_sentinel(b_top, false);
    assert_sentinel(b_bot, false);

    RgnOper oper(SkMin32(a_top, b_top), dst, op);
    
    bool firstInterval = true;
    int prevBot = SkRegion::kRunTypeSentinel; // so we fail the first test
    
    while (a_bot < SkRegion::kRunTypeSentinel || b_bot < SkRegion::kRunTypeSentinel)
    {
        int         top, bot SK_INIT_TO_AVOID_WARNING;
        const SkRegion::RunType*    run0 = &sentinel;
        const SkRegion::RunType*    run1 = &sentinel;
        bool        a_flush = false;
        bool        b_flush = false;
        int         inside;

        if (a_top < b_top)
        {
            inside = 1;
            top = a_top;
            run0 = a_runs;
            if (a_bot <= b_top) // [...] <...>
            {
                bot = a_bot;
                a_flush = true;
            }
            else // [...<..]...> or [...<...>...]
                bot = a_top = b_top;
        }
        else if (b_top < a_top)
        {
            inside = 2;
            top = b_top;
            run1 = b_runs;
            if (b_bot <= a_top) // [...] <...>
            {
                bot = b_bot;
                b_flush = true;
            }
            else // [...<..]...> or [...<...>...]
                bot = b_top = a_top;
        }
        else    // a_top == b_top
        {
            inside = 3;
            top = a_top;    // or b_top
            run0 = a_runs;
            run1 = b_runs;
            if (a_bot <= b_bot)
            {
                bot = b_top = a_bot;
                a_flush = true;
            }
            if (b_bot <= a_bot)
            {
                bot = a_top = b_bot;
                b_flush = true;
            }
        }
        
        if (top > prevBot)
            oper.addSpan(top, &sentinel, &sentinel);

//      if ((unsigned)(inside - oper.fMin) <= (unsigned)(oper.fMax - oper.fMin))
        {
            oper.addSpan(bot, run0, run1);
            firstInterval = false;
        }

        if (a_flush)
        {
            a_runs = skip_scanline(a_runs);
            a_top = a_bot;
            a_bot = *a_runs++;
            if (a_bot == SkRegion::kRunTypeSentinel)
                a_top = a_bot;
        }
        if (b_flush)
        {
            b_runs = skip_scanline(b_runs);
            b_top = b_bot;
            b_bot = *b_runs++;
            if (b_bot == SkRegion::kRunTypeSentinel)
                b_top = b_bot;
        }
        
        prevBot = bot;
    }
    return oper.flush();
}

///////////////////////////////////////////////////////////////////////////////

/*  Given count RunTypes in a complex region, return the worst case number of
    logical intervals that represents (i.e. number of rects that would be
    returned from the iterator).
 
    We could just return count/2, since there must be at least 2 values per
    interval, but we can first trim off the const overhead of the initial TOP
    value, plus the final BOTTOM + 2 sentinels.
 */
static int count_to_intervals(int count) {
    SkASSERT(count >= 6);   // a single rect is 6 values
    return (count - 4) >> 1;
}

/*  Given a number of intervals, what is the worst case representation of that
    many intervals?
 
    Worst case (from a storage perspective), is a vertical stack of single
    intervals:  TOP + N * (BOTTOM LEFT RIGHT SENTINEL) + SENTINEL
 */
static int intervals_to_count(int intervals) {
    return 1 + intervals * 4 + 1;
}

/*  Given the counts of RunTypes in two regions, return the worst-case number
    of RunTypes need to store the result after a region-op.
 */
static int compute_worst_case_count(int a_count, int b_count) {
    int a_intervals = count_to_intervals(a_count);
    int b_intervals = count_to_intervals(b_count);
    // Our heuristic worst case is ai * (bi + 1) + bi * (ai + 1)
    int intervals = 2 * a_intervals * b_intervals + a_intervals + b_intervals;
    // convert back to number of RunType values
    return intervals_to_count(intervals);
}

bool SkRegion::op(const SkRegion& rgnaOrig, const SkRegion& rgnbOrig, Op op)
{
    SkDEBUGCODE(this->validate();)

    SkASSERT((unsigned)op < kOpCount);
    
    if (kReplace_Op == op)
        return this->set(rgnbOrig);
    
    // swith to using pointers, so we can swap them as needed
    const SkRegion* rgna = &rgnaOrig;
    const SkRegion* rgnb = &rgnbOrig;
    // after this point, do not refer to rgnaOrig or rgnbOrig!!!

