1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
|
/*
* Copyright 2012 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkBitmap.h"
#include "SkErrorInternals.h"
#include "SkReadBuffer.h"
#include "SkStream.h"
#include "SkTypeface.h"
static uint32_t default_flags() {
uint32_t flags = 0;
flags |= SkReadBuffer::kScalarIsFloat_Flag;
if (8 == sizeof(void*)) {
flags |= SkReadBuffer::kPtrIs64Bit_Flag;
}
return flags;
}
SkReadBuffer::SkReadBuffer() {
fFlags = default_flags();
fVersion = 0;
fMemoryPtr = NULL;
fBitmapStorage = NULL;
fTFArray = NULL;
fTFCount = 0;
fFactoryTDArray = NULL;
fFactoryArray = NULL;
fFactoryCount = 0;
fBitmapDecoder = NULL;
#ifdef DEBUG_NON_DETERMINISTIC_ASSERT
fDecodedBitmapIndex = -1;
#endif // DEBUG_NON_DETERMINISTIC_ASSERT
}
SkReadBuffer::SkReadBuffer(const void* data, size_t size) {
fFlags = default_flags();
fVersion = 0;
fReader.setMemory(data, size);
fMemoryPtr = NULL;
fBitmapStorage = NULL;
fTFArray = NULL;
fTFCount = 0;
fFactoryTDArray = NULL;
fFactoryArray = NULL;
fFactoryCount = 0;
fBitmapDecoder = NULL;
#ifdef DEBUG_NON_DETERMINISTIC_ASSERT
fDecodedBitmapIndex = -1;
#endif // DEBUG_NON_DETERMINISTIC_ASSERT
}
SkReadBuffer::SkReadBuffer(SkStream* stream) {
fFlags = default_flags();
fVersion = 0;
const size_t length = stream->getLength();
fMemoryPtr = sk_malloc_throw(length);
stream->read(fMemoryPtr, length);
fReader.setMemory(fMemoryPtr, length);
fBitmapStorage = NULL;
fTFArray = NULL;
fTFCount = 0;
fFactoryTDArray = NULL;
fFactoryArray = NULL;
fFactoryCount = 0;
fBitmapDecoder = NULL;
#ifdef DEBUG_NON_DETERMINISTIC_ASSERT
fDecodedBitmapIndex = -1;
#endif // DEBUG_NON_DETERMINISTIC_ASSERT
}
SkReadBuffer::~SkReadBuffer() {
sk_free(fMemoryPtr);
SkSafeUnref(fBitmapStorage);
}
bool SkReadBuffer::readBool() {
return fReader.readBool();
}
SkColor SkReadBuffer::readColor() {
return fReader.readInt();
}
SkFixed SkReadBuffer::readFixed() {
return fReader.readS32();
}
int32_t SkReadBuffer::readInt() {
return fReader.readInt();
}
SkScalar SkReadBuffer::readScalar() {
return fReader.readScalar();
}
uint32_t SkReadBuffer::readUInt() {
return fReader.readU32();
}
int32_t SkReadBuffer::read32() {
return fReader.readInt();
}
void SkReadBuffer::readString(SkString* string) {
size_t len;
const char* strContents = fReader.readString(&len);
string->set(strContents, len);
}
void* SkReadBuffer::readEncodedString(size_t* length, SkPaint::TextEncoding encoding) {
SkDEBUGCODE(int32_t encodingType = ) fReader.readInt();
SkASSERT(encodingType == encoding);
*length = fReader.readInt();
void* data = sk_malloc_throw(*length);
memcpy(data, fReader.skip(SkAlign4(*length)), *length);
return data;
}
void SkReadBuffer::readPoint(SkPoint* point) {
point->fX = fReader.readScalar();
point->fY = fReader.readScalar();
}
void SkReadBuffer::readMatrix(SkMatrix* matrix) {
fReader.readMatrix(matrix);
}
void SkReadBuffer::readIRect(SkIRect* rect) {
memcpy(rect, fReader.skip(sizeof(SkIRect)), sizeof(SkIRect));
}
void SkReadBuffer::readRect(SkRect* rect) {
memcpy(rect, fReader.skip(sizeof(SkRect)), sizeof(SkRect));
}
void SkReadBuffer::readRegion(SkRegion* region) {
fReader.readRegion(region);
