1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
|
/*
* Copyright 2012 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkRRect.h"
///////////////////////////////////////////////////////////////////////////////
void SkRRect::setRectXY(const SkRect& rect, SkScalar xRad, SkScalar yRad) {
if (rect.isEmpty()) {
this->setEmpty();
return;
}
if (xRad <= 0 || yRad <= 0) {
// all corners are square in this case
this->setRect(rect);
return;
}
if (rect.width() < xRad+xRad || rect.height() < yRad+yRad) {
SkScalar scale = SkMinScalar(SkScalarDiv(rect.width(), xRad + xRad),
SkScalarDiv(rect.height(), yRad + yRad));
SkASSERT(scale < SK_Scalar1);
xRad = SkScalarMul(xRad, scale);
yRad = SkScalarMul(yRad, scale);
}
fRect = rect;
for (int i = 0; i < 4; ++i) {
fRadii[i].set(xRad, yRad);
}
fType = kSimple_Type;
if (xRad >= SkScalarHalf(fRect.width()) && yRad >= SkScalarHalf(fRect.height())) {
fType = kOval_Type;
// TODO: assert that all the x&y radii are already W/2 & H/2
}
SkDEBUGCODE(this->validate();)
}
void SkRRect::setRectRadii(const SkRect& rect, const SkVector radii[4]) {
if (rect.isEmpty()) {
this->setEmpty();
return;
}
fRect = rect;
memcpy(fRadii, radii, sizeof(fRadii));
bool allCornersSquare = true;
// Clamp negative radii to zero
for (int i = 0; i < 4; ++i) {
if (fRadii[i].fX <= 0 || fRadii[i].fY <= 0) {
// In this case we are being a little fast & loose. Since one of
// the radii is 0 the corner is square. However, the other radii
// could still be non-zero and play in the global scale factor
// computation.
fRadii[i].fX = 0;
fRadii[i].fY = 0;
} else {
allCornersSquare = false;
}
}
if (allCornersSquare) {
this->setRect(rect);
return;
}
// Proportionally scale down all radii to fit. Find the minimum ratio
// of a side and the radii on that side (for all four sides) and use
// that to scale down _all_ the radii. This algorithm is from the
// W3 spec (http://www.w3.org/TR/css3-background/) section 5.5 - Overlapping
// Curves:
// "Let f = min(Li/Si), where i is one of { top, right, bottom, left },
// Si is the sum of the two corresponding radii of the corners on side i,
// and Ltop = Lbottom = the width of the box,
// and Lleft = Lright = the height of the box.
// If f < 1, then all corner radii are reduced by multiplying them by f."
SkScalar scale = SK_Scalar1;
if (fRadii[0].fX + fRadii[1].fX > rect.width()) {
scale = SkMinScalar(scale,
SkScalarDiv(rect.width(), fRadii[0].fX + fRadii[1].fX));
}
if (fRadii[1].fY + fRadii[2].fY > rect.height()) {
scale = SkMinScalar(scale,
SkScalarDiv(rect.height(), fRadii[1].fY + fRadii[2].fY));
}
if (fRadii[2].fX + fRadii[3].fX > rect.width()) {
scale = SkMinScalar(scale,
SkScalarDiv(rect.width(), fRadii[2].fX + fRadii[3].fX));
}
if (fRadii[3].fY + fRadii[0].fY > rect.height()) {
scale = SkMinScalar(scale,
SkScalarDiv(rect.height(), fRadii[3].fY + fRadii[0].fY));
}
if (scale < SK_Scalar1) {
for (int i = 0; i < 4; ++i) {
fRadii[i].fX = SkScalarMul(fRadii[i].fX, scale);
fRadii[i].fY = SkScalarMul(fRadii[i].fY, scale);
}
}
// At this point we're either oval, simple, or complex (not empty or rect)
// but we lazily resolve the type to avoid the work if the information
// isn't required.
fType = (SkRRect::Type) kUnknown_Type;
SkDEBUGCODE(this->validate();)
}
bool SkRRect::contains(SkScalar x, SkScalar y) const {
SkDEBUGCODE(this->validate();)
if (kEmpty_Type == this->type()) {
return false;
}
if (!fRect.contains(x, y)) {
return false;
}
if (kRect_Type == this->type()) {
// the 'fRect' test above was sufficient
return true;
}
// We know the point is inside the RR's bounds. The only way it can
// be out is if it outside one of the corners
return checkCornerContainment(x, y);
}
// This method determines if a point known to be inside the RRect's bounds is
// inside all the corners.
