aboutsummaryrefslogtreecommitdiffhomepage
path: root/src/core/SkPictureFlat.h
blob: e2026dee8ae3f65f90d7e010993e87798b9cf238 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404

/*
 * Copyright 2011 Google Inc.
 *
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */
#ifndef SkPictureFlat_DEFINED
#define SkPictureFlat_DEFINED

//#define SK_DEBUG_SIZE

#include "SkChunkAlloc.h"
#include "SkBitmap.h"
#include "SkOrderedReadBuffer.h"
#include "SkOrderedWriteBuffer.h"
#include "SkPicture.h"
#include "SkMatrix.h"
#include "SkPaint.h"
#include "SkPath.h"
#include "SkRegion.h"
#include "SkTSearch.h"

enum DrawType {
    UNUSED,
    CLIP_PATH,
    CLIP_REGION,
    CLIP_RECT,
    CONCAT,
    DRAW_BITMAP,
    DRAW_BITMAP_MATRIX,
    DRAW_BITMAP_NINE,
    DRAW_BITMAP_RECT,
    DRAW_CLEAR,
    DRAW_DATA,
    DRAW_PAINT,
    DRAW_PATH,
    DRAW_PICTURE,
    DRAW_POINTS,
    DRAW_POS_TEXT,
    DRAW_POS_TEXT_TOP_BOTTOM, // fast variant of DRAW_POS_TEXT
    DRAW_POS_TEXT_H,
    DRAW_POS_TEXT_H_TOP_BOTTOM, // fast variant of DRAW_POS_TEXT_H
    DRAW_RECT,
    DRAW_SPRITE,
    DRAW_TEXT,
    DRAW_TEXT_ON_PATH,
    DRAW_TEXT_TOP_BOTTOM,   // fast variant of DRAW_TEXT
    DRAW_VERTICES,
    RESTORE,
    ROTATE,
    SAVE,
    SAVE_LAYER,
    SCALE,
    SET_MATRIX,
    SKEW,
    TRANSLATE
};

enum DrawVertexFlags {
    DRAW_VERTICES_HAS_TEXS    = 0x01,
    DRAW_VERTICES_HAS_COLORS  = 0x02,
    DRAW_VERTICES_HAS_INDICES = 0x04
};

///////////////////////////////////////////////////////////////////////////////
// clipparams are packed in 5 bits
//  doAA:1 | regionOp:4

static inline uint32_t ClipParams_pack(SkRegion::Op op, bool doAA) {
    unsigned doAABit = doAA ? 1 : 0;
    return (doAABit << 4) | op;
}

static inline SkRegion::Op ClipParams_unpackRegionOp(uint32_t packed) {
    return (SkRegion::Op)(packed & 0xF);
}

static inline bool ClipParams_unpackDoAA(uint32_t packed) {
    return SkToBool((packed >> 4) & 1);
}

///////////////////////////////////////////////////////////////////////////////

class SkRefCntPlayback {
public:
    SkRefCntPlayback();
    virtual ~SkRefCntPlayback();
    
    int count() const { return fCount; }
    
    void reset(const SkRefCntSet*);

    void setCount(int count);
    SkRefCnt* set(int index, SkRefCnt*);

    virtual void setupBuffer(SkFlattenableReadBuffer& buffer) const {
        buffer.setRefCntArray(fArray, fCount);
    }
    
protected:
    int fCount;
    SkRefCnt** fArray;
};

class SkTypefacePlayback : public SkRefCntPlayback {
public:
    virtual void setupBuffer(SkFlattenableReadBuffer& buffer) const {
        buffer.setTypefaceArray((SkTypeface**)fArray, fCount);
    }
};

class SkFactoryPlayback {
public:
    SkFactoryPlayback(int count) : fCount(count) {
        fArray = SkNEW_ARRAY(SkFlattenable::Factory, count);
    }

    ~SkFactoryPlayback() {
        SkDELETE_ARRAY(fArray);
    }
    
    SkFlattenable::Factory* base() const { return fArray; }

    void setupBuffer(SkFlattenableReadBuffer& buffer) const {
        buffer.setFactoryPlayback(fArray, fCount);
    }
    
private:
    int fCount;
    SkFlattenable::Factory* fArray;
};

