1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
|
/*
* Copyright 2011 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include <new>
#include "SkImageGenerator.h"
#include "SkPictureData.h"
#include "SkPictureRecord.h"
#include "SkReadBuffer.h"
#include "SkTextBlob.h"
#include "SkTypeface.h"
#include "SkWriteBuffer.h"
#if SK_SUPPORT_GPU
#include "GrContext.h"
#endif
template <typename T> int SafeCount(const T* obj) {
return obj ? obj->count() : 0;
}
SkPictureData::SkPictureData(const SkPictInfo& info)
: fInfo(info) {
this->init();
}
void SkPictureData::initForPlayback() const {
// ensure that the paths bounds are pre-computed
for (int i = 0; i < fPaths.count(); i++) {
fPaths[i].updateBoundsCache();
}
}
SkPictureData::SkPictureData(const SkPictureRecord& record,
const SkPictInfo& info,
bool deepCopyOps)
: fInfo(info) {
this->init();
fOpData = record.opData(deepCopyOps);
fContentInfo.set(record.fContentInfo);
fBitmaps = record.fBitmaps;
fPaints = record.fPaints;
fPaths.reset(record.fPaths.count());
record.fPaths.foreach([this](const SkPath& path, int n) {
// These indices are logically 1-based, but we need to serialize them
// 0-based to keep the deserializing SkPictureData::getPath() working.
fPaths[n-1] = path;
});
this->initForPlayback();
const SkTDArray<const SkPicture* >& pictures = record.getPictureRefs();
fPictureCount = pictures.count();
if (fPictureCount > 0) {
fPictureRefs = new const SkPicture* [fPictureCount];
for (int i = 0; i < fPictureCount; i++) {
fPictureRefs[i] = pictures[i];
fPictureRefs[i]->ref();
}
}
// templatize to consolidate with similar picture logic?
const SkTDArray<const SkTextBlob*>& blobs = record.getTextBlobRefs();
fTextBlobCount = blobs.count();
if (fTextBlobCount > 0) {
fTextBlobRefs = new const SkTextBlob* [fTextBlobCount];
for (int i = 0; i < fTextBlobCount; ++i) {
fTextBlobRefs[i] = SkRef(blobs[i]);
}
}
const SkTDArray<const SkImage*>& imgs = record.getImageRefs();
fImageCount = imgs.count();
if (fImageCount > 0) {
fImageRefs = new const SkImage* [fImageCount];
for (int i = 0; i < fImageCount; ++i) {
fImageRefs[i] = SkRef(imgs[i]);
}
}
}
void SkPictureData::init() {
fPictureRefs = nullptr;
fPictureCount = 0;
fTextBlobRefs = nullptr;
fTextBlobCount = 0;
fImageRefs = nullptr;
fImageCount = 0;
fOpData = nullptr;
fFactoryPlayback = nullptr;
}
SkPictureData::~SkPictureData() {
SkSafeUnref(fOpData);
for (int i = 0; i < fPictureCount; i++) {
fPictureRefs[i]->unref();
}
delete[] fPictureRefs;
for (int i = 0; i < fTextBlobCount; i++) {
fTextBlobRefs[i]->unref();
}
delete[] fTextBlobRefs;
for (int i = 0; i < fImageCount; i++) {
fImageRefs[i]->unref();
}
delete[] fImageRefs;
delete fFactoryPlayback;
}
bool SkPictureData::containsBitmaps() const {
if (fBitmaps.count() > 0 || fImageCount > 0) {
return true;
}
for (int i = 0; i < fPictureCount; ++i) {
if (fPictureRefs[i]->willPlayBackBitmaps()) {
return true;
}
}
return false;
}
///////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////
#include "SkStream.h"
static size_t compute_chunk_size(SkFlattenable::Factory* array, int count) {
size_t size = 4; // for 'count'
for (int i = 0; i < count; i++) {
const char* name = SkFlattenable::FactoryToName(array[i]);
if (nullptr == name || 0 == *name) {
size += SkWStream::SizeOfPackedUInt(0);
} else {
size_t len = strlen(name);
size += SkWStream::SizeOfPackedUInt(len);
size += len;
}
}
return size;
}
static void write_tag_size(SkWriteBuffer& buffer, uint32_t tag, size_t size) {
buffer.writeUInt(tag);
buffer.writeUInt(SkToU32(size));
}
static void write_tag_size(SkWStream* stream, uint32_t tag, size_t size) {
