1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
|
/*
* Copyright 2011 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#ifndef SkPictureFlat_DEFINED
#define SkPictureFlat_DEFINED
//#define SK_DEBUG_SIZE
#include "SkBitmap.h"
#include "SkBitmapHeap.h"
#include "SkChecksum.h"
#include "SkChunkAlloc.h"
#include "SkMatrix.h"
#include "SkOrderedReadBuffer.h"
#include "SkOrderedWriteBuffer.h"
#include "SkPaint.h"
#include "SkPath.h"
#include "SkPicture.h"
#include "SkPtrRecorder.h"
#include "SkRegion.h"
#include "SkTDynamicHash.h"
#include "SkTRefArray.h"
#include "SkTSearch.h"
enum DrawType {
UNUSED,
CLIP_PATH,
CLIP_REGION,
CLIP_RECT,
CLIP_RRECT,
CONCAT,
DRAW_BITMAP,
DRAW_BITMAP_MATRIX,
DRAW_BITMAP_NINE,
DRAW_BITMAP_RECT_TO_RECT,
DRAW_CLEAR,
DRAW_DATA,
DRAW_OVAL,
DRAW_PAINT,
DRAW_PATH,
DRAW_PICTURE,
DRAW_POINTS,
DRAW_POS_TEXT,
DRAW_POS_TEXT_TOP_BOTTOM, // fast variant of DRAW_POS_TEXT
DRAW_POS_TEXT_H,
DRAW_POS_TEXT_H_TOP_BOTTOM, // fast variant of DRAW_POS_TEXT_H
DRAW_RECT,
DRAW_RRECT,
DRAW_SPRITE,
DRAW_TEXT,
DRAW_TEXT_ON_PATH,
DRAW_TEXT_TOP_BOTTOM, // fast variant of DRAW_TEXT
DRAW_VERTICES,
RESTORE,
ROTATE,
SAVE,
SAVE_LAYER,
SCALE,
SET_MATRIX,
SKEW,
TRANSLATE,
NOOP,
BEGIN_COMMENT_GROUP,
COMMENT,
END_COMMENT_GROUP,
LAST_DRAWTYPE_ENUM = END_COMMENT_GROUP
};
// In the 'match' method, this constant will match any flavor of DRAW_BITMAP*
static const int kDRAW_BITMAP_FLAVOR = LAST_DRAWTYPE_ENUM+1;
enum DrawVertexFlags {
DRAW_VERTICES_HAS_TEXS = 0x01,
DRAW_VERTICES_HAS_COLORS = 0x02,
DRAW_VERTICES_HAS_INDICES = 0x04
};
///////////////////////////////////////////////////////////////////////////////
// clipparams are packed in 5 bits
// doAA:1 | regionOp:4
static inline uint32_t ClipParams_pack(SkRegion::Op op, bool doAA) {
unsigned doAABit = doAA ? 1 : 0;
return (doAABit << 4) | op;
}
static inline SkRegion::Op ClipParams_unpackRegionOp(uint32_t packed) {
return (SkRegion::Op)(packed & 0xF);
}
static inline bool ClipParams_unpackDoAA(uint32_t packed) {
return SkToBool((packed >> 4) & 1);
}
///////////////////////////////////////////////////////////////////////////////
class SkTypefacePlayback {
public:
SkTypefacePlayback();
virtual ~SkTypefacePlayback();
int count() const { return fCount; }
void reset(const SkRefCntSet*);
void setCount(int count);
SkRefCnt* set(int index, SkRefCnt*);
void setupBuffer(SkOrderedReadBuffer& buffer) const {
buffer.setTypefaceArray((SkTypeface**)fArray, fCount);
}
protected:
int fCount;
SkRefCnt** fArray;
};
class SkFactoryPlayback {
public:
SkFactoryPlayback(int count) : fCount(count) {
fArray = SkNEW_ARRAY(SkFlattenable::Factory, count);
}
~SkFactoryPlayback() {
SkDELETE_ARRAY(fArray);
}
SkFlattenable::Factory* base() const { return fArray; }
void setupBuffer(SkOrderedReadBuffer& buffer) const {
buffer.setFactoryPlayback(fArray, fCount);
}
private:
int fCount;
SkFlattenable::Factory* fArray;
};
///////////////////////////////////////////////////////////////////////////////
//
//
// The following templated classes provide an efficient way to store and compare
// objects that have been flattened (i.e. serialized in an ordered binary
// format).
