1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
|
/*
* Copyright 2015 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkRWBuffer.h"
#include "SkAtomics.h"
#include "SkMemory.h"
#include "SkStream.h"
// Force small chunks to be a page's worth
static const size_t kMinAllocSize = 4096;
struct SkBufferBlock {
SkBufferBlock* fNext; // updated by the writer
size_t fUsed; // updated by the writer
const size_t fCapacity;
SkBufferBlock(size_t capacity) : fNext(nullptr), fUsed(0), fCapacity(capacity) {}
const void* startData() const { return this + 1; }
size_t avail() const { return fCapacity - fUsed; }
void* availData() { return (char*)this->startData() + fUsed; }
static SkBufferBlock* Alloc(size_t length) {
size_t capacity = LengthToCapacity(length);
void* buffer = sk_malloc_throw(sizeof(SkBufferBlock) + capacity);
return new (buffer) SkBufferBlock(capacity);
}
// Return number of bytes actually appended. Important that we always completely this block
// before spilling into the next, since the reader uses fCapacity to know how many it can read.
//
size_t append(const void* src, size_t length) {
this->validate();
size_t amount = SkTMin(this->avail(), length);
memcpy(this->availData(), src, amount);
fUsed += amount;
this->validate();
return amount;
}
// Do not call in the reader thread, since the writer may be updating fUsed.
// (The assertion is still true, but TSAN still may complain about its raciness.)
void validate() const {
#ifdef SK_DEBUG
SkASSERT(fCapacity > 0);
SkASSERT(fUsed <= fCapacity);
#endif
}
private:
static size_t LengthToCapacity(size_t length) {
const size_t minSize = kMinAllocSize - sizeof(SkBufferBlock);
return SkTMax(length, minSize);
}
};
struct SkBufferHead {
mutable int32_t fRefCnt;
SkBufferBlock fBlock;
SkBufferHead(size_t capacity) : fRefCnt(1), fBlock(capacity) {}
static size_t LengthToCapacity(size_t length) {
const size_t minSize = kMinAllocSize - sizeof(SkBufferHead);
return SkTMax(length, minSize);
}
static SkBufferHead* Alloc(size_t length) {
size_t capacity = LengthToCapacity(length);
size_t size = sizeof(SkBufferHead) + capacity;
void* buffer = sk_malloc_throw(size);
return new (buffer) SkBufferHead(capacity);
}
void ref() const {
SkASSERT(fRefCnt > 0);
sk_atomic_inc(&fRefCnt);
}
void unref() const {
SkASSERT(fRefCnt > 0);
// A release here acts in place of all releases we "should" have been doing in ref().
if (1 == sk_atomic_fetch_add(&fRefCnt, -1, sk_memory_order_acq_rel)) {
// Like unique(), the acquire is only needed on success.
SkBufferBlock* block = fBlock.fNext;
sk_free((void*)this);
while (block) {
SkBufferBlock* next = block->fNext;
sk_free(block);
block = next;
}
}
}
void validate(size_t minUsed, const SkBufferBlock* tail = nullptr) const {
#ifdef SK_DEBUG
SkASSERT(fRefCnt > 0);
size_t totalUsed = 0;
const SkBufferBlock* block = &fBlock;
const SkBufferBlock* lastBlock = block;
while (block) {
block->validate();
totalUsed += block->fUsed;
lastBlock = block;
block = block->fNext;
}
SkASSERT(minUsed <= totalUsed);
if (tail) {
SkASSERT(tail == lastBlock);
}
#endif
}
};
///////////////////////////////////////////////////////////////////////////////////////////////////
// The reader can only access block.fCapacity (which never changes), and cannot access
// block.fUsed, which may be updated by the writer.
//
SkROBuffer::SkROBuffer(const SkBufferHead* head, size_t available, const SkBufferBlock* tail)
: fHead(head), fAvailable(available), fTail(tail)
{
if (head) {
fHead->ref();
SkASSERT(available > 0);
head->validate(available, tail);
} else {
SkASSERT(0 == available);
SkASSERT(!tail);
}
}
SkROBuffer::~SkROBuffer() {
if (fHead) {
fHead->unref();
}
}
SkROBuffer::Iter::Iter(const SkROBuffer* buffer) {
this->reset(buffer);
}
void SkROBuffer::Iter::reset(const SkROBuffer* buffer) {
fBuffer = buffer;
if (buffer && buffer->fHead) {
fBlock = &buffer->fHead->fBlock;
fRemaining = buffer->fAvailable;
} else {
fBlock = nullptr;
fRemaining = 0;
}
}
const void* SkROBuffer::Iter::data() const {
return fRemaining ? fBlock->startData() : nullptr;
}
size_t SkROBuffer::Iter::size() const {
if (!fBlock) {
return 0;
}
return SkTMin(fBlock->fCapacity, fRemaining);
}
bool SkROBuffer::Iter::next() {
if (fRemaining) {
fRemaining -= this->size();
if (fBuffer->fTail == fBlock) {
// There are more blocks, but fBuffer does not know about them.