bool SkRRect::checkCornerContainment(SkScalar x, SkScalar y) const {
SkPoint canonicalPt; // (x,y) translated to one of the quadrants
int index;
if (kOval_Type == this->type()) {
canonicalPt.set(x - fRect.centerX(), y - fRect.centerY());
index = kUpperLeft_Corner; // any corner will do in this case
} else {
if (x < fRect.fLeft + fRadii[kUpperLeft_Corner].fX &&
y < fRect.fTop + fRadii[kUpperLeft_Corner].fY) {
// UL corner
index = kUpperLeft_Corner;
canonicalPt.set(x - (fRect.fLeft + fRadii[kUpperLeft_Corner].fX),
y - (fRect.fTop + fRadii[kUpperLeft_Corner].fY));
SkASSERT(canonicalPt.fX < 0 && canonicalPt.fY < 0);
} else if (x < fRect.fLeft + fRadii[kLowerLeft_Corner].fX &&
y > fRect.fBottom - fRadii[kLowerLeft_Corner].fY) {
// LL corner
index = kLowerLeft_Corner;
canonicalPt.set(x - (fRect.fLeft + fRadii[kLowerLeft_Corner].fX),
y - (fRect.fBottom - fRadii[kLowerLeft_Corner].fY));
SkASSERT(canonicalPt.fX < 0 && canonicalPt.fY > 0);
} else if (x > fRect.fRight - fRadii[kUpperRight_Corner].fX &&
y < fRect.fTop + fRadii[kUpperRight_Corner].fY) {
// UR corner
index = kUpperRight_Corner;
canonicalPt.set(x - (fRect.fRight - fRadii[kUpperRight_Corner].fX),
y - (fRect.fTop + fRadii[kUpperRight_Corner].fY));
SkASSERT(canonicalPt.fX > 0 && canonicalPt.fY < 0);
} else if (x > fRect.fRight - fRadii[kLowerRight_Corner].fX &&
y > fRect.fBottom - fRadii[kLowerRight_Corner].fY) {
// LR corner
index = kLowerRight_Corner;
canonicalPt.set(x - (fRect.fRight - fRadii[kLowerRight_Corner].fX),
y - (fRect.fBottom - fRadii[kLowerRight_Corner].fY));
SkASSERT(canonicalPt.fX > 0 && canonicalPt.fY > 0);
} else {
// not in any of the corners
return true;
}
}
// A point is in an ellipse (in standard position) if:
// x^2 y^2
// ----- + ----- <= 1
// a^2 b^2
// or :
// b^2*x^2 + a^2*y^2 <= (ab)^2
SkScalar dist = SkScalarMul(SkScalarSquare(canonicalPt.fX), SkScalarSquare(fRadii[index].fY)) +
SkScalarMul(SkScalarSquare(canonicalPt.fY), SkScalarSquare(fRadii[index].fX));
return dist <= SkScalarSquare(SkScalarMul(fRadii[index].fX, fRadii[index].fY));
}
bool SkRRect::contains(const SkRect& rect) const {
if (!this->getBounds().contains(rect)) {
// If 'rect' isn't contained by the RR's bounds then the
// RR definitely doesn't contain it
return false;
}
if (this->isRect()) {
// the prior test was sufficient
return true;
}
// At this point we know all four corners of 'rect' are inside the
// bounds of of this RR. Check to make sure all the corners are inside
// all the curves
return this->checkCornerContainment(rect.fLeft, rect.fTop) &&
this->checkCornerContainment(rect.fRight, rect.fTop) &&
this->checkCornerContainment(rect.fRight, rect.fBottom) &&
this->checkCornerContainment(rect.fLeft, rect.fBottom);
}
// There is a simplified version of this method in setRectXY
void SkRRect::computeType() const {
SkDEBUGCODE(this->validate();)
if (fRect.isEmpty()) {
fType = kEmpty_Type;
return;
}
bool allRadiiEqual = true; // are all x radii equal and all y radii?