///////////////////////////////////////////////////////////////////////////////
//
//
// The following templated classes provide an efficient way to store and compare
// objects that have been flattened (i.e. serialized in an ordered binary
// format).
//
// SkFlatData:       is a simple indexable container for the flattened data
//                   which is agnostic to the type of data is is indexing. It is
//                   also responsible for flattening/unflattening objects but
//                   details of that operation are hidden in the provided procs
// SkFlatDictionary: is a abstract templated dictionary that maintains a
//                   searchable set of SkFlataData objects of type T.
//
// NOTE: any class that wishes to be used in conjunction with SkFlatDictionary
// must subclass the dictionary and provide the necessary flattening procs.
// The end of this header contains dictionary subclasses for some common classes
// like SkBitmap, SkMatrix, SkPaint, and SkRegion.
//
//
///////////////////////////////////////////////////////////////////////////////

class SkFlatData {
public:
    /**
     *  Compare two SkFlatData ptrs, returning -1, 0, 1 to allow them to be
     *  sorted.
     *
     *  Note: this assumes that a and b have different sentinel values, either
     *  InCache or AsCandidate, otherwise the loop will go beyond the end of
     *  the buffers.
     *
     *  dataToCompare() returns 2 fields before the flattened data:
     *      - checksum
     *      - size
     *  This ensures that if we see two blocks of different length, we will
     *  notice that right away, and not read any further. It also ensures that
     *  we see the checksum right away, so that most of the time it is enough
     *  to short-circuit our comparison.
     */
    static int Compare(const SkFlatData* a, const SkFlatData* b) {
        const uint32_t* stop = a->dataStop();
        const uint32_t* a_ptr = a->dataToCompare() - 1;
        const uint32_t* b_ptr = b->dataToCompare() - 1;
        // We use -1 above, so we can pre-increment our pointers in the loop
        while (*++a_ptr == *++b_ptr) {}

        if (a_ptr == stop) {    // sentinel
            SkASSERT(b->dataStop() == b_ptr);
            return 0;
        }
        SkASSERT(a_ptr < a->dataStop());
        SkASSERT(b_ptr < b->dataStop());
        return (*a_ptr < *b_ptr) ? -1 : 1;
    }
    
    int index() const { return fIndex; }
    const void* data() const { return (const char*)this + sizeof(*this); }
    void* data() { return (char*)this + sizeof(*this); }
    // Our data is always 32bit aligned, so we can offer this accessor
    uint32_t* data32() { return (uint32_t*)this->data(); }

    void setSentinelInCache() {
        this->setSentinel(kInCache_Sentinel);
    }
    void setSentinelAsCandidate() {
        this->setSentinel(kCandidate_Sentinel);
    }

#ifdef SK_DEBUG_SIZE
    // returns the logical size of our data. Does not return any sentinel or
    // padding we might have.
    size_t size() const {
        return sizeof(SkFlatData) + fFlatSize;
    }
#endif

    static SkFlatData* Create(SkChunkAlloc* heap, const void* obj, int index,
                              void (*flattenProc)(SkOrderedWriteBuffer&, const void*),
                              SkRefCntSet* refCntRecorder = NULL,
                              SkRefCntSet* faceRecorder = NULL,
                              uint32_t writeBufferflags = 0);
    void unflatten(void* result,
                   void (*unflattenProc)(SkOrderedReadBuffer&, void*),
                   SkRefCntPlayback* refCntPlayback = NULL,
                   SkTypefacePlayback* facePlayback = NULL) const;

    // for unittesting
    friend bool operator==(const SkFlatData& a, const SkFlatData& b) {
        size_t N = (const char*)a.dataStop() - (const char*)a.dataToCompare();
        return !memcmp(a.dataToCompare(), b.dataToCompare(), N);
    }

private:
    int fIndex;

    // From here down is the data we look at in the search/sort. We always begin
    // with the checksum and then length.
    uint32_t fChecksum;
    int32_t  fFlatSize;  // size of flattened data
    // uint32_t flattenedData[]
    // uint32_t sentinelValue

    const uint32_t* dataToCompare() const {
        return (const uint32_t*)&fChecksum;
    }
    const uint32_t* dataStop() const {
        SkASSERT(SkIsAlign4(fFlatSize));
        return (const uint32_t*)((const char*)this->data() + fFlatSize);
    }

    enum {
        kInCache_Sentinel = 0,
        kCandidate_Sentinel = ~0U,
    };
    void setSentinel(uint32_t value) {
        SkASSERT(SkIsAlign4(fFlatSize));
        this->data32()[fFlatSize >> 2] = value;
    }
};

template <class T>
class SkFlatDictionary {
public:
    SkFlatDictionary(SkChunkAlloc* heap) {
        fFlattenProc = NULL;
        fUnflattenProc = NULL;
        fHeap = heap;
        // set to 1 since returning a zero from find() indicates failure
        fNextIndex = 1;
    }

    int count() const { return fData.count(); }

    const SkFlatData*  operator[](int index) const {
        SkASSERT(index >= 0 && index < fData.count());
        return fData[index];
    }

    /**
     * Clears the dictionary of all entries. However, it does NOT free the
     * memory that was allocated for each entry.
     */
    void reset() { fData.reset(); fNextIndex = 1; }

