aboutsummaryrefslogtreecommitdiffhomepage
path: root/src/core/SkPoint.cpp
blob: a347b86a7d16472b5afe003722581c76700734ed (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478

/*
 * Copyright 2008 The Android Open Source Project
 *
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */


#include "SkPoint.h"

void SkIPoint::rotateCW(SkIPoint* dst) const {
    SkASSERT(dst);

    // use a tmp in case this == dst
    int32_t tmp = fX;
    dst->fX = -fY;
    dst->fY = tmp;
}

void SkIPoint::rotateCCW(SkIPoint* dst) const {
    SkASSERT(dst);

    // use a tmp in case this == dst
    int32_t tmp = fX;
    dst->fX = fY;
    dst->fY = -tmp;
}

///////////////////////////////////////////////////////////////////////////////

void SkPoint::setIRectFan(int l, int t, int r, int b, size_t stride) {
    SkASSERT(stride >= sizeof(SkPoint));
    
    ((SkPoint*)((intptr_t)this + 0 * stride))->set(SkIntToScalar(l), 
                                                   SkIntToScalar(t));
    ((SkPoint*)((intptr_t)this + 1 * stride))->set(SkIntToScalar(l), 
                                                   SkIntToScalar(b));
    ((SkPoint*)((intptr_t)this + 2 * stride))->set(SkIntToScalar(r), 
                                                   SkIntToScalar(b));
    ((SkPoint*)((intptr_t)this + 3 * stride))->set(SkIntToScalar(r), 
                                                   SkIntToScalar(t));
}

void SkPoint::setRectFan(SkScalar l, SkScalar t, SkScalar r, SkScalar b,
                         size_t stride) {
    SkASSERT(stride >= sizeof(SkPoint));
    
    ((SkPoint*)((intptr_t)this + 0 * stride))->set(l, t);
    ((SkPoint*)((intptr_t)this + 1 * stride))->set(l, b);
    ((SkPoint*)((intptr_t)this + 2 * stride))->set(r, b);
    ((SkPoint*)((intptr_t)this + 3 * stride))->set(r, t);
}

void SkPoint::rotateCW(SkPoint* dst) const {
    SkASSERT(dst);

    // use a tmp in case this == dst
    SkScalar tmp = fX;
    dst->fX = -fY;
    dst->fY = tmp;
}

void SkPoint::rotateCCW(SkPoint* dst) const {
    SkASSERT(dst);

    // use a tmp in case this == dst
    SkScalar tmp = fX;
    dst->fX = fY;
    dst->fY = -tmp;
}

void SkPoint::scale(SkScalar scale, SkPoint* dst) const {
    SkASSERT(dst);
    dst->set(SkScalarMul(fX, scale), SkScalarMul(fY, scale));
}

bool SkPoint::normalize() {
    return this->setLength(fX, fY, SK_Scalar1);
}

bool SkPoint::setNormalize(SkScalar x, SkScalar y) {
    return this->setLength(x, y, SK_Scalar1);
}

bool SkPoint::setLength(SkScalar length) {
    return this->setLength(fX, fY, length);
}

#ifdef SK_SCALAR_IS_FLOAT

// Returns the square of the Euclidian distance to (dx,dy).
static inline float getLengthSquared(float dx, float dy) {
    return dx * dx + dy * dy;
}

// Calculates the square of the Euclidian distance to (dx,dy) and stores it in
// *lengthSquared.  Returns true if the distance is judged to be "nearly zero".
//
// This logic is encapsulated in a helper method to make it explicit that we
// always perform this check in the same manner, to avoid inconsistencies
// (see http://code.google.com/p/skia/issues/detail?id=560 ).
static inline bool isLengthNearlyZero(float dx, float dy,
                                      float *lengthSquared) {
    *lengthSquared = getLengthSquared(dx, dy);
    return *lengthSquared <= (SK_ScalarNearlyZero * SK_ScalarNearlyZero);
}

SkScalar SkPoint::Normalize(SkPoint* pt) {
    float mag2;
    if (!isLengthNearlyZero(pt->fX, pt->fY, &mag2)) {
        float mag = sk_float_sqrt(mag2);
        float scale = 1.0 / mag;
        pt->fX = pt->fX * scale;
        pt->fY = pt->fY * scale;
        return mag;
    }
    return 0;
}

bool SkPoint::CanNormalize(SkScalar dx, SkScalar dy) {
    float mag2_unused;
    return !isLengthNearlyZero(dx, dy, &mag2_unused);
}

