aboutsummaryrefslogtreecommitdiffhomepage
path: root/src/core/SkRTree.cpp
blob: b6ff29b8c4f2fa6eae95343cf85e19ff49442ee8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474

/*
 * Copyright 2012 Google Inc.
 *
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */

#include "SkRTree.h"
#include "SkTSort.h"

static inline uint32_t get_area(const SkIRect& rect);
static inline uint32_t get_overlap(const SkIRect& rect1, const SkIRect& rect2);
static inline uint32_t get_margin(const SkIRect& rect);
static inline uint32_t get_overlap_increase(const SkIRect& rect1, const SkIRect& rect2,
                                            SkIRect expandBy);
static inline uint32_t get_area_increase(const SkIRect& rect1, SkIRect rect2);
static inline void join_no_empty_check(const SkIRect& joinWith, SkIRect* out);

///////////////////////////////////////////////////////////////////////////////////////////////////

SkRTree* SkRTree::Create(int minChildren, int maxChildren, SkScalar aspectRatio) {
    if (minChildren < maxChildren && (maxChildren + 1) / 2 >= minChildren &&
        minChildren > 0 && maxChildren < static_cast<int>(SK_MaxU16)) {
        return new SkRTree(minChildren, maxChildren, aspectRatio);
    }
    return NULL;
}

SkRTree::SkRTree(int minChildren, int maxChildren, SkScalar aspectRatio)
    : fMinChildren(minChildren)
    , fMaxChildren(maxChildren)
    , fNodeSize(sizeof(Node) + sizeof(Branch) * maxChildren)
    , fCount(0)
    , fNodes(fNodeSize * 256)
    , fAspectRatio(aspectRatio) {
    SkASSERT(minChildren < maxChildren && minChildren > 0 && maxChildren <
             static_cast<int>(SK_MaxU16));
    SkASSERT((maxChildren + 1) / 2 >= minChildren);
    this->validate();
}

SkRTree::~SkRTree() {
    this->clear();
}

void SkRTree::insert(void* data, const SkIRect& bounds, bool defer) {
    this->validate();
    if (bounds.isEmpty()) {
        SkASSERT(false);
        return;
    }
    Branch newBranch;
    newBranch.fBounds = bounds;
    newBranch.fChild.data = data;
    if (this->isEmpty()) {
        // since a bulk-load into an existing tree is as of yet unimplemented (and arguably not
        // of vital importance right now), we only batch up inserts if the tree is empty.
        if (defer) {
            fDeferredInserts.push(newBranch);
            return;
        } else {
            fRoot.fChild.subtree = allocateNode(0);
            fRoot.fChild.subtree->fNumChildren = 0;
        }
    }

    Branch* newSibling = insert(fRoot.fChild.subtree, &newBranch);
    fRoot.fBounds = this->computeBounds(fRoot.fChild.subtree);

    if (NULL != newSibling) {
        Node* oldRoot = fRoot.fChild.subtree;
        Node* newRoot = this->allocateNode(oldRoot->fLevel + 1);
        newRoot->fNumChildren = 2;
        *newRoot->child(0) = fRoot;
        *newRoot->child(1) = *newSibling;
        fRoot.fChild.subtree = newRoot;
        fRoot.fBounds = this->computeBounds(fRoot.fChild.subtree);
    }

    ++fCount;
    this->validate();
}

void SkRTree::flushDeferredInserts() {
    this->validate();
    if (this->isEmpty() && fDeferredInserts.count() > 0) {
        fCount = fDeferredInserts.count();
        if (1 == fCount) {
            fRoot.fChild.subtree = allocateNode(0);
            fRoot.fChild.subtree->fNumChildren = 0;
            this->insert(fRoot.fChild.subtree, &fDeferredInserts[0]);
            fRoot.fBounds = fDeferredInserts[0].fBounds;
        } else {
            fRoot = this->bulkLoad(&fDeferredInserts);
        }
    } else {
        // TODO: some algorithm for bulk loading into an already populated tree
        SkASSERT(0 == fDeferredInserts.count());
    }
    fDeferredInserts.rewind();
    this->validate();
}

void SkRTree::search(const SkIRect& query, SkTDArray<void*>* results) {
    this->validate();
    if (0 != fDeferredInserts.count()) {
        this->flushDeferredInserts();
    }
    if (!this->isEmpty() && SkIRect::IntersectsNoEmptyCheck(fRoot.fBounds, query)) {
        this->search(fRoot.fChild.subtree, query, results);
    }
    this->validate();
}

void SkRTree::clear() {
    this->validate();
    fNodes.reset();
    fDeferredInserts.rewind();
    fCount = 0;
    this->validate();
}