//
// SkFlatData: is a simple indexable container for the flattened data
// which is agnostic to the type of data is is indexing. It is
// also responsible for flattening/unflattening objects but
// details of that operation are hidden in the provided procs
// SkFlatDictionary: is an abstract templated dictionary that maintains a
// searchable set of SkFlatData objects of type T.
// SkFlatController: is an interface provided to SkFlatDictionary which handles
// allocation (and unallocation in some cases). It also holds
// ref count recorders and the like.
//
// NOTE: any class that wishes to be used in conjunction with SkFlatDictionary
// must subclass the dictionary and provide the necessary flattening procs.
// The end of this header contains dictionary subclasses for some common classes
// like SkBitmap, SkMatrix, SkPaint, and SkRegion. SkFlatController must also
// be implemented, or SkChunkFlatController can be used to use an
// SkChunkAllocator and never do replacements.
//
//
///////////////////////////////////////////////////////////////////////////////
class SkFlatData;
class SkFlatController : public SkRefCnt {
public:
SK_DECLARE_INST_COUNT(SkFlatController)
SkFlatController();
virtual ~SkFlatController();
/**
* Return a new block of memory for the SkFlatDictionary to use.
* This memory is owned by the controller and has the same lifetime unless you
* call unalloc(), in which case it may be freed early.
*/
virtual void* allocThrow(size_t bytes) = 0;
/**
* Hint that this block, which was allocated with allocThrow, is no longer needed.
* The implementation may choose to free this memory any time beteween now and destruction.
*/
virtual void unalloc(void* ptr) = 0;
/**
* Used during creation and unflattening of SkFlatData objects. If the
* objects being flattened contain bitmaps they are stored in this heap
* and the flattenable stores the index to the bitmap on the heap.
* This should be set by the protected setBitmapHeap.
*/
SkBitmapHeap* getBitmapHeap() { return fBitmapHeap; }
/**
* Used during creation of SkFlatData objects. If a typeface recorder is
* required to flatten the objects being flattened (i.e. for SkPaints), this
* should be set by the protected setTypefaceSet.
*/
SkRefCntSet* getTypefaceSet() { return fTypefaceSet; }
/**
* Used during unflattening of the SkFlatData objects in the
* SkFlatDictionary. Needs to be set by the protected setTypefacePlayback
* and needs to be reset to the SkRefCntSet passed to setTypefaceSet.
*/
SkTypefacePlayback* getTypefacePlayback() { return fTypefacePlayback; }
/**
* Optional factory recorder used during creation of SkFlatData objects. Set
* using the protected method setNamedFactorySet.
*/
SkNamedFactorySet* getNamedFactorySet() { return fFactorySet; }
/**
* Flags to use during creation of SkFlatData objects. Defaults to zero.
*/
uint32_t getWriteBufferFlags() { return fWriteBufferFlags; }
protected:
/**
* Set an SkBitmapHeap to be used to store/read SkBitmaps. Ref counted.
*/
void setBitmapHeap(SkBitmapHeap*);
/**
* Set an SkRefCntSet to be used to store SkTypefaces during flattening. Ref
* counted.
*/
void setTypefaceSet(SkRefCntSet*);
/**
* Set an SkTypefacePlayback to be used to find references to SkTypefaces
* during unflattening. Should be reset to the set provided to
* setTypefaceSet.