SkScalar SkPoint::Length(SkScalar dx, SkScalar dy) {
    return sk_float_sqrt(getLengthSquared(dx, dy));
}

bool SkPoint::setLength(float x, float y, float length) {
    float mag2;
    if (!isLengthNearlyZero(x, y, &mag2)) {
        float scale = length / sk_float_sqrt(mag2);
        fX = x * scale;
        fY = y * scale;
        return true;
    }
    return false;
}

#else

#include "Sk64.h"

// Returns the square of the Euclidian distance to (dx,dy) in *result.
static inline void getLengthSquared(SkScalar dx, SkScalar dy, Sk64 *result) {
    Sk64    dySqr;

    result->setMul(dx, dx);
    dySqr.setMul(dy, dy);
    result->add(dySqr);
}

// Calculates the square of the Euclidian distance to (dx,dy) and stores it in
// *lengthSquared.  Returns true if the distance is judged to be "nearly zero".
//
// This logic is encapsulated in a helper method to make it explicit that we
// always perform this check in the same manner, to avoid inconsistencies
// (see http://code.google.com/p/skia/issues/detail?id=560 ).
static inline bool isLengthNearlyZero(SkScalar dx, SkScalar dy,
                                      Sk64 *lengthSquared) {
    Sk64 tolSqr;
    getLengthSquared(dx, dy, lengthSquared);

    // we want nearlyzero^2, but to compute it fast we want to just do a
    // 32bit multiply, so we require that it not exceed 31bits. That is true
    // if nearlyzero is <= 0xB504, which should be trivial, since usually
    // nearlyzero is a very small fixed-point value.
    SkASSERT(SK_ScalarNearlyZero <= 0xB504);

    tolSqr.set(0, SK_ScalarNearlyZero * SK_ScalarNearlyZero);
    return *lengthSquared <= tolSqr;
}

SkScalar SkPoint::Normalize(SkPoint* pt) {
    Sk64 mag2;
    if (!isLengthNearlyZero(pt->fX, pt->fY, &mag2)) {
        SkScalar mag = mag2.getSqrt();
        SkScalar scale = SkScalarInvert(mag);
        pt->fX = SkScalarMul(pt->fX, scale);
        pt->fY = SkScalarMul(pt->fY, scale);
        return mag;
    }
    return 0;
}

bool SkPoint::CanNormalize(SkScalar dx, SkScalar dy) {
    Sk64 mag2_unused;
    return !isLengthNearlyZero(dx, dy, &mag2_unused);
}

SkScalar SkPoint::Length(SkScalar dx, SkScalar dy) {
    Sk64    tmp;
    getLengthSquared(dx, dy, &tmp);
    return tmp.getSqrt();
}

#ifdef SK_DEBUGx
static SkFixed fixlen(SkFixed x, SkFixed y) {
    float fx = (float)x;
    float fy = (float)y;

    return (int)floorf(sqrtf(fx*fx + fy*fy) + 0.5f);
}
#endif

static inline uint32_t squarefixed(unsigned x) {
    x >>= 16;
    return x*x;
}

#if 1   // Newton iter for setLength

static inline unsigned invsqrt_iter(unsigned V, unsigned U) {
    unsigned x = V * U >> 14;
    x = x * U >> 14;
    x = (3 << 14) - x;
    x = (U >> 1) * x >> 14;
    return x;
}

static const uint16_t gInvSqrt14GuessTable[] = {
    0x4000, 0x3c57, 0x393e, 0x3695, 0x3441, 0x3235, 0x3061,
    0x2ebd, 0x2d41, 0x2be7, 0x2aaa, 0x2987, 0x287a, 0x2780,
    0x2698, 0x25be, 0x24f3, 0x2434, 0x2380, 0x22d6, 0x2235,
    0x219d, 0x210c, 0x2083, 0x2000, 0x1f82, 0x1f0b, 0x1e99,
    0x1e2b, 0x1dc2, 0x1d5d, 0x1cfc, 0x1c9f, 0x1c45, 0x1bee,
    0x1b9b, 0x1b4a, 0x1afc, 0x1ab0, 0x1a67, 0x1a20, 0x19dc,
    0x1999, 0x1959, 0x191a, 0x18dd, 0x18a2, 0x1868, 0x1830,
    0x17fa, 0x17c4, 0x1791, 0x175e, 0x172d, 0x16fd, 0x16ce
};