SkRTree::Node* SkRTree::allocateNode(uint16_t level) {
    Node* out = static_cast<Node*>(fNodes.allocThrow(fNodeSize));
    out->fNumChildren = 0;
    out->fLevel = level;
    return out;
}

SkRTree::Branch* SkRTree::insert(Node* root, Branch* branch, uint16_t level) {
    Branch* toInsert = branch;
    if (root->fLevel != level) {
        int childIndex = this->chooseSubtree(root, branch);
        toInsert = this->insert(root->child(childIndex)->fChild.subtree, branch, level);
        root->child(childIndex)->fBounds = this->computeBounds(
            root->child(childIndex)->fChild.subtree);
    }
    if (NULL != toInsert) {
        if (root->fNumChildren == fMaxChildren) {
            // handle overflow by splitting. TODO: opportunistic reinsertion

            // decide on a distribution to divide with
            Node* newSibling = this->allocateNode(root->fLevel);
            Branch* toDivide = SkNEW_ARRAY(Branch, fMaxChildren + 1);
            for (int i = 0; i < fMaxChildren; ++i) {
                toDivide[i] = *root->child(i);
            }
            toDivide[fMaxChildren] = *toInsert;
            int splitIndex = this->distributeChildren(toDivide);

            // divide up the branches
            root->fNumChildren = splitIndex;
            newSibling->fNumChildren = fMaxChildren + 1 - splitIndex;
            for (int i = 0; i < splitIndex; ++i) {
                *root->child(i) = toDivide[i];
            }
            for (int i = splitIndex; i < fMaxChildren + 1; ++i) {
                *newSibling->child(i - splitIndex) = toDivide[i];
            }
            SkDELETE_ARRAY(toDivide);

            // pass the new sibling branch up to the parent
            branch->fChild.subtree = newSibling;
            branch->fBounds = this->computeBounds(newSibling);
            return branch;
        } else {
            *root->child(root->fNumChildren) = *toInsert;
            ++root->fNumChildren;
            return NULL;
        }
    }
    return NULL;
}

int SkRTree::chooseSubtree(Node* root, Branch* branch) {
    SkASSERT(!root->isLeaf());
    if (1 < root->fLevel) {
        // root's child pointers do not point to leaves, so minimize area increase
        int32_t minAreaIncrease = SK_MaxS32;
        int32_t minArea         = SK_MaxS32;
        int32_t bestSubtree     = -1;
        for (int i = 0; i < root->fNumChildren; ++i) {
            const SkIRect& subtreeBounds = root->child(i)->fBounds;
            int32_t areaIncrease = get_area_increase(subtreeBounds, branch->fBounds);
            // break ties in favor of subtree with smallest area
            if (areaIncrease < minAreaIncrease || (areaIncrease == minAreaIncrease &&
                static_cast<int32_t>(get_area(subtreeBounds)) < minArea)) {
                minAreaIncrease = areaIncrease;
                minArea = get_area(subtreeBounds);
                bestSubtree = i;
            }
        }
        SkASSERT(-1 != bestSubtree);
        return bestSubtree;
    } else if (1 == root->fLevel) {
        // root's child pointers do point to leaves, so minimize overlap increase
        int32_t minOverlapIncrease = SK_MaxS32;
        int32_t minAreaIncrease    = SK_MaxS32;
        int32_t bestSubtree = -1;
        for (int32_t i = 0; i < root->fNumChildren; ++i) {
            const SkIRect& subtreeBounds = root->child(i)->fBounds;
            SkIRect expandedBounds = subtreeBounds;
            join_no_empty_check(branch->fBounds, &expandedBounds);
            int32_t overlap = 0;
            for (int32_t j = 0; j < root->fNumChildren; ++j) {
                if (j == i) continue;
                // Note: this would be more correct if we subtracted the original pre-expanded
                // overlap, but computing overlaps is expensive and omitting it doesn't seem to
                // hurt query performance. See get_overlap_increase()
                overlap += get_overlap(expandedBounds, root->child(j)->fBounds);
            }
            // break ties with lowest area increase
            if (overlap < minOverlapIncrease || (overlap == minOverlapIncrease &&
                static_cast<int32_t>(get_area_increase(branch->fBounds, subtreeBounds)) <
                minAreaIncrease)) {
                minOverlapIncrease = overlap;
                minAreaIncrease = get_area_increase(branch->fBounds, subtreeBounds);
                bestSubtree = i;
            }
        }
        return bestSubtree;
    } else {
        SkASSERT(false);
        return 0;
    }
}

