1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
|
/*
* Copyright 2016 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#ifndef SkRasterPipeline_DEFINED
#define SkRasterPipeline_DEFINED
#include "SkArenaAlloc.h"
#include "SkImageInfo.h"
#include "SkNx.h"
#include "SkPM4f.h"
#include "SkTArray.h"
#include "SkTypes.h"
#include <functional>
#include <vector>
struct SkJumper_Engine;
/**
* SkRasterPipeline provides a cheap way to chain together a pixel processing pipeline.
*
* It's particularly designed for situations where the potential pipeline is extremely
* combinatoric: {N dst formats} x {M source formats} x {K mask formats} x {C transfer modes} ...
* No one wants to write specialized routines for all those combinations, and if we did, we'd
* end up bloating our code size dramatically. SkRasterPipeline stages can be chained together
* at runtime, so we can scale this problem linearly rather than combinatorically.
*
* Each stage is represented by a function conforming to a common interface and by an
* arbitrary context pointer. The stage funciton arguments and calling convention are
* designed to maximize the amount of data we can pass along the pipeline cheaply, and
* vary depending on CPU feature detection.
*
* If you'd like to see how this works internally, you want to start digging around src/jumper.
*/
#define SK_RASTER_PIPELINE_STAGES(M) \
M(callback) \
M(move_src_dst) M(move_dst_src) \
M(clamp_0) M(clamp_1) M(clamp_a) M(clamp_a_dst) \
M(unpremul) M(premul) M(premul_dst) \
M(set_rgb) M(swap_rb) M(invert) \
M(from_srgb) M(from_srgb_dst) M(to_srgb) \
M(black_color) M(white_color) M(uniform_color) \
M(seed_shader) M(dither) \
M(load_a8) M(load_a8_dst) M(store_a8) M(gather_a8) \
M(load_g8) M(load_g8_dst) M(gather_g8) \
M(load_565) M(load_565_dst) M(store_565) M(gather_565) \
M(load_4444) M(load_4444_dst) M(store_4444) M(gather_4444) \
M(load_f16) M(load_f16_dst) M(store_f16) M(gather_f16) \
M(load_f32) M(load_f32_dst) M(store_f32) \
M(load_8888) M(load_8888_dst) M(store_8888) M(gather_8888) \
M(load_bgra) M(load_bgra_dst) M(store_bgra) M(gather_bgra) \
M(load_u16_be) M(load_rgb_u16_be) M(store_u16_be) \
M(load_tables_u16_be) M(load_tables_rgb_u16_be) M(load_tables) \
M(load_rgba) M(store_rgba) \
M(scale_u8) M(scale_565) M(scale_1_float) \
M( lerp_u8) M( lerp_565) M( lerp_1_float) \
M(dstatop) M(dstin) M(dstout) M(dstover) \
M(srcatop) M(srcin) M(srcout) M(srcover) \
M(clear) M(modulate) M(multiply) M(plus_) M(screen) M(xor_) \
M(colorburn) M(colordodge) M(darken) M(difference) \
M(exclusion) M(hardlight) M(lighten) M(overlay) M(softlight) \
M(hue) M(saturation) M(color) M(luminosity) \
M(srcover_rgba_8888) M(srcover_bgra_8888) \
M(luminance_to_alpha) \
M(matrix_translate) M(matrix_scale_translate) \
M(matrix_2x3) M(matrix_3x4) M(matrix_4x5) M(matrix_4x3) \
M(matrix_perspective) \
M(parametric_r) M(parametric_g) M(parametric_b) \
M(parametric_a) M(gamma) \
M(table_r) M(table_g) M(table_b) M(table_a) \
M(lab_to_xyz) \
M(mirror_x) M(repeat_x) \
M(mirror_y) M(repeat_y) \
M(bilinear_nx) M(bilinear_px) M(bilinear_ny) M(bilinear_py) \