}
void SkReadBuffer::readPath(SkPath* path) {
fReader.readPath(path);
}
bool SkReadBuffer::readArray(void* value, size_t size, size_t elementSize) {
const size_t count = this->getArrayCount();
if (count == size) {
(void)fReader.skip(sizeof(uint32_t)); // Skip array count
const size_t byteLength = count * elementSize;
memcpy(value, fReader.skip(SkAlign4(byteLength)), byteLength);
return true;
}
SkASSERT(false);
fReader.skip(fReader.available());
return false;
}
bool SkReadBuffer::readByteArray(void* value, size_t size) {
return readArray(static_cast<unsigned char*>(value), size, sizeof(unsigned char));
}
bool SkReadBuffer::readColorArray(SkColor* colors, size_t size) {
return readArray(colors, size, sizeof(SkColor));
}
bool SkReadBuffer::readIntArray(int32_t* values, size_t size) {
return readArray(values, size, sizeof(int32_t));
}
bool SkReadBuffer::readPointArray(SkPoint* points, size_t size) {
return readArray(points, size, sizeof(SkPoint));
}
bool SkReadBuffer::readScalarArray(SkScalar* values, size_t size) {
return readArray(values, size, sizeof(SkScalar));
}
uint32_t SkReadBuffer::getArrayCount() {
return *(uint32_t*)fReader.peek();
}
bool SkReadBuffer::readBitmap(SkBitmap* bitmap) {
const int width = this->readInt();
const int height = this->readInt();
// The writer stored a boolean value to determine whether an SkBitmapHeap was used during
// writing.
if (this->readBool()) {
// An SkBitmapHeap was used for writing. Read the index from the stream and find the
// corresponding SkBitmap in fBitmapStorage.
const uint32_t index = this->readUInt();
this->readUInt(); // bitmap generation ID (see SkWriteBuffer::writeBitmap)
if (fBitmapStorage) {
*bitmap = *fBitmapStorage->getBitmap(index);
fBitmapStorage->releaseRef(index);
return true;
} else {
// The bitmap was stored in a heap, but there is no way to access it. Set an error and
// fall through to use a place holder bitmap.
SkErrorInternals::SetError(kParseError_SkError, "SkWriteBuffer::writeBitmap "
"stored the SkBitmap in an SkBitmapHeap, but "
"SkReadBuffer has no SkBitmapHeapReader to "
"retrieve the SkBitmap.");
}
} else {
// The writer stored false, meaning the SkBitmap was not stored in an SkBitmapHeap.
const size_t length = this->readUInt();
if (length > 0) {
#ifdef DEBUG_NON_DETERMINISTIC_ASSERT
fDecodedBitmapIndex++;
#endif // DEBUG_NON_DETERMINISTIC_ASSERT
// A non-zero size means the SkBitmap was encoded. Read the data and pixel
// offset.
const void* data = this->skip(length);
const int32_t xOffset = this->readInt();
const int32_t yOffset = this->readInt();
if (fBitmapDecoder != NULL && fBitmapDecoder(data, length, bitmap)) {
if (bitmap->width() == width && bitmap->height() == height) {
#ifdef DEBUG_NON_DETERMINISTIC_ASSERT
if (0 != xOffset || 0 != yOffset) {
SkDebugf("SkReadBuffer::readBitmap: heights match,"
" but offset is not zero. \nInfo about the bitmap:"
"\n\tIndex: %d\n\tDimensions: [%d %d]\n\tEncoded"
" data size: %d\n\tOffset: (%d, %d)\n",
fDecodedBitmapIndex, width, height, length, xOffset,
yOffset);
}
#endif // DEBUG_NON_DETERMINISTIC_ASSERT
// If the width and height match, there should be no offset.