SkIRect SkRTree::computeBounds(Node* n) {
    SkIRect r = n->child(0)->fBounds;
    for (int i = 1; i < n->fNumChildren; ++i) {
        join_no_empty_check(n->child(i)->fBounds, &r);
    }
    return r;
}

int SkRTree::distributeChildren(Branch* children) {
    // We have two sides to sort by on each of two axes:
    const static SortSide sorts[2][2] = {
        {&SkIRect::fLeft, &SkIRect::fRight},
        {&SkIRect::fTop, &SkIRect::fBottom}
    };

    // We want to choose an axis to split on, then a distribution along that axis; we'll need
    // three pieces of info: the split axis, the side to sort by on that axis, and the index
    // to split the sorted array on.
    int32_t sortSide = -1;
    int32_t k        = -1;
    int32_t axis     = -1;
    int32_t bestS    = SK_MaxS32;

    // Evaluate each axis, we want the min summed margin-value (s) over all distributions
    for (int i = 0; i < 2; ++i) {
        int32_t minOverlap   = SK_MaxS32;
        int32_t minArea      = SK_MaxS32;
        int32_t axisBestK    = 0;
        int32_t axisBestSide = 0;
        int32_t s = 0;

        // Evaluate each sort
        for (int j = 0; j < 2; ++j) {

            SkQSort(sorts[i][j], children, children + fMaxChildren, &RectLessThan);

            // Evaluate each split index
            for (int32_t k = 1; k <= fMaxChildren - 2 * fMinChildren + 2; ++k) {
                SkIRect r1 = children[0].fBounds;
                SkIRect r2 = children[fMinChildren + k - 1].fBounds;
                for (int32_t l = 1; l < fMinChildren - 1 + k; ++l) {
                    join_no_empty_check(children[l].fBounds, &r1);
                }
                for (int32_t l = fMinChildren + k; l < fMaxChildren + 1; ++l) {
                    join_no_empty_check(children[l].fBounds, &r2);
                }

                int32_t area = get_area(r1) + get_area(r2);
                int32_t overlap = get_overlap(r1, r2);
                s += get_margin(r1) + get_margin(r2);

                if (overlap < minOverlap || (overlap == minOverlap && area < minArea)) {
                    minOverlap = overlap;
                    minArea = area;
                    axisBestSide = j;
                    axisBestK = k;
                }
            }
        }

        if (s < bestS) {
            bestS = s;
            axis = i;
            sortSide = axisBestSide;
            k = axisBestK;
        }
    }

    // replicate the sort of the winning distribution, (we can skip this if the last
    // sort ended up being best)
    if (!(axis == 1 && sortSide == 1)) {
        SkQSort(sorts[axis][sortSide], children, children + fMaxChildren, &RectLessThan);
    }

    return fMinChildren - 1 + k;
}

void SkRTree::search(Node* root, const SkIRect query, SkTDArray<void*>* results) const {
    for (int i = 0; i < root->fNumChildren; ++i) {
        if (SkIRect::IntersectsNoEmptyCheck(root->child(i)->fBounds, query)) {
            if (root->isLeaf()) {
                results->push(root->child(i)->fChild.data);
            } else {
                this->search(root->child(i)->fChild.subtree, query, results);
            }
        }
    }
}

SkRTree::Branch SkRTree::bulkLoad(SkTDArray<Branch>* branches, int level) {
    if (branches->count() == 1) {
        // Only one branch: it will be the root
        Branch out = (*branches)[0];
        branches->rewind();
        return out;
    } else {
        // First we sort the whole list by y coordinates
        SkQSort<int, Branch>(level, branches->begin(), branches->end() - 1, &RectLessY);

        int numBranches = branches->count() / fMaxChildren;
        int remainder = branches->count() % fMaxChildren;
        int newBranches = 0;

        if (0 != remainder) {
            ++numBranches;
            // If the remainder isn't enough to fill a node, we'll need to add fewer nodes to
            // some other branches to make up for it
            if (remainder >= fMinChildren) {
                remainder = 0;
            } else {
                remainder = fMinChildren - remainder;
            }
        }

        int numStrips = SkScalarCeil(SkScalarSqrt(SkIntToScalar(numBranches) *
                                     SkScalarInvert(fAspectRatio)));
        int numTiles = SkScalarCeil(SkIntToScalar(numBranches) /
                                    SkIntToScalar(numStrips));
        int currentBranch = 0;

        for (int i = 0; i < numStrips; ++i) {
            int begin = currentBranch;
            int end = currentBranch + numTiles * fMaxChildren - SkMin32(remainder,
                      (fMaxChildren - fMinChildren) * numTiles);
            if (end > branches->count()) {
                end = branches->count();
            }

