1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
|
/*
* Copyright 2006 The Android Open Source Project
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkRect.h"
void SkIRect::join(int32_t left, int32_t top, int32_t right, int32_t bottom) {
// do nothing if the params are empty
if (left >= right || top >= bottom) {
return;
}
// if we are empty, just assign
if (fLeft >= fRight || fTop >= fBottom) {
this->set(left, top, right, bottom);
} else {
if (left < fLeft) fLeft = left;
if (top < fTop) fTop = top;
if (right > fRight) fRight = right;
if (bottom > fBottom) fBottom = bottom;
}
}
void SkIRect::sort() {
if (fLeft > fRight) {
SkTSwap<int32_t>(fLeft, fRight);
}
if (fTop > fBottom) {
SkTSwap<int32_t>(fTop, fBottom);
}
}
/////////////////////////////////////////////////////////////////////////////
void SkRect::toQuad(SkPoint quad[4]) const {
SkASSERT(quad);
quad[0].set(fLeft, fTop);
quad[1].set(fRight, fTop);
quad[2].set(fRight, fBottom);
quad[3].set(fLeft, fBottom);
}
bool SkRect::setBoundsCheck(const SkPoint pts[], int count) {
SkASSERT((pts && count > 0) || count == 0);
bool isFinite = true;
if (count <= 0) {
sk_bzero(this, sizeof(SkRect));
} else {
SkScalar l, t, r, b;
l = r = pts[0].fX;
t = b = pts[0].fY;
// If all of the points are finite, accum should stay 0. If we encounter
// a NaN or infinity, then accum should become NaN.
float accum = 0;
accum *= l; accum *= t;
for (int i = 1; i < count; i++) {
SkScalar x = pts[i].fX;
SkScalar y = pts[i].fY;
accum *= x; accum *= y;
// we use if instead of if/else, so we can generate min/max
// float instructions (at least on SSE)
if (x < l) l = x;
if (x > r) r = x;
if (y < t) t = y;
if (y > b) b = y;
}
SkASSERT(!accum || !SkScalarIsFinite(accum));
if (accum) {
l = t = r = b = 0;
isFinite = false;
}
this->set(l, t, r, b);
}
return isFinite;
}
#define CHECK_INTERSECT(al, at, ar, ab, bl, bt, br, bb) \
SkScalar L = SkMaxScalar(al, bl); \
SkScalar R = SkMinScalar(ar, br); \
SkScalar T = SkMaxScalar(at, bt); \
SkScalar B = SkMinScalar(ab, bb); \
do { if (L >= R || T >= B) return false; } while (0)
bool SkRect::intersect(SkScalar left, SkScalar top, SkScalar right, SkScalar bottom) {
CHECK_INTERSECT(left, top, right, bottom, fLeft, fTop, fRight, fBottom);
this->setLTRB(L, T, R, B);
return true;
}
bool SkRect::intersect(const SkRect& r) {
return this->intersect(r.fLeft, r.fTop, r.fRight, r.fBottom);
}
bool SkRect::intersect(const SkRect& a, const SkRect& b) {
CHECK_INTERSECT(a.fLeft, a.fTop, a.fRight, a.fBottom, b.fLeft, b.fTop, b.fRight, b.fBottom);
this->setLTRB(L, T, R, B);
return true;
}
void SkRect::join(SkScalar left, SkScalar top, SkScalar right, SkScalar bottom) {
// do nothing if the params are empty
if (left >= right || top >= bottom) {
return;
}
// if we are empty, just assign
if (fLeft >= fRight || fTop >= fBottom) {
this->set(left, top, right, bottom);
} else {
fLeft = SkMinScalar(fLeft, left);
fTop = SkMinScalar(fTop, top);
fRight = SkMaxScalar(fRight, right);
fBottom = SkMaxScalar(fBottom, bottom);
}
}
|