1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
|
/*
* Copyright 2006 The Android Open Source Project
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkRect.h"
void SkIRect::join(int32_t left, int32_t top, int32_t right, int32_t bottom) {
// do nothing if the params are empty
if (left >= right || top >= bottom) {
return;
}
// if we are empty, just assign
if (fLeft >= fRight || fTop >= fBottom) {
this->set(left, top, right, bottom);
} else {
if (left < fLeft) fLeft = left;
if (top < fTop) fTop = top;
if (right > fRight) fRight = right;
if (bottom > fBottom) fBottom = bottom;
}
}
void SkIRect::sort() {
if (fLeft > fRight) {
SkTSwap<int32_t>(fLeft, fRight);
}
if (fTop > fBottom) {
SkTSwap<int32_t>(fTop, fBottom);
}
}
/////////////////////////////////////////////////////////////////////////////
void SkRect::toQuad(SkPoint quad[4]) const {
SkASSERT(quad);
quad[0].set(fLeft, fTop);
quad[1].set(fRight, fTop);
quad[2].set(fRight, fBottom);
quad[3].set(fLeft, fBottom);
}
#include "SkNx.h"
static inline bool is_finite(const Sk4s& value) {
auto finite = value * Sk4s(0) == Sk4s(0);
return finite.allTrue();
}
bool SkRect::setBoundsCheck(const SkPoint pts[], int count) {
SkASSERT((pts && count > 0) || count == 0);
bool isFinite = true;
if (count <= 0) {
sk_bzero(this, sizeof(SkRect));
} else {
Sk4s min, max, accum;
if (count & 1) {
min = Sk4s(pts[0].fX, pts[0].fY, pts[0].fX, pts[0].fY);
pts += 1;
count -= 1;
} else {
min = Sk4s::Load(pts);
pts += 2;
count -= 2;
}
accum = max = min;
accum = accum * Sk4s(0);
count >>= 1;
for (int i = 0; i < count; ++i) {
Sk4s xy = Sk4s::Load(pts);
accum = accum * xy;
min = Sk4s::Min(min, xy);
max = Sk4s::Max(max, xy);
pts += 2;
}
/**
* With some trickery, we may be able to use Min/Max to also propogate non-finites,
* in which case we could eliminate accum entirely, and just check min and max for
* "is_finite".
*/
if (is_finite(accum)) {
float minArray[4], maxArray[4];
min.store(minArray);
max.store(maxArray);
this->set(SkTMin(minArray[0], minArray[2]), SkTMin(minArray[1], minArray[3]),
SkTMax(maxArray[0], maxArray[2]), SkTMax(maxArray[1], maxArray[3]));
} else {
// we hit a non-finite value, so zero everything and return false
this->setEmpty();
isFinite = false;
}
}
return isFinite;
}
#define CHECK_INTERSECT(al, at, ar, ab, bl, bt, br, bb) \
SkScalar L = SkMaxScalar(al, bl); \
SkScalar R = SkMinScalar(ar, br); \
SkScalar T = SkMaxScalar(at, bt); \
SkScalar B = SkMinScalar(ab, bb); \
do { if (L >= R || T >= B) return false; } while (0)
bool SkRect::intersect(SkScalar left, SkScalar top, SkScalar right, SkScalar bottom) {
CHECK_INTERSECT(left, top, right, bottom, fLeft, fTop, fRight, fBottom);
this->setLTRB(L, T, R, B);
return true;
}
bool SkRect::intersect(const SkRect& r) {
return this->intersect(r.fLeft, r.fTop, r.fRight, r.fBottom);
}
bool SkRect::intersect(const SkRect& a, const SkRect& b) {
CHECK_INTERSECT(a.fLeft, a.fTop, a.fRight, a.fBottom, b.fLeft, b.fTop, b.fRight, b.fBottom);
this->setLTRB(L, T, R, B);
return true;
}
void SkRect::join(SkScalar left, SkScalar top, SkScalar right, SkScalar bottom) {
// do nothing if the params are empty
if (left >= right || top >= bottom) {
return;
}
// if we are empty, just assign
if (fLeft >= fRight || fTop >= fBottom) {
this->set(left, top, right, bottom);
} else {
fLeft = SkMinScalar(fLeft, left);
fTop = SkMinScalar(fTop, top);
fRight = SkMaxScalar(fRight, right);
fBottom = SkMaxScalar(fBottom, bottom);
}
}
////////////////////////////////////////////////////////////////////////////////////////////////
#include "SkString.h"
#include "SkStringUtils.h"
static const char* set_scalar(SkString* storage, SkScalar value, SkScalarAsStringType asType) {
storage->reset();
SkAppendScalar(storage, value, asType);
return storage->c_str();
}
void SkRect::dump(bool asHex) const {
SkScalarAsStringType asType = asHex ? kHex_SkScalarAsStringType : kDec_SkScalarAsStringType;
SkString line;
if (asHex) {
SkString tmp;
line.printf( "SkRect::MakeLTRB(%s, /* %f */\n", set_scalar(&tmp, fLeft, asType), fLeft);
line.appendf(" %s, /* %f */\n", set_scalar(&tmp, fTop, asType), fTop);
line.appendf(" %s, /* %f */\n", set_scalar(&tmp, fRight, asType), fRight);
line.appendf(" %s /* %f */);", set_scalar(&tmp, fBottom, asType), fBottom);
} else {
SkString strL, strT, strR, strB;
SkAppendScalarDec(&strL, fLeft);
SkAppendScalarDec(&strT, fTop);
SkAppendScalarDec(&strR, fRight);
SkAppendScalarDec(&strB, fBottom);
line.printf("SkRect::MakeLTRB(%s, %s, %s, %s);",
strL.c_str(), strT.c_str(), strR.c_str(), strB.c_str());
}
SkDebugf("%s\n", line.c_str());
}
|