SkASSERT(0 == fRemaining);
fBlock = nullptr;
} else {
fBlock = fBlock->fNext;
}
}
return fRemaining != 0;
}
///////////////////////////////////////////////////////////////////////////////////////////////////
SkRWBuffer::SkRWBuffer(size_t initialCapacity) : fHead(nullptr), fTail(nullptr), fTotalUsed(0) {
if (initialCapacity) {
fHead = SkBufferHead::Alloc(initialCapacity);
fTail = &fHead->fBlock;
}
}
SkRWBuffer::~SkRWBuffer() {
this->validate();
if (fHead) {
fHead->unref();
}
}
// It is important that we always completely fill the current block before spilling over to the
// next, since our reader will be using fCapacity (min'd against its total available) to know how
// many bytes to read from a given block.
//
void SkRWBuffer::append(const void* src, size_t length, size_t reserve) {
this->validate();
if (0 == length) {
return;
}
fTotalUsed += length;
if (nullptr == fHead) {
fHead = SkBufferHead::Alloc(length + reserve);
fTail = &fHead->fBlock;
}
size_t written = fTail->append(src, length);
SkASSERT(written <= length);
src = (const char*)src + written;
length -= written;
if (length) {
SkBufferBlock* block = SkBufferBlock::Alloc(length + reserve);
fTail->fNext = block;
fTail = block;
written = fTail->append(src, length);
SkASSERT(written == length);
}
this->validate();
}
#ifdef SK_DEBUG
void SkRWBuffer::validate() const {
if (fHead) {
fHead->validate(fTotalUsed, fTail);
} else {
SkASSERT(nullptr == fTail);
SkASSERT(0 == fTotalUsed);
}
}
#endif
SkROBuffer* SkRWBuffer::newRBufferSnapshot() const {
return new SkROBuffer(fHead, fTotalUsed, fTail);
}
///////////////////////////////////////////////////////////////////////////////////////////////////
class SkROBufferStreamAsset : public SkStreamAsset {
void validate() const {
#ifdef SK_DEBUG
SkASSERT(fGlobalOffset <= fBuffer->size());
SkASSERT(fLocalOffset <= fIter.size());
SkASSERT(fLocalOffset <= fGlobalOffset);
#endif
}
#ifdef SK_DEBUG
class AutoValidate {
SkROBufferStreamAsset* fStream;
public:
AutoValidate(SkROBufferStreamAsset* stream) : fStream(stream) { stream->validate(); }
~AutoValidate() { fStream->validate(); }
};
#define AUTO_VALIDATE AutoValidate av(this);
#else
#define AUTO_VALIDATE
#endif
public:
SkROBufferStreamAsset(const SkROBuffer* buffer) : fBuffer(SkRef(buffer)), fIter(buffer) {
fGlobalOffset = fLocalOffset = 0;
}
~SkROBufferStreamAsset() override { fBuffer->unref(); }
size_t getLength() const override { return fBuffer->size(); }
bool rewind() override {
AUTO_VALIDATE
fIter.reset(fBuffer);
fGlobalOffset = fLocalOffset = 0;
return true;
}
size_t read(void* dst, size_t request) override {
AUTO_VALIDATE
size_t bytesRead = 0;
for (;;) {
size_t size = fIter.size();
SkASSERT(fLocalOffset <= size);
size_t avail = SkTMin(size - fLocalOffset, request - bytesRead);
if (dst) {
memcpy(dst, (const char*)fIter.data() + fLocalOffset, avail);
dst = (char*)dst + avail;
}
bytesRead += avail;
fLocalOffset += avail;
SkASSERT(bytesRead <= request);
if (bytesRead == request) {
break;
}
// If we get here, we've exhausted the current iter
SkASSERT(fLocalOffset == size);
fLocalOffset = 0;
if (!fIter.next()) {
break; // ran out of data
}
}
fGlobalOffset += bytesRead;
SkASSERT(fGlobalOffset <= fBuffer->size());
return bytesRead;
}
bool isAtEnd() const override {
return fBuffer->size() == fGlobalOffset;
}
SkStreamAsset* duplicate() const override { return new SkROBufferStreamAsset(fBuffer); }
size_t getPosition() const override {
return fGlobalOffset;
}
bool seek(size_t position) override {
AUTO_VALIDATE
if (position < fGlobalOffset) {
this->rewind();
}
(void)this->skip(position - fGlobalOffset);
return true;
}
bool move(long offset) override{
AUTO_VALIDATE
offset += fGlobalOffset;
if (offset <= 0) {
this->rewind();
} else {
(void)this->seek(SkToSizeT(offset));
}
return true;
}
SkStreamAsset* fork() const override {
SkStreamAsset* clone = this->duplicate();
clone->seek(this->getPosition());
return clone;
}
private:
const SkROBuffer* fBuffer;
SkROBuffer::Iter fIter;
size_t fLocalOffset;
size_t fGlobalOffset;
};
SkStreamAsset* SkRWBuffer::newStreamSnapshot() const {
sk_sp<SkROBuffer> buffer(this->newRBufferSnapshot());
return new SkROBufferStreamAsset(buffer.get());
}
|