#define BUILD_INVSQRT_TABLEx
#ifdef BUILD_INVSQRT_TABLE
static void build_invsqrt14_guess_table() {
    for (int i = 8; i <= 63; i++) {
        unsigned x = SkToU16((1 << 28) / SkSqrt32(i << 25));
        printf("0x%x, ", x);
    }
    printf("\n");
}
#endif

static unsigned fast_invsqrt(uint32_t x) {
#ifdef BUILD_INVSQRT_TABLE
    unsigned top2 = x >> 25;
    SkASSERT(top2 >= 8 && top2 <= 63);

    static bool gOnce;
    if (!gOnce) {
        build_invsqrt14_guess_table();
        gOnce = true;
    }
#endif

    unsigned V = x >> 14;   // make V .14

    unsigned top = x >> 25;
    SkASSERT(top >= 8 && top <= 63);
    SkASSERT(top - 8 < SK_ARRAY_COUNT(gInvSqrt14GuessTable));
    unsigned U = gInvSqrt14GuessTable[top - 8];
    
    U = invsqrt_iter(V, U);
    return invsqrt_iter(V, U);
}

/*  We "normalize" x,y to be .14 values (so we can square them and stay 32bits.
    Then we Newton-iterate this in .14 space to compute the invser-sqrt, and
    scale by it at the end. The .14 space means we can execute our iterations
    and stay in 32bits as well, making the multiplies much cheaper than calling
    SkFixedMul.
*/
bool SkPoint::setLength(SkFixed ox, SkFixed oy, SkFixed length) {
    if (ox == 0) {
        if (oy == 0) {
            return false;
        }
        this->set(0, SkApplySign(length, SkExtractSign(oy)));
        return true;
    }
    if (oy == 0) {
        this->set(SkApplySign(length, SkExtractSign(ox)), 0);
        return true;
    }

    unsigned x = SkAbs32(ox);
    unsigned y = SkAbs32(oy);
    int zeros = SkCLZ(x | y);

    // make x,y 1.14 values so our fast sqr won't overflow
    if (zeros > 17) {
        x <<= zeros - 17;
        y <<= zeros - 17; 
    } else {
        x >>= 17 - zeros;
        y >>= 17 - zeros;
    }
    SkASSERT((x | y) <= 0x7FFF);

    unsigned invrt = fast_invsqrt(x*x + y*y);

    x = x * invrt >> 12;
    y = y * invrt >> 12;

    if (length != SK_Fixed1) {
        x = SkFixedMul(x, length);
        y = SkFixedMul(y, length);
    }
    this->set(SkApplySign(x, SkExtractSign(ox)),
              SkApplySign(y, SkExtractSign(oy)));
    return true;
}
#else
/*
    Normalize x,y, and then scale them by length.

    The obvious way to do this would be the following:
        S64 tmp1, tmp2;
        tmp1.setMul(x,x);
        tmp2.setMul(y,y);
        tmp1.add(tmp2);
        len = tmp1.getSqrt();
        x' = SkFixedDiv(x, len);
        y' = SkFixedDiv(y, len);
    This is fine, but slower than what we do below.

    The present technique does not compute the starting length, but
    rather fiddles with x,y iteratively, all the while checking its
    magnitude^2 (avoiding a sqrt).

    We normalize by first shifting x,y so that at least one of them
    has bit 31 set (after taking the abs of them).
    Then we loop, refining x,y by squaring them and comparing
    against a very large 1.0 (1 << 28), and then adding or subtracting
    a delta (which itself is reduced by half each time through the loop).
    For speed we want the squaring to be with a simple integer mul. To keep
    that from overflowing we shift our coordinates down until we are dealing
    with at most 15 bits (2^15-1)^2 * 2 says withing 32 bits)
    When our square is close to 1.0, we shift x,y down into fixed range.
*/
bool SkPoint::setLength(SkFixed ox, SkFixed oy, SkFixed length) {
    if (ox == 0) {
        if (oy == 0)
            return false;
        this->set(0, SkApplySign(length, SkExtractSign(oy)));
        return true;
    }
    if (oy == 0) {
        this->set(SkApplySign(length, SkExtractSign(ox)), 0);
        return true;
    }