    // collaps difference and reverse-difference into just difference
    if (kReverseDifference_Op == op)
    {
        SkTSwap<const SkRegion*>(rgna, rgnb);
        op = kDifference_Op;
    }

    SkIRect bounds;
    bool    a_empty = rgna->isEmpty();
    bool    b_empty = rgnb->isEmpty();
    bool    a_rect = rgna->isRect();
    bool    b_rect = rgnb->isRect();

    switch (op) {
    case kDifference_Op:
        if (a_empty)
            return this->setEmpty();
        if (b_empty || !SkIRect::Intersects(rgna->fBounds, rgnb->fBounds))
            return this->setRegion(*rgna);
        break;

    case kIntersect_Op:
        if ((a_empty | b_empty)
                || !bounds.intersect(rgna->fBounds, rgnb->fBounds))
            return this->setEmpty();
        if (a_rect & b_rect)
            return this->setRect(bounds);
        break;

    case kUnion_Op:
        if (a_empty)
            return this->setRegion(*rgnb);
        if (b_empty)
            return this->setRegion(*rgna);
        if (a_rect && rgna->fBounds.contains(rgnb->fBounds))
            return this->setRegion(*rgna);
        if (b_rect && rgnb->fBounds.contains(rgna->fBounds))
            return this->setRegion(*rgnb);
        break;

    case kXOR_Op:
        if (a_empty)
            return this->setRegion(*rgnb);
        if (b_empty)
            return this->setRegion(*rgna);
        break;
    default:
        SkASSERT(!"unknown region op");
        return !this->isEmpty();
    }

    RunType tmpA[kRectRegionRuns];
    RunType tmpB[kRectRegionRuns];

    int a_count, b_count;
    const RunType* a_runs = rgna->getRuns(tmpA, &a_count);
    const RunType* b_runs = rgnb->getRuns(tmpB, &b_count);

    int dstCount = compute_worst_case_count(a_count, b_count);
    SkAutoSTMalloc<32, RunType> array(dstCount);

    int count = operate(a_runs, b_runs, array.get(), op);
    SkASSERT(count <= dstCount);
    return this->setRuns(array.get(), count);
}

//////////////////////////////////////////////////////////////////////////////////////////////////////////

#include "SkBuffer.h"

uint32_t SkRegion::flatten(void* storage) const {
    if (NULL == storage) {
        uint32_t size = sizeof(int32_t); // -1 (empty), 0 (rect), runCount
        if (!this->isEmpty()) {
            size += sizeof(fBounds);
            if (this->isComplex()) {
                size += fRunHead->fRunCount * sizeof(RunType);
            }
        }
        return size;
    }

    SkWBuffer   buffer(storage);

    if (this->isEmpty()) {
        buffer.write32(-1);
    } else {
        bool isRect = this->isRect();

        buffer.write32(isRect ? 0 : fRunHead->fRunCount);
        buffer.write(&fBounds, sizeof(fBounds));

        if (!isRect) {
            buffer.write(fRunHead->readonly_runs(),
                         fRunHead->fRunCount * sizeof(RunType));
        }
    }
    return buffer.pos();
}

uint32_t SkRegion::unflatten(const void* storage) {
    SkRBuffer   buffer(storage);
    SkRegion    tmp;
    int32_t     count;
    
    count = buffer.readS32();
    if (count >= 0) {
        buffer.read(&tmp.fBounds, sizeof(tmp.fBounds));
        if (count == 0) {
            tmp.fRunHead = SkRegion_gRectRunHeadPtr;
        } else {
            tmp.allocateRuns(count);
            buffer.read(tmp.fRunHead->writable_runs(), count * sizeof(RunType));
        }
    }
    this->swap(tmp);
    return buffer.pos();
}