stream->write32(tag);
stream->write32(SkToU32(size));
}
void SkPictureData::WriteFactories(SkWStream* stream, const SkFactorySet& rec) {
int count = rec.count();
SkAutoSTMalloc<16, SkFlattenable::Factory> storage(count);
SkFlattenable::Factory* array = (SkFlattenable::Factory*)storage.get();
rec.copyToArray(array);
size_t size = compute_chunk_size(array, count);
// TODO: write_tag_size should really take a size_t
write_tag_size(stream, SK_PICT_FACTORY_TAG, (uint32_t) size);
SkDEBUGCODE(size_t start = stream->bytesWritten());
stream->write32(count);
for (int i = 0; i < count; i++) {
const char* name = SkFlattenable::FactoryToName(array[i]);
if (nullptr == name || 0 == *name) {
stream->writePackedUInt(0);
} else {
size_t len = strlen(name);
stream->writePackedUInt(len);
stream->write(name, len);
}
}
SkASSERT(size == (stream->bytesWritten() - start));
}
void SkPictureData::WriteTypefaces(SkWStream* stream, const SkRefCntSet& rec) {
int count = rec.count();
write_tag_size(stream, SK_PICT_TYPEFACE_TAG, count);
SkAutoSTMalloc<16, SkTypeface*> storage(count);
SkTypeface** array = (SkTypeface**)storage.get();
rec.copyToArray((SkRefCnt**)array);
for (int i = 0; i < count; i++) {
array[i]->serialize(stream);
}
}
void SkPictureData::flattenToBuffer(SkWriteBuffer& buffer) const {
int i, n;
if ((n = fBitmaps.count()) > 0) {
write_tag_size(buffer, SK_PICT_BITMAP_BUFFER_TAG, n);
for (i = 0; i < n; i++) {
buffer.writeBitmap(fBitmaps[i]);
}
}
if ((n = fPaints.count()) > 0) {
write_tag_size(buffer, SK_PICT_PAINT_BUFFER_TAG, n);
for (i = 0; i < n; i++) {
buffer.writePaint(fPaints[i]);
}
}
if ((n = fPaths.count()) > 0) {
write_tag_size(buffer, SK_PICT_PATH_BUFFER_TAG, n);
buffer.writeInt(n);
for (int i = 0; i < n; i++) {
buffer.writePath(fPaths[i]);
}
}
if (fTextBlobCount > 0) {
write_tag_size(buffer, SK_PICT_TEXTBLOB_BUFFER_TAG, fTextBlobCount);
for (i = 0; i < fTextBlobCount; ++i) {
fTextBlobRefs[i]->flatten(buffer);
}
}
if (fImageCount > 0) {
write_tag_size(buffer, SK_PICT_IMAGE_BUFFER_TAG, fImageCount);
for (i = 0; i < fImageCount; ++i) {
buffer.writeImage(fImageRefs[i]);
}
}
}
void SkPictureData::serialize(SkWStream* stream,
SkPixelSerializer* pixelSerializer,
SkRefCntSet* topLevelTypeFaceSet) const {
// This can happen at pretty much any time, so might as well do it first.
write_tag_size(stream, SK_PICT_READER_TAG, fOpData->size());
stream->write(fOpData->bytes(), fOpData->size());
// We serialize all typefaces into the typeface section of the top-level picture.
SkRefCntSet localTypefaceSet;
SkRefCntSet* typefaceSet = topLevelTypeFaceSet ? topLevelTypeFaceSet : &localTypefaceSet;
// We delay serializing the bulk of our data until after we've serialized
// factories and typefaces by first serializing to an in-memory write buffer.
SkFactorySet factSet; // buffer refs factSet, so factSet must come first.
SkWriteBuffer buffer(SkWriteBuffer::kCrossProcess_Flag);
buffer.setFactoryRecorder(&factSet);
buffer.setPixelSerializer(pixelSerializer);
buffer.setTypefaceRecorder(typefaceSet);
this->flattenToBuffer(buffer);
// Dummy serialize our sub-pictures for the side effect of filling
// typefaceSet with typefaces from sub-pictures.
struct DevNull: public SkWStream {
DevNull() : fBytesWritten(0) {}
size_t fBytesWritten;
bool write(const void*, size_t size) override { fBytesWritten += size; return true; }
size_t bytesWritten() const override { return fBytesWritten; }
} devnull;
for (int i = 0; i < fPictureCount; i++) {
fPictureRefs[i]->serialize(&devnull, pixelSerializer, typefaceSet);
}
// We need to write factories before we write the buffer.