            // Now we sort horizontal strips of rectangles by their x coords
            SkQSort<int, Branch>(level, branches->begin() + begin, branches->begin() + end - 1,
                                 &RectLessX);

            for (int j = 0; j < numTiles && currentBranch < branches->count(); ++j) {
                int incrementBy = fMaxChildren;
                if (remainder != 0) {
                    // if need be, omit some nodes to make up for remainder
                    if (remainder <= fMaxChildren - fMinChildren) {
                        incrementBy -= remainder;
                        remainder = 0;
                    } else {
                        incrementBy = fMinChildren;
                        remainder -= fMaxChildren - fMinChildren;
                    }
                }
                Node* n = allocateNode(level);
                n->fNumChildren = 1;
                *n->child(0) = (*branches)[currentBranch];
                Branch b;
                b.fBounds = (*branches)[currentBranch].fBounds;
                b.fChild.subtree = n;
                ++currentBranch;
                for (int k = 1; k < incrementBy && currentBranch < branches->count(); ++k) {
                    b.fBounds.join((*branches)[currentBranch].fBounds);
                    *n->child(k) = (*branches)[currentBranch];
                    ++n->fNumChildren;
                    ++currentBranch;
                }
                (*branches)[newBranches] = b;
                ++newBranches;
            }
        }
        branches->setCount(newBranches);
        return this->bulkLoad(branches, level + 1);
    }
}

void SkRTree::validate() {
#ifdef SK_DEBUG
    if (this->isEmpty()) {
        return;
    }
    SkASSERT(fCount == this->validateSubtree(fRoot.fChild.subtree, fRoot.fBounds, true));
#endif
}

int SkRTree::validateSubtree(Node* root, SkIRect bounds, bool isRoot) {
    // make sure the pointer is pointing to a valid place
    SkASSERT(fNodes.contains(static_cast<void*>(root)));

    if (isRoot) {
        // If the root of this subtree is the overall root, we have looser standards:
        if (root->isLeaf()) {
            SkASSERT(root->fNumChildren >= 1 && root->fNumChildren <= fMaxChildren);
        } else {
            SkASSERT(root->fNumChildren >= 2 && root->fNumChildren <= fMaxChildren);
        }
    } else {
        SkASSERT(root->fNumChildren >= fMinChildren && root->fNumChildren <= fMaxChildren);
    }

    for (int i = 0; i < root->fNumChildren; ++i) {
        SkASSERT(bounds.contains(root->child(i)->fBounds));
    }

    if (root->isLeaf()) {
        SkASSERT(0 == root->fLevel);
        return root->fNumChildren;
    } else {
        int childCount = 0;
        for (int i = 0; i < root->fNumChildren; ++i) {
            SkASSERT(root->child(i)->fChild.subtree->fLevel == root->fLevel - 1);
            childCount += this->validateSubtree(root->child(i)->fChild.subtree,
                                                root->child(i)->fBounds);
        }
        return childCount;
    }
}

///////////////////////////////////////////////////////////////////////////////////////////////////

static inline uint32_t get_area(const SkIRect& rect) {
    return rect.width() * rect.height();
}

static inline uint32_t get_overlap(const SkIRect& rect1, const SkIRect& rect2) {
    // I suspect there's a more efficient way of computing this...
    return SkMax32(0, SkMin32(rect1.fRight, rect2.fRight) - SkMax32(rect1.fLeft, rect2.fLeft)) *
           SkMax32(0, SkMin32(rect1.fBottom, rect2.fBottom) - SkMax32(rect1.fTop, rect2.fTop));
}

// Get the margin (aka perimeter)
static inline uint32_t get_margin(const SkIRect& rect) {
    return 2 * (rect.width() + rect.height());
}

static inline uint32_t get_overlap_increase(const SkIRect& rect1, const SkIRect& rect2,
                                          SkIRect expandBy) {
    join_no_empty_check(rect1, &expandBy);
    return get_overlap(expandBy, rect2) - get_overlap(rect1, rect2);
}

static inline uint32_t get_area_increase(const SkIRect& rect1, SkIRect rect2) {
    join_no_empty_check(rect1, &rect2);
    return get_area(rect2) - get_area(rect1);
}

// Expand 'out' to include 'joinWith'
static inline void join_no_empty_check(const SkIRect& joinWith, SkIRect* out) {
    // since we check for empty bounds on insert, we know we'll never have empty rects
    // and we can save the empty check that SkIRect::join requires
    if (joinWith.fLeft < out->fLeft) { out->fLeft = joinWith.fLeft; }
    if (joinWith.fTop < out->fTop) { out->fTop = joinWith.fTop; }
    if (joinWith.fRight > out->fRight) { out->fRight = joinWith.fRight; }
    if (joinWith.fBottom > out->fBottom) { out->fBottom = joinWith.fBottom; }
}