//////////////////////////////////////////////////////////////////////////////////////////////////////////

#ifdef SK_DEBUG

static const SkRegion::RunType* validate_line(const SkRegion::RunType run[], const SkIRect& bounds)
{
    // *run is the bottom of the current span
    SkASSERT(*run > bounds.fTop);
    SkASSERT(*run <= bounds.fBottom);
    run += 1;

    // check for empty span
    if (*run != SkRegion::kRunTypeSentinel)
    {
        int prevRite = bounds.fLeft - 1;
        do {
            int left = *run++;
            int rite = *run++;
            SkASSERT(left < rite);
            SkASSERT(left > prevRite);
            SkASSERT(rite <= bounds.fRight);
            prevRite = rite;
        } while (*run < SkRegion::kRunTypeSentinel);
    }
    return run + 1; // skip sentinel
}

void SkRegion::validate() const
{
    if (this->isEmpty())
    {
        // check for explicit empty (the zero rect), so we can compare rects to know when
        // two regions are equal (i.e. emptyRectA == emptyRectB)
        // this is stricter than just asserting fBounds.isEmpty()
        SkASSERT(fBounds.fLeft == 0 && fBounds.fTop == 0 && fBounds.fRight == 0 && fBounds.fBottom == 0);
    }
    else
    {
        SkASSERT(!fBounds.isEmpty());
        if (!this->isRect())
        {
            SkASSERT(fRunHead->fRefCnt >= 1);
            SkASSERT(fRunHead->fRunCount >= kRectRegionRuns);

            const RunType* run = fRunHead->readonly_runs();
            const RunType* stop = run + fRunHead->fRunCount;

            // check that our bounds match our runs
            {
                SkIRect bounds;
                bool isARect = ComputeRunBounds(run, stop - run, &bounds);
                SkASSERT(!isARect);
                SkASSERT(bounds == fBounds);
            }

            SkASSERT(*run == fBounds.fTop);
            run++;
            do {
                run = validate_line(run, fBounds);
            } while (*run < kRunTypeSentinel);
            SkASSERT(run + 1 == stop);
        }
    }
}

void SkRegion::dump() const
{
    if (this->isEmpty())
        SkDebugf("  rgn: empty\n");
    else
    {
        SkDebugf("  rgn: [%d %d %d %d]", fBounds.fLeft, fBounds.fTop, fBounds.fRight, fBounds.fBottom);
        if (this->isComplex())
        {
            const RunType* runs = fRunHead->readonly_runs();
            for (int i = 0; i < fRunHead->fRunCount; i++)
                SkDebugf(" %d", runs[i]);
        }
        SkDebugf("\n");
    }
}

#endif

/////////////////////////////////////////////////////////////////////////////////////

SkRegion::Iterator::Iterator(const SkRegion& rgn) {
    this->reset(rgn);
}

bool SkRegion::Iterator::rewind() {
    if (fRgn) {
        this->reset(*fRgn);
        return true;
    }
    return false;
}

void SkRegion::Iterator::reset(const SkRegion& rgn) {
    fRgn = &rgn;
    if (rgn.isEmpty()) {
        fDone = true;
    } else {
        fDone = false;
        if (rgn.isRect()) {
            fRect = rgn.fBounds;
            fRuns = NULL;
        } else {
            fRuns = rgn.fRunHead->readonly_runs();
            fRect.set(fRuns[2], fRuns[0], fRuns[3], fRuns[1]);
            fRuns += 4;
        }
    }
}

void SkRegion::Iterator::next() {
    if (fDone) {
        return;
    }

    if (fRuns == NULL) {   // rect case
        fDone = true;
        return;
    }

    const RunType* runs = fRuns;