bool allCornersSquare = 0 == fRadii[0].fX || 0 == fRadii[0].fY;
for (int i = 1; i < 4; ++i) {
if (0 != fRadii[i].fX && 0 != fRadii[i].fY) {
// if either radius is zero the corner is square so both have to
// be non-zero to have a rounded corner
allCornersSquare = false;
}
if (fRadii[i].fX != fRadii[i-1].fX || fRadii[i].fY != fRadii[i-1].fY) {
allRadiiEqual = false;
}
}
if (allCornersSquare) {
fType = kRect_Type;
return;
}
if (allRadiiEqual) {
if (fRadii[0].fX >= SkScalarHalf(fRect.width()) &&
fRadii[0].fY >= SkScalarHalf(fRect.height())) {
fType = kOval_Type;
} else {
fType = kSimple_Type;
}
return;
}
fType = kComplex_Type;
}
///////////////////////////////////////////////////////////////////////////////
void SkRRect::inset(SkScalar dx, SkScalar dy, SkRRect* dst) const {
SkRect r = fRect;
r.inset(dx, dy);
if (r.isEmpty()) {
dst->setEmpty();
return;
}
SkVector radii[4];
memcpy(radii, fRadii, sizeof(radii));
for (int i = 0; i < 4; ++i) {
if (radii[i].fX) {
radii[i].fX -= dx;
}
if (radii[i].fY) {
radii[i].fY -= dy;
}
}
dst->setRectRadii(r, radii);
}
///////////////////////////////////////////////////////////////////////////////
uint32_t SkRRect::writeToMemory(void* buffer) const {
SkASSERT(kSizeInMemory == sizeof(SkRect) + sizeof(fRadii));
memcpy(buffer, &fRect, sizeof(SkRect));
memcpy((char*)buffer + sizeof(SkRect), fRadii, sizeof(fRadii));
return kSizeInMemory;
}
uint32_t SkRRect::readFromMemory(const void* buffer) {
SkScalar storage[12];
SkASSERT(sizeof(storage) == kSizeInMemory);
// we make a local copy, to ensure alignment before we cast
memcpy(storage, buffer, kSizeInMemory);
this->setRectRadii(*(const SkRect*)&storage[0],
(const SkVector*)&storage[4]);
return kSizeInMemory;
}
///////////////////////////////////////////////////////////////////////////////
#ifdef SK_DEBUG
void SkRRect::validate() const {
bool allRadiiZero = (0 == fRadii[0].fX && 0 == fRadii[0].fY);
bool allCornersSquare = (0 == fRadii[0].fX || 0 == fRadii[0].fY);
bool allRadiiSame = true;
for (int i = 1; i < 4; ++i) {
if (0 != fRadii[i].fX || 0 != fRadii[i].fY) {
allRadiiZero = false;
}
if (fRadii[i].fX != fRadii[i-1].fX || fRadii[i].fY != fRadii[i-1].fY) {
allRadiiSame = false;
}
if (0 != fRadii[i].fX && 0 != fRadii[i].fY) {
allCornersSquare = false;
}
}
switch (fType) {
case kEmpty_Type:
SkASSERT(fRect.isEmpty());
SkASSERT(allRadiiZero && allRadiiSame && allCornersSquare);
SkASSERT(0 == fRect.fLeft && 0 == fRect.fTop &&
0 == fRect.fRight && 0 == fRect.fBottom);
break;
case kRect_Type:
SkASSERT(!fRect.isEmpty());
SkASSERT(allRadiiZero && allRadiiSame && allCornersSquare);
break;
case kOval_Type:
SkASSERT(!fRect.isEmpty());
SkASSERT(!allRadiiZero && allRadiiSame && !allCornersSquare);
for (int i = 0; i < 4; ++i) {
SkASSERT(SkScalarNearlyEqual(fRadii[i].fX, SkScalarHalf(fRect.width())));
SkASSERT(SkScalarNearlyEqual(fRadii[i].fY, SkScalarHalf(fRect.height())));
}
break;
case kSimple_Type:
SkASSERT(!fRect.isEmpty());
SkASSERT(!allRadiiZero && allRadiiSame && !allCornersSquare);
break;
case kComplex_Type:
SkASSERT(!fRect.isEmpty());
SkASSERT(!allRadiiZero && !allRadiiSame && !allCornersSquare);
break;
case kUnknown_Type:
// no limits on this
break;
}
}
#endif // SK_DEBUG
///////////////////////////////////////////////////////////////////////////////
|