*/
void setTypefacePlayback(SkTypefacePlayback*);
/**
* Set an SkNamedFactorySet to be used to store Factorys and their
* corresponding names during flattening. Ref counted. Returns the same
* set as a convenience.
*/
SkNamedFactorySet* setNamedFactorySet(SkNamedFactorySet*);
/**
* Set the flags to be used during flattening.
*/
void setWriteBufferFlags(uint32_t flags) { fWriteBufferFlags = flags; }
private:
SkBitmapHeap* fBitmapHeap;
SkRefCntSet* fTypefaceSet;
SkTypefacePlayback* fTypefacePlayback;
SkNamedFactorySet* fFactorySet;
uint32_t fWriteBufferFlags;
typedef SkRefCnt INHERITED;
};
class SkFlatData {
public:
// Flatten obj into an SkFlatData with this index. controller owns the SkFlatData*.
static SkFlatData* Create(SkFlatController* controller,
const void* obj,
int index,
void (*flattenProc)(SkOrderedWriteBuffer&, const void*));
// Unflatten this into result, using bitmapHeap and facePlayback for bitmaps and fonts if given.
void unflatten(void* result,
void (*unflattenProc)(SkOrderedReadBuffer&, void*),
SkBitmapHeap* bitmapHeap = NULL,
SkTypefacePlayback* facePlayback = NULL) const;
// Do these contain the same data? Ignores index() and topBot().
bool operator==(const SkFlatData& that) const {
if (this->checksum() != that.checksum() || this->flatSize() != that.flatSize()) {
return false;
}
return memcmp(this->data(), that.data(), this->flatSize()) == 0;
}
int index() const { return fIndex; }
const uint8_t* data() const { return (const uint8_t*)this + sizeof(*this); }
size_t flatSize() const { return fFlatSize; }
uint32_t checksum() const { return fChecksum; }
// Returns true if fTopBot[] has been recorded.
bool isTopBotWritten() const {
return !SkScalarIsNaN(fTopBot[0]);
}
// Returns fTopBot array, so it can be passed to a routine to compute them.
// For efficiency, we assert that fTopBot have not been recorded yet.
SkScalar* writableTopBot() const {
SkASSERT(!this->isTopBotWritten());
return fTopBot;
}
// Return the topbot[] after it has been recorded.
const SkScalar* topBot() const {
SkASSERT(this->isTopBotWritten());
return fTopBot;
}
private:
// For SkTDynamicHash.
static const SkFlatData& Identity(const SkFlatData& flat) { return flat; }
static uint32_t Hash(const SkFlatData& flat) { return flat.checksum(); }
static bool Equal(const SkFlatData& a, const SkFlatData& b) { return a == b; }
void setIndex(int index) { fIndex = index; }
uint8_t* data() { return (uint8_t*)this + sizeof(*this); }
// This assumes the payload flat data has already been written and does not modify it.
void stampHeader(int index, int32_t size) {
SkASSERT(SkIsAlign4(size));
fIndex = index;
fFlatSize = size;
fTopBot[0] = SK_ScalarNaN; // Mark as unwritten.
fChecksum = SkChecksum::Compute((uint32_t*)this->data(), size);
}
int fIndex;
int32_t fFlatSize;
uint32_t fChecksum;
mutable SkScalar fTopBot[2]; // Cache of FontMetrics fTop, fBottom. Starts as [NaN,?].
// uint32_t flattenedData[] implicitly hangs off the end.
template <class T> friend class SkFlatDictionary;
};
template <class T>
class SkFlatDictionary {
static const size_t kWriteBufferGrowthBytes = 1024;
public:
SkFlatDictionary(SkFlatController* controller, size_t scratchSizeGuess = 0)
: fFlattenProc(NULL)
, fUnflattenProc(NULL)
, fController(SkRef(controller))
, fScratchSize(scratchSizeGuess)
, fScratch(AllocScratch(fScratchSize))
, fWriteBuffer(kWriteBufferGrowthBytes)
, fWriteBufferReady(false) {
this->reset();
}
/**
* Clears the dictionary of all entries. However, it does NOT free the
* memory that was allocated for each entry (that's owned by controller).