SkASSERT(0 == xOffset && 0 == yOffset);
return true;
}
// This case can only be reached if extractSubset was called, so
// the recorded width and height must be smaller than or equal to
// the encoded width and height.
// FIXME (scroggo): This assert assumes that our decoder and the
// sources encoder agree on the width and height which may not
// always be the case. Removing until it can be investigated
// further.
//SkASSERT(width <= bitmap->width() && height <= bitmap->height());
SkBitmap subsetBm;
SkIRect subset = SkIRect::MakeXYWH(xOffset, yOffset, width, height);
if (bitmap->extractSubset(&subsetBm, subset)) {
bitmap->swap(subsetBm);
return true;
}
}
// This bitmap was encoded when written, but we are unable to decode, possibly due to
// not having a decoder.
SkErrorInternals::SetError(kParseError_SkError,
"Could not decode bitmap. Resulting bitmap will be empty.");
// Even though we weren't able to decode the pixels, the readbuffer should still be
// intact, so we return true with an empty bitmap, so we don't force an abort of the
// larger deserialize.
bitmap->setInfo(SkImageInfo::MakeUnknown(width, height));
return true;
} else {
// A size of zero means the SkBitmap was simply flattened.
if (this->isVersionLT(kNoMoreBitmapFlatten_Version)) {
SkBitmap tmp;
tmp.legacyUnflatten(*this);
// just throw this guy away
} else {
if (SkBitmap::ReadRawPixels(this, bitmap)) {
return true;
}
}
}
}
// Could not read the SkBitmap. Use a placeholder bitmap.
bitmap->setInfo(SkImageInfo::MakeUnknown(width, height));
return false;
}
SkTypeface* SkReadBuffer::readTypeface() {
uint32_t index = fReader.readU32();
if (0 == index || index > (unsigned)fTFCount) {
if (index) {
SkDebugf("====== typeface index %d\n", index);
}
return NULL;
} else {
SkASSERT(fTFArray);
return fTFArray[index - 1];
}
}
SkFlattenable* SkReadBuffer::readFlattenable(SkFlattenable::Type ft) {
//
// TODO: confirm that ft matches the factory we decide to use
//
SkFlattenable::Factory factory = NULL;
if (fFactoryCount > 0) {
int32_t index = fReader.readU32();
if (0 == index) {
return NULL; // writer failed to give us the flattenable
}
index -= 1; // we stored the index-base-1
SkASSERT(index < fFactoryCount);
factory = fFactoryArray[index];
} else if (fFactoryTDArray) {
int32_t index = fReader.readU32();
if (0 == index) {
return NULL; // writer failed to give us the flattenable
}
index -= 1; // we stored the index-base-1
factory = (*fFactoryTDArray)[index];
} else {
factory = (SkFlattenable::Factory)readFunctionPtr();
if (NULL == factory) {
return NULL; // writer failed to give us the flattenable
}
}
// if we get here, factory may still be null, but if that is the case, the
// failure was ours, not the writer.
SkFlattenable* obj = NULL;
uint32_t sizeRecorded = fReader.readU32();
if (factory) {
size_t offset = fReader.offset();
obj = (*factory)(*this);
// check that we read the amount we expected
size_t sizeRead = fReader.offset() - offset;
if (sizeRecorded != sizeRead) {
// we could try to fix up the offset...
sk_throw();
}
} else {
// we must skip the remaining data
fReader.skip(sizeRecorded);
}
return obj;
}
/**
* Needs to follow the same pattern as readFlattenable(), but explicitly skip whatever data
* has been written.
*/
void SkReadBuffer::skipFlattenable() {
if (fFactoryCount > 0) {
if (0 == fReader.readU32()) {
return;
}
} else if (fFactoryTDArray) {
if (0 == fReader.readU32()) {
return;
}
} else {
if (NULL == this->readFunctionPtr()) {
return;
}
}
uint32_t sizeRecorded = fReader.readU32();
fReader.skip(sizeRecorded);
}
|