1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
|
/*
* Copyright (C) 2009 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "SkQuadClipper.h"
#include "SkGeometry.h"
static inline void clamp_le(SkScalar& value, SkScalar max) {
if (value > max) {
value = max;
}
}
static inline void clamp_ge(SkScalar& value, SkScalar min) {
if (value < min) {
value = min;
}
}
SkQuadClipper::SkQuadClipper() {}
void SkQuadClipper::setClip(const SkIRect& clip) {
// conver to scalars, since that's where we'll see the points
fClip.set(clip);
}
///////////////////////////////////////////////////////////////////////////////
static bool chopMonoQuadAt(SkScalar c0, SkScalar c1, SkScalar c2,
SkScalar target, SkScalar* t) {
/* Solve F(t) = y where F(t) := [0](1-t)^2 + 2[1]t(1-t) + [2]t^2
* We solve for t, using quadratic equation, hence we have to rearrange
* our cooefficents to look like At^2 + Bt + C
*/
SkScalar A = c0 - c1 - c1 + c2;
SkScalar B = 2*(c1 - c0);
SkScalar C = c0 - target;
SkScalar roots[2]; // we only expect one, but make room for 2 for safety
int count = SkFindUnitQuadRoots(A, B, C, roots);
if (count) {
*t = roots[0];
return true;
}
return false;
}
static bool chopMonoQuadAtY(SkPoint pts[3], SkScalar y, SkScalar* t) {
return chopMonoQuadAt(pts[0].fY, pts[1].fY, pts[2].fY, y, t);
}
///////////////////////////////////////////////////////////////////////////////
/* If we somehow returned the fact that we had to flip the pts in Y, we could
communicate that to setQuadratic, and then avoid having to flip it back
here (only to have setQuadratic do the flip again)
*/
bool SkQuadClipper::clipQuad(const SkPoint srcPts[3], SkPoint dst[3]) {
bool reverse;
// we need the data to be monotonically increasing in Y
if (srcPts[0].fY > srcPts[2].fY) {
dst[0] = srcPts[2];
dst[1] = srcPts[1];
dst[2] = srcPts[0];
reverse = true;
} else {
memcpy(dst, srcPts, 3 * sizeof(SkPoint));
reverse = false;
}
// are we completely above or below
const SkScalar ctop = fClip.fTop;
const SkScalar cbot = fClip.fBottom;
if (dst[2].fY <= ctop || dst[0].fY >= cbot) {
return false;
}
SkScalar t;
SkPoint tmp[5]; // for SkChopQuadAt
// are we partially above
if (dst[0].fY < ctop) {
if (chopMonoQuadAtY(dst, ctop, &t)) {
// take the 2nd chopped quad
SkChopQuadAt(dst, tmp, t);
dst[0] = tmp[2];
dst[1] = tmp[3];
} else {
// if chopMonoQuadAtY failed, then we may have hit inexact numerics
// so we just clamp against the top
for (int i = 0; i < 3; i++) {
if (dst[i].fY < ctop) {
dst[i].fY = ctop;
}
}
}
}
// are we partially below
if (dst[2].fY > cbot) {
if (chopMonoQuadAtY(dst, cbot, &t)) {
SkChopQuadAt(dst, tmp, t);
dst[1] = tmp[1];
dst[2] = tmp[2];
} else {
// if chopMonoQuadAtY failed, then we may have hit inexact numerics
// so we just clamp against the bottom
for (int i = 0; i < 3; i++) {
if (dst[i].fY > cbot) {
dst[i].fY = cbot;
}
}
}
}
if (reverse) {
SkTSwap<SkPoint>(dst[0], dst[2]);
}
return true;
}
|