1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
|
/*
* Copyright 2012 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkRTree.h"
SkRTree::SkRTree(SkScalar aspectRatio) : fCount(0), fAspectRatio(aspectRatio) {}
void SkRTree::insert(SkAutoTMalloc<SkRect>* boundsArray, int N) {
SkASSERT(0 == fCount);
SkTDArray<Branch> branches;
branches.setReserve(N);
for (int i = 0; i < N; i++) {
const SkRect& bounds = (*boundsArray)[i];
if (bounds.isEmpty()) {
continue;
}
Branch* b = branches.push();
b->fBounds = bounds;
b->fOpIndex = i;
}
fCount = branches.count();
if (fCount) {
if (1 == fCount) {
fNodes.setReserve(1);
Node* n = this->allocateNodeAtLevel(0);
n->fNumChildren = 1;
n->fChildren[0] = branches[0];
fRoot.fSubtree = n;
fRoot.fBounds = branches[0].fBounds;
} else {
fNodes.setReserve(CountNodes(fCount, fAspectRatio));
fRoot = this->bulkLoad(&branches);
}
}
}
SkRTree::Node* SkRTree::allocateNodeAtLevel(uint16_t level) {
SkDEBUGCODE(Node* p = fNodes.begin());
Node* out = fNodes.push();
SkASSERT(fNodes.begin() == p); // If this fails, we didn't setReserve() enough.
out->fNumChildren = 0;
out->fLevel = level;
return out;
}
// This function parallels bulkLoad, but just counts how many nodes bulkLoad would allocate.
int SkRTree::CountNodes(int branches, SkScalar aspectRatio) {
if (branches == 1) {
return 1;
}
int numBranches = branches / kMaxChildren;
int remainder = branches % kMaxChildren;
if (remainder > 0) {
numBranches++;
if (remainder >= kMinChildren) {
remainder = 0;
} else {
remainder = kMinChildren - remainder;
}
}
int numStrips = SkScalarCeilToInt(SkScalarSqrt(SkIntToScalar(numBranches) / aspectRatio));
int numTiles = SkScalarCeilToInt(SkIntToScalar(numBranches) / SkIntToScalar(numStrips));
int currentBranch = 0;
int nodes = 0;
for (int i = 0; i < numStrips; ++i) {
for (int j = 0; j < numTiles && currentBranch < branches; ++j) {
int incrementBy = kMaxChildren;
if (remainder != 0) {
if (remainder <= kMaxChildren - kMinChildren) {
incrementBy -= remainder;
remainder = 0;
} else {
incrementBy = kMinChildren;
remainder -= kMaxChildren - kMinChildren;
}
}
nodes++;
currentBranch++;
for (int k = 1; k < incrementBy && currentBranch < branches; ++k) {
currentBranch++;
}
}
}
return nodes + CountNodes(nodes, aspectRatio);
}
SkRTree::Branch SkRTree::bulkLoad(SkTDArray<Branch>* branches, int level) {
if (branches->count() == 1) { // Only one branch. It will be the root.
return (*branches)[0];
}
// We might sort our branches here, but we expect Blink gives us a reasonable x,y order.
// Skipping a call to sort (in Y) here resulted in a 17% win for recording with negligible
// difference in playback speed.
int numBranches = branches->count() / kMaxChildren;
int remainder = branches->count() % kMaxChildren;
int newBranches = 0;
if (remainder > 0) {
++numBranches;
// If the remainder isn't enough to fill a node, we'll add fewer nodes to other branches.
if (remainder >= kMinChildren) {
remainder = 0;
} else {
remainder = kMinChildren - remainder;
}
}
int numStrips = SkScalarCeilToInt(SkScalarSqrt(SkIntToScalar(numBranches) / fAspectRatio));
int numTiles = SkScalarCeilToInt(SkIntToScalar(numBranches) / SkIntToScalar(numStrips));
int currentBranch = 0;
for (int i = 0; i < numStrips; ++i) {
// Might be worth sorting by X here too.
for (int j = 0; j < numTiles && currentBranch < branches->count(); ++j) {
int incrementBy = kMaxChildren;
if (remainder != 0) {
// if need be, omit some nodes to make up for remainder
if (remainder <= kMaxChildren - kMinChildren) {
incrementBy -= remainder;
remainder = 0;
} else {
incrementBy = kMinChildren;
remainder -= kMaxChildren - kMinChildren;
}
}
Node* n = allocateNodeAtLevel(level);
n->fNumChildren = 1;
n->fChildren[0] = (*branches)[currentBranch];
Branch b;
b.fBounds = (*branches)[currentBranch].fBounds;
b.fSubtree = n;
++currentBranch;
for (int k = 1; k < incrementBy && currentBranch < branches->count(); ++k) {
b.fBounds.join((*branches)[currentBranch].fBounds);
n->fChildren[k] = (*branches)[currentBranch];
++n->fNumChildren;
++currentBranch;
}
(*branches)[newBranches] = b;
++newBranches;
}
}
branches->setCount(newBranches);
return this->bulkLoad(branches, level + 1);
}
void SkRTree::search(const SkRect& query, SkTDArray<unsigned>* results) const {
if (fCount > 0 && SkRect::Intersects(fRoot.fBounds, query)) {
this->search(fRoot.fSubtree, query, results);
}
}
void SkRTree::search(Node* node, const SkRect& query, SkTDArray<unsigned>* results) const {
for (int i = 0; i < node->fNumChildren; ++i) {
if (SkRect::Intersects(node->fChildren[i].fBounds, query)) {
if (0 == node->fLevel) {
results->push(node->fChildren[i].fOpIndex);
} else {
this->search(node->fChildren[i].fSubtree, query, results);
}
}
}
}
size_t SkRTree::bytesUsed() const {
size_t byteCount = sizeof(SkRTree);
byteCount += fNodes.reserved() * sizeof(Node);
return byteCount;
}
|