*/
void reset() {
fIndexedData.rewind();
// TODO(mtklein): There's no reason to have the index start from 1. Clean this up.
// index 0 is always empty since it is used as a signal that find failed
fIndexedData.push(NULL);
fNextIndex = 1;
}
~SkFlatDictionary() {
sk_free(fScratch);
}
int count() const {
SkASSERT(fIndexedData.count() == fNextIndex);
SkASSERT(fHash.count() == fNextIndex - 1);
return fNextIndex - 1;
}
// For testing only. Index is zero-based.
const SkFlatData* operator[](int index) {
return fIndexedData[index+1];
}
/**
* Given an element of type T return its 1-based index in the dictionary. If
* the element wasn't previously in the dictionary it is automatically
* added.
*
*/
int find(const T& element) {
return this->findAndReturnFlat(element)->index();
}
/**
* Similar to find. Allows the caller to specify an SkFlatData to replace in
* the case of an add. Also tells the caller whether a new SkFlatData was
* added and whether the old one was replaced. The parameters added and
* replaced are required to be non-NULL. Rather than returning the index of
* the entry in the dictionary, it returns the actual SkFlatData.
*/
const SkFlatData* findAndReplace(const T& element,
const SkFlatData* toReplace,
bool* added,
bool* replaced) {
SkASSERT(added != NULL && replaced != NULL);
const int oldCount = this->count();
SkFlatData* flat = this->findAndReturnMutableFlat(element);
*added = this->count() > oldCount;
// If we don't want to replace anything, we're done.
if (!*added || toReplace == NULL) {
*replaced = false;
return flat;
}
// If we don't have the thing to replace, we're done.
const SkFlatData* found = fHash.find(*toReplace);
if (found == NULL) {
*replaced = false;
return flat;
}
// findAndReturnMutableFlat gave us index (fNextIndex-1), but we'll use the old one.
fIndexedData.remove(flat->index());
fNextIndex--;
flat->setIndex(found->index());
fIndexedData[flat->index()] = flat;
// findAndReturnMutableFlat already called fHash.add(), so we just clean up the old entry.
fHash.remove(*found);
fController->unalloc((void*)found);
SkASSERT(this->count() == oldCount);
*replaced = true;
return flat;
}
/**
* Unflatten the objects and return them in SkTRefArray, or return NULL
* if there no objects. Caller takes ownership of result.
*/
SkTRefArray<T>* unflattenToArray() const {
const int count = this->count();
if (count == 0) {
return NULL;
}
SkTRefArray<T>* array = SkTRefArray<T>::Create(count);
for (int i = 0; i < count; i++) {
this->unflatten(&array->writableAt(i), fIndexedData[i+1]);
}
return array;
}
/**
* Unflatten the specific object at the given index.
* Caller takes ownership of the result.
*/
T* unflatten(int index) const {
const SkFlatData* element = fIndexedData[index];
SkASSERT(index == element->index());
T* dst = new T;
this->unflatten(dst, element);
return dst;
}
/**
* Find or insert a flattened version of element into the dictionary.
* Caller does not take ownership of the result. This will not return NULL.