    if (runs[0] < kRunTypeSentinel) { // valid X value
        fRect.fLeft = runs[0];
        fRect.fRight = runs[1];
        runs += 2;
    } else {    // we're at the end of a line
        runs += 1;
        if (runs[0] < kRunTypeSentinel) { // valid Y value
            if (runs[1] == kRunTypeSentinel) {    // empty line
                fRect.fTop = runs[0];
                runs += 2;
            } else {
                fRect.fTop = fRect.fBottom;
            }
    
            fRect.fBottom = runs[0];
            assert_sentinel(runs[1], false);
            fRect.fLeft = runs[1];
            fRect.fRight = runs[2];
            runs += 3;
        } else {    // end of rgn
            fDone = true;
        }
    }
    fRuns = runs;
}

SkRegion::Cliperator::Cliperator(const SkRegion& rgn, const SkIRect& clip)
        : fIter(rgn), fClip(clip), fDone(true) {
    const SkIRect& r = fIter.rect();

    while (!fIter.done()) {
        if (r.fTop >= clip.fBottom) {
            break;
        }
        if (fRect.intersect(clip, r)) {
            fDone = false;
            break;
        }
        fIter.next();
    }
}

void SkRegion::Cliperator::next() {
    if (fDone) {
        return;
    }

    const SkIRect& r = fIter.rect();

    fDone = true;
    fIter.next();
    while (!fIter.done()) {
        if (r.fTop >= fClip.fBottom) {
            break;
        }
        if (fRect.intersect(fClip, r)) {
            fDone = false;
            break;
        }
        fIter.next();
    }
}

//////////////////////////////////////////////////////////////////////

SkRegion::Spanerator::Spanerator(const SkRegion& rgn, int y, int left, int right)
{
    SkDEBUGCODE(rgn.validate();)

    const SkIRect& r = rgn.getBounds();

    fDone = true;
    if (!rgn.isEmpty() && y >= r.fTop && y < r.fBottom && right > r.fLeft && left < r.fRight)
    {
        if (rgn.isRect())
        {
            if (left < r.fLeft)
                left = r.fLeft;
            if (right > r.fRight)
                right = r.fRight;

            fLeft = left;
            fRight = right;
            fRuns = NULL;    // means we're a rect, not a rgn
            fDone = false;
        }
        else
        {
            const SkRegion::RunType* runs = find_y(rgn.fRunHead->readonly_runs(), y);
            if (runs)
            {
                for (;;)
                {
                    if (runs[0] >= right)   // runs[0..1] is to the right of the span, so we're done
                        break;
                    if (runs[1] <= left)    // runs[0..1] is to the left of the span, so continue
                    {
                        runs += 2;
                        continue;
                    }
                    // runs[0..1] intersects the span
                    fRuns = runs;
                    fLeft = left;
                    fRight = right;
                    fDone = false;
                    break;
                }
            }
        }
    }
}

bool SkRegion::Spanerator::next(int* left, int* right)
{
    if (fDone) return false;

    if (fRuns == NULL)   // we're a rect
    {
        fDone = true;   // ok, now we're done
        if (left) *left = fLeft;
        if (right) *right = fRight;
        return true;    // this interval is legal
    }

    const SkRegion::RunType* runs = fRuns;

    if (runs[0] >= fRight)
    {
        fDone = true;
        return false;
    }

    SkASSERT(runs[1] > fLeft);

    if (left)
        *left = SkMax32(fLeft, runs[0]);
    if (right)
        *right = SkMin32(fRight, runs[1]);
    fRuns = runs + 2;
    return true;
}

///////////////////////////////////////////////////////////////////////////////

#ifdef SK_DEBUG

bool SkRegion::debugSetRuns(const RunType runs[], int count) {
    // we need to make a copy, since the real method may modify the array, and
    // so it cannot be const.
    
    SkAutoTArray<RunType> storage(count);
    memcpy(storage.get(), runs, count * sizeof(RunType));
    return this->setRuns(storage.get(), count);
}

#endif