M(bicubic_n3x) M(bicubic_n1x) M(bicubic_p1x) M(bicubic_p3x) \
M(bicubic_n3y) M(bicubic_n1y) M(bicubic_p1y) M(bicubic_p3y) \
M(save_xy) M(accumulate) \
M(clamp_x_1) M(mirror_x_1) M(repeat_x_1) \
M(evenly_spaced_gradient) \
M(gradient) \
M(evenly_spaced_2_stop_gradient) \
M(xy_to_unit_angle) \
M(xy_to_radius) \
M(xy_to_2pt_conical_quadratic_first) \
M(xy_to_2pt_conical_quadratic_second) \
M(xy_to_2pt_conical_linear) \
M(mask_2pt_conical_degenerates) M(apply_vector_mask) \
M(byte_tables) M(byte_tables_rgb) \
M(rgb_to_hsl) M(hsl_to_rgb) \
M(clut_3D) M(clut_4D) \
M(gauss_a_to_rgba)
class SkRasterPipeline {
public:
explicit SkRasterPipeline(SkArenaAlloc*);
SkRasterPipeline(const SkRasterPipeline&) = delete;
SkRasterPipeline(SkRasterPipeline&&) = default;
SkRasterPipeline& operator=(const SkRasterPipeline&) = delete;
SkRasterPipeline& operator=(SkRasterPipeline&&) = default;
void reset();
enum StockStage {
#define M(stage) stage,
SK_RASTER_PIPELINE_STAGES(M)
#undef M
};
void append(StockStage, void* = nullptr);
void append(StockStage stage, const void* ctx) { this->append(stage, const_cast<void*>(ctx)); }
// Append all stages to this pipeline.
void extend(const SkRasterPipeline&);
// Runs the pipeline in 2d from (x,y) inclusive to (x+w,y+h) exclusive.
void run(size_t x, size_t y, size_t w, size_t h) const;
// Allocates a thunk which amortizes run() setup cost in alloc.
std::function<void(size_t, size_t, size_t, size_t)> compile() const;
void dump() const;
// Conversion from sRGB can be subtly tricky when premultiplication is involved.
// Use these helpers to keep things sane.
void append_from_srgb(SkAlphaType);
void append_from_srgb_dst(SkAlphaType);
// Appends a stage for the specified matrix.
// Tries to optimize the stage by analyzing the type of matrix.
void append_matrix(SkArenaAlloc*, const SkMatrix&);
// Appends a stage for a constant uniform color.
// Tries to optimize the stage based on the color.
void append_constant_color(SkArenaAlloc*, const float rgba[4]);
void append_constant_color(SkArenaAlloc* alloc, const SkPM4f& color) {
this->append_constant_color(alloc, color.fVec);
}
void append_constant_color(SkArenaAlloc* alloc, const SkColor4f& color) {
this->append_constant_color(alloc, color.vec());
}
// Helper to append(seed_shader) with the normal {+0.5,+1.5,+2.5,...} argument it expects.
void append_seed_shader();
bool empty() const { return fStages == nullptr; }
// Used to track if we're handling values outside [0.0f, 1.0f],
// and to clamp back to [0.0f, 1.0f] if so.
void set_clamped(bool clamped) { fClamped = clamped; }
void clamp_if_unclamped(SkAlphaType);
private:
struct StageList {
StageList* prev;
StockStage stage;
void* ctx;
};
const SkJumper_Engine& build_pipeline(void**) const;
void unchecked_append(StockStage, void*);
SkArenaAlloc* fAlloc;
StageList* fStages;
int fNumStages;
int fSlotsNeeded;
bool fClamped;
};
template <size_t bytes>
class SkRasterPipeline_ : public SkRasterPipeline {
public:
SkRasterPipeline_()
: SkRasterPipeline(&fBuiltinAlloc) {}
private:
SkSTArenaAlloc<bytes> fBuiltinAlloc;
};
#endif//SkRasterPipeline_DEFINED
|