*/
const SkFlatData* findAndReturnFlat(const T& element) {
return this->findAndReturnMutableFlat(element);
}
protected:
void (*fFlattenProc)(SkOrderedWriteBuffer&, const void*);
void (*fUnflattenProc)(SkOrderedReadBuffer&, void*);
private:
// Layout: [ SkFlatData header, 20 bytes ] [ data ..., 4-byte aligned ]
static size_t SizeWithPadding(size_t flatDataSize) {
SkASSERT(SkIsAlign4(flatDataSize));
return sizeof(SkFlatData) + flatDataSize;
}
// Allocate a new scratch SkFlatData. Must be sk_freed.
static SkFlatData* AllocScratch(size_t scratchSize) {
return (SkFlatData*) sk_malloc_throw(SizeWithPadding(scratchSize));
}
// We have to delay fWriteBuffer's initialization until its first use; fController might not
// be fully set up by the time we get it in the constructor.
void lazyWriteBufferInit() {
if (fWriteBufferReady) {
return;
}
// Without a bitmap heap, we'll flatten bitmaps into paints. That's never what you want.
SkASSERT(fController->getBitmapHeap() != NULL);
fWriteBuffer.setBitmapHeap(fController->getBitmapHeap());
fWriteBuffer.setTypefaceRecorder(fController->getTypefaceSet());
fWriteBuffer.setNamedFactoryRecorder(fController->getNamedFactorySet());
fWriteBuffer.setFlags(fController->getWriteBufferFlags());
fWriteBufferReady = true;
}
// As findAndReturnFlat, but returns a mutable pointer for internal use.
SkFlatData* findAndReturnMutableFlat(const T& element) {
// Only valid until the next call to resetScratch().
const SkFlatData& scratch = this->resetScratch(element, fNextIndex);
SkFlatData* candidate = fHash.find(scratch);
if (candidate != NULL) return candidate;
SkFlatData* detached = this->detachScratch();
fHash.add(detached);
*fIndexedData.insert(fNextIndex) = detached;
fNextIndex++;
return detached;
}
// This reference is valid only until the next call to resetScratch() or detachScratch().
const SkFlatData& resetScratch(const T& element, int index) {
this->lazyWriteBufferInit();
// Flatten element into fWriteBuffer (using fScratch as storage).
fWriteBuffer.reset(fScratch->data(), fScratchSize);
fFlattenProc(fWriteBuffer, &element);
const size_t bytesWritten = fWriteBuffer.bytesWritten();
// If all the flattened bytes fit into fScratch, we can skip a call to writeToMemory.
if (!fWriteBuffer.wroteOnlyToStorage()) {
SkASSERT(bytesWritten > fScratchSize);
// It didn't all fit. Copy into a larger replacement SkFlatData.
// We can't just realloc because it might move the pointer and confuse writeToMemory.
SkFlatData* larger = AllocScratch(bytesWritten);
fWriteBuffer.writeToMemory(larger->data());
// Carry on with this larger scratch to minimize the likelihood of future resizing.
sk_free(fScratch);
fScratchSize = bytesWritten;
fScratch = larger;
}
// The data is in fScratch now but we need to stamp its header.
fScratch->stampHeader(index, bytesWritten);
return *fScratch;
}
// This result is owned by fController and lives as long as it does (unless unalloc'd).
SkFlatData* detachScratch() {
// Allocate a new SkFlatData exactly big enough to hold our current scratch.
// We use the controller for this allocation to extend the allocation's lifetime and allow
// the controller to do whatever memory management it wants.
const size_t paddedSize = SizeWithPadding(fScratch->flatSize());
SkFlatData* detached = (SkFlatData*)fController->allocThrow(paddedSize);
// Copy scratch into the new SkFlatData.
memcpy(detached, fScratch, paddedSize);
// We can now reuse fScratch, and detached will live until fController dies.
return detached;
}
void unflatten(T* dst, const SkFlatData* element) const {
element->unflatten(dst,
fUnflattenProc,
fController->getBitmapHeap(),
fController->getTypefacePlayback());
}
// All SkFlatData* stored in fIndexedData and fHash are owned by the controller.
SkAutoTUnref<SkFlatController> fController;
size_t fScratchSize; // How many bytes fScratch has allocated for data itself.
SkFlatData* fScratch; // Owned, must be freed with sk_free.