    SkFixed x = SkAbs32(ox);
    SkFixed y = SkAbs32(oy);

    // shift x,y so that the greater of them is 15bits (1.14 fixed point)
    {
        int shift = SkCLZ(x | y);
        // make them .30
        x <<= shift - 1;
        y <<= shift - 1;
    }

    SkFixed dx = x;
    SkFixed dy = y;

    for (int i = 0; i < 17; i++) {
        dx >>= 1;
        dy >>= 1;

        U32 len2 = squarefixed(x) + squarefixed(y);
        if (len2 >> 28) {
            x -= dx;
            y -= dy;
        } else {
            x += dx;
            y += dy;
        }
    }
    x >>= 14;
    y >>= 14;

#ifdef SK_DEBUGx    // measure how far we are from unit-length
    {
        static int gMaxError;
        static int gMaxDiff;

        SkFixed len = fixlen(x, y);
        int err = len - SK_Fixed1;
        err = SkAbs32(err);

        if (err > gMaxError) {
            gMaxError = err;
            SkDebugf("gMaxError %d\n", err);
        }

        float fx = SkAbs32(ox)/65536.0f;
        float fy = SkAbs32(oy)/65536.0f;
        float mag = sqrtf(fx*fx + fy*fy);
        fx /= mag;
        fy /= mag;
        SkFixed xx = (int)floorf(fx * 65536 + 0.5f);
        SkFixed yy = (int)floorf(fy * 65536 + 0.5f);
        err = SkMax32(SkAbs32(xx-x), SkAbs32(yy-y));
        if (err > gMaxDiff) {
            gMaxDiff = err;
            SkDebugf("gMaxDiff %d\n", err);
        }
    }
#endif

    x = SkApplySign(x, SkExtractSign(ox));
    y = SkApplySign(y, SkExtractSign(oy));
    if (length != SK_Fixed1) {
        x = SkFixedMul(x, length);
        y = SkFixedMul(y, length);
    }
    
    this->set(x, y);
    return true;
}
#endif

#endif

///////////////////////////////////////////////////////////////////////////////

SkScalar SkPoint::distanceToLineBetweenSqd(const SkPoint& a,
                                           const SkPoint& b,
                                           Side* side) const {

    SkVector u = b - a;
    SkVector v = *this - a;
    
    SkScalar uLengthSqd = u.lengthSqd();
    SkScalar det = u.cross(v);
    if (NULL != side) {
        SkASSERT(-1 == SkPoint::kLeft_Side &&
                  0 == SkPoint::kOn_Side &&
                  1 == kRight_Side);
        *side = (Side) SkScalarSignAsInt(det);
    }
    return SkScalarMulDiv(det, det, uLengthSqd);
}

SkScalar SkPoint::distanceToLineSegmentBetweenSqd(const SkPoint& a,
                                                  const SkPoint& b) const {
    // See comments to distanceToLineBetweenSqd. If the projection of c onto
    // u is between a and b then this returns the same result as that 
    // function. Otherwise, it returns the distance to the closer of a and
    // b. Let the projection of v onto u be v'.  There are three cases:
    //    1. v' points opposite to u. c is not between a and b and is closer
    //       to a than b.
    //    2. v' points along u and has magnitude less than y. c is between
    //       a and b and the distance to the segment is the same as distance
    //       to the line ab.
    //    3. v' points along u and has greater magnitude than u. c is not
    //       not between a and b and is closer to b than a.
    // v' = (u dot v) * u / |u|. So if (u dot v)/|u| is less than zero we're 
    // in case 1. If (u dot v)/|u| is > |u| we are in case 3. Otherwise
    // we're in case 2. We actually compare (u dot v) to 0 and |u|^2 to 
    // avoid a sqrt to compute |u|.
    
    SkVector u = b - a;
    SkVector v = *this - a;
    
    SkScalar uLengthSqd = u.lengthSqd();
    SkScalar uDotV = SkPoint::DotProduct(u, v);
    
    if (uDotV <= 0) {
        return v.lengthSqd();
    } else if (uDotV > uLengthSqd) {
        return b.distanceToSqd(*this);
    } else {
        SkScalar det = u.cross(v);
        return SkScalarMulDiv(det, det, uLengthSqd);
    }
}