    /**
     * Given an element of type T it returns its index in the dictionary. If
     * the element wasn't previously in the dictionary it is automatically added
     *
     *  To make the Compare function fast, we write a sentinel value at the end
     *  of each block. The blocks in our fData[] all have a 0 sentinel. The
     *  newly created block we're comparing against has a -1 in the sentinel.
     *
     *  This trick allows Compare to always loop until failure. If it fails on
     *  the sentinal value, we know the blocks are equal.
     */
    int find(const T* element, SkRefCntSet* refCntRecorder = NULL,
             SkRefCntSet* faceRecorder = NULL, uint32_t writeBufferflags = 0) {
        if (element == NULL)
            return 0;
        SkFlatData* flat = SkFlatData::Create(fHeap, element, fNextIndex,
                fFlattenProc, refCntRecorder, faceRecorder, writeBufferflags);

        int index = SkTSearch<SkFlatData>((const SkFlatData**) fData.begin(),
                fData.count(), flat, sizeof(flat), &SkFlatData::Compare);
        if (index >= 0) {
            (void)fHeap->unalloc(flat);
            return fData[index]->index();
        }

        index = ~index;
        *fData.insert(index) = flat;
        flat->setSentinelInCache();
        SkASSERT(fData.count() == fNextIndex);
        return fNextIndex++;
    }

    /**
     * Given a pointer to a array of type T we allocate the array and fill it
     * with the unflattened dictionary contents. The return value is the size of
     * the allocated array.
     */
    int unflattenDictionary(T*& array, SkRefCntPlayback* refCntPlayback = NULL,
            SkTypefacePlayback* facePlayback = NULL) const {
        int elementCount = fData.count();
        if (elementCount > 0) {
            array = SkNEW_ARRAY(T, elementCount);
            for (const SkFlatData** elementPtr = fData.begin();
                    elementPtr != fData.end(); elementPtr++) {
                const SkFlatData* element = *elementPtr;
                int index = element->index() - 1;
                element->unflatten(&array[index], fUnflattenProc,
                                   refCntPlayback, facePlayback);
            }
        }
        return elementCount;
    }

protected:
    void (*fFlattenProc)(SkOrderedWriteBuffer&, const void*);
    void (*fUnflattenProc)(SkOrderedReadBuffer&, void*);

private:
    SkChunkAlloc* fHeap;
    int fNextIndex;
    SkTDArray<const SkFlatData*> fData;
};

///////////////////////////////////////////////////////////////////////////////
// Some common dictionaries are defined here for both reference and convenience
///////////////////////////////////////////////////////////////////////////////

template <class T>
static void SkFlattenObjectProc(SkOrderedWriteBuffer& buffer, const void* obj) {
    ((T*)obj)->flatten(buffer);
}

template <class T>
static void SkUnflattenObjectProc(SkOrderedReadBuffer& buffer, void* obj) {
    ((T*)obj)->unflatten(buffer);
}

class SkBitmapDictionary : public SkFlatDictionary<SkBitmap> {
public:
    SkBitmapDictionary(SkChunkAlloc* heap) : SkFlatDictionary<SkBitmap>(heap) {
        fFlattenProc = &SkFlattenObjectProc<SkBitmap>;
        fUnflattenProc = &SkUnflattenObjectProc<SkBitmap>;
    }
};

class SkMatrixDictionary : public SkFlatDictionary<SkMatrix> {
 public:
    SkMatrixDictionary(SkChunkAlloc* heap) : SkFlatDictionary<SkMatrix>(heap) {
        fFlattenProc = &flattenMatrix;
        fUnflattenProc = &unflattenMatrix;
    }

    static void flattenMatrix(SkOrderedWriteBuffer& buffer, const void* obj) {
        buffer.getWriter32()->writeMatrix(*(SkMatrix*)obj);
    }

    static void unflattenMatrix(SkOrderedReadBuffer& buffer, void* obj) {
        buffer.getReader32()->readMatrix((SkMatrix*)obj);
    }
};

class SkPaintDictionary : public SkFlatDictionary<SkPaint> {
 public:
    SkPaintDictionary(SkChunkAlloc* heap) : SkFlatDictionary<SkPaint>(heap) {
        fFlattenProc = &SkFlattenObjectProc<SkPaint>;
        fUnflattenProc = &SkUnflattenObjectProc<SkPaint>;
    }
};

class SkRegionDictionary : public SkFlatDictionary<SkRegion> {
 public:
    SkRegionDictionary(SkChunkAlloc* heap) : SkFlatDictionary<SkRegion>(heap) {
        fFlattenProc = &flattenRegion;
        fUnflattenProc = &unflattenRegion;
    }

    static void flattenRegion(SkOrderedWriteBuffer& buffer, const void* obj) {
        buffer.getWriter32()->writeRegion(*(SkRegion*)obj);
    }

    static void unflattenRegion(SkOrderedReadBuffer& buffer, void* obj) {
        buffer.getReader32()->readRegion((SkRegion*)obj);
    }
};

#endif