SkOrderedWriteBuffer fWriteBuffer;
bool fWriteBufferReady;
// We map between SkFlatData and a 1-based integer index.
int fNextIndex;
// For index -> SkFlatData. fIndexedData[0] is always NULL.
SkTDArray<const SkFlatData*> fIndexedData;
// For SkFlatData -> cached SkFlatData, which has index().
SkTDynamicHash<SkFlatData, SkFlatData,
SkFlatData::Identity, SkFlatData::Hash, SkFlatData::Equal> fHash;
};
///////////////////////////////////////////////////////////////////////////////
// Some common dictionaries are defined here for both reference and convenience
///////////////////////////////////////////////////////////////////////////////
template <class T>
static void SkFlattenObjectProc(SkOrderedWriteBuffer& buffer, const void* obj) {
((T*)obj)->flatten(buffer);
}
template <class T>
static void SkUnflattenObjectProc(SkOrderedReadBuffer& buffer, void* obj) {
((T*)obj)->unflatten(buffer);
}
class SkChunkFlatController : public SkFlatController {
public:
SkChunkFlatController(size_t minSize)
: fHeap(minSize)
, fTypefaceSet(SkNEW(SkRefCntSet))
, fLastAllocated(NULL) {
this->setTypefaceSet(fTypefaceSet);
this->setTypefacePlayback(&fTypefacePlayback);
}
virtual void* allocThrow(size_t bytes) SK_OVERRIDE {
fLastAllocated = fHeap.allocThrow(bytes);
return fLastAllocated;
}
virtual void unalloc(void* ptr) SK_OVERRIDE {
// fHeap can only free a pointer if it was the last one allocated. Otherwise, we'll just
// have to wait until fHeap is destroyed.
if (ptr == fLastAllocated) (void)fHeap.unalloc(ptr);
}
void setupPlaybacks() const {
fTypefacePlayback.reset(fTypefaceSet.get());
}
void setBitmapStorage(SkBitmapHeap* heap) {
this->setBitmapHeap(heap);
}
private:
SkChunkAlloc fHeap;
SkAutoTUnref<SkRefCntSet> fTypefaceSet;
void* fLastAllocated;
mutable SkTypefacePlayback fTypefacePlayback;
};
class SkMatrixDictionary : public SkFlatDictionary<SkMatrix> {
public:
// All matrices fit in 36 bytes.
SkMatrixDictionary(SkFlatController* controller)
: SkFlatDictionary<SkMatrix>(controller, 36) {
fFlattenProc = &flattenMatrix;
fUnflattenProc = &unflattenMatrix;
}
static void flattenMatrix(SkOrderedWriteBuffer& buffer, const void* obj) {
buffer.getWriter32()->writeMatrix(*(SkMatrix*)obj);
}
static void unflattenMatrix(SkOrderedReadBuffer& buffer, void* obj) {
buffer.getReader32()->readMatrix((SkMatrix*)obj);
}
};
class SkPaintDictionary : public SkFlatDictionary<SkPaint> {
public:
// The largest paint across ~60 .skps was 500 bytes.
SkPaintDictionary(SkFlatController* controller)
: SkFlatDictionary<SkPaint>(controller, 512) {
fFlattenProc = &SkFlattenObjectProc<SkPaint>;
fUnflattenProc = &SkUnflattenObjectProc<SkPaint>;
}
};
class SkRegionDictionary : public SkFlatDictionary<SkRegion> {
public:
SkRegionDictionary(SkFlatController* controller)
: SkFlatDictionary<SkRegion>(controller) {
fFlattenProc = &flattenRegion;
fUnflattenProc = &unflattenRegion;
}
static void flattenRegion(SkOrderedWriteBuffer& buffer, const void* obj) {
buffer.getWriter32()->writeRegion(*(SkRegion*)obj);
}
static void unflattenRegion(SkOrderedReadBuffer& buffer, void* obj) {
buffer.getReader32()->readRegion((SkRegion*)obj);
}
};
#endif
|