// We need to write typefaces before we write the buffer or any sub-picture.
WriteFactories(stream, factSet);
if (typefaceSet == &localTypefaceSet) {
WriteTypefaces(stream, *typefaceSet);
}
// Write the buffer.
write_tag_size(stream, SK_PICT_BUFFER_SIZE_TAG, buffer.bytesWritten());
buffer.writeToStream(stream);
// Write sub-pictures by calling serialize again.
if (fPictureCount > 0) {
write_tag_size(stream, SK_PICT_PICTURE_TAG, fPictureCount);
for (int i = 0; i < fPictureCount; i++) {
fPictureRefs[i]->serialize(stream, pixelSerializer, typefaceSet);
}
}
stream->write32(SK_PICT_EOF_TAG);
}
void SkPictureData::flatten(SkWriteBuffer& buffer) const {
write_tag_size(buffer, SK_PICT_READER_TAG, fOpData->size());
buffer.writeByteArray(fOpData->bytes(), fOpData->size());
if (fPictureCount > 0) {
write_tag_size(buffer, SK_PICT_PICTURE_TAG, fPictureCount);
for (int i = 0; i < fPictureCount; i++) {
fPictureRefs[i]->flatten(buffer);
}
}
// Write this picture playback's data into a writebuffer
this->flattenToBuffer(buffer);
buffer.write32(SK_PICT_EOF_TAG);
}
///////////////////////////////////////////////////////////////////////////////
/**
* Return the corresponding SkReadBuffer flags, given a set of
* SkPictInfo flags.
*/
static uint32_t pictInfoFlagsToReadBufferFlags(uint32_t pictInfoFlags) {
static const struct {
uint32_t fSrc;
uint32_t fDst;
} gSD[] = {
{ SkPictInfo::kCrossProcess_Flag, SkReadBuffer::kCrossProcess_Flag },
{ SkPictInfo::kScalarIsFloat_Flag, SkReadBuffer::kScalarIsFloat_Flag },
{ SkPictInfo::kPtrIs64Bit_Flag, SkReadBuffer::kPtrIs64Bit_Flag },
};
uint32_t rbMask = 0;
for (size_t i = 0; i < SK_ARRAY_COUNT(gSD); ++i) {
if (pictInfoFlags & gSD[i].fSrc) {
rbMask |= gSD[i].fDst;
}
}
return rbMask;
}
bool SkPictureData::parseStreamTag(SkStream* stream,
uint32_t tag,
uint32_t size,
SkPicture::InstallPixelRefProc proc,
SkTypefacePlayback* topLevelTFPlayback) {
/*
* By the time we encounter BUFFER_SIZE_TAG, we need to have already seen
* its dependents: FACTORY_TAG and TYPEFACE_TAG. These two are not required
* but if they are present, they need to have been seen before the buffer.
*
* We assert that if/when we see either of these, that we have not yet seen
* the buffer tag, because if we have, then its too-late to deal with the
* factories or typefaces.
*/
SkDEBUGCODE(bool haveBuffer = false;)
switch (tag) {
case SK_PICT_READER_TAG:
SkASSERT(nullptr == fOpData);
fOpData = SkData::NewFromStream(stream, size);
if (!fOpData) {
return false;
}
break;
case SK_PICT_FACTORY_TAG: {
SkASSERT(!haveBuffer);
size = stream->readU32();
fFactoryPlayback = new SkFactoryPlayback(size);
for (size_t i = 0; i < size; i++) {
SkString str;
const size_t len = stream->readPackedUInt();
str.resize(len);
if (stream->read(str.writable_str(), len) != len) {
return false;
}
fFactoryPlayback->base()[i] = SkFlattenable::NameToFactory(str.c_str());
}
} break;
case SK_PICT_TYPEFACE_TAG: {
SkASSERT(!haveBuffer);
const int count = SkToInt(size);
fTFPlayback.setCount(count);
for (int i = 0; i < count; i++) {
SkAutoTUnref<SkTypeface> tf(SkTypeface::Deserialize(stream));
if (!tf.get()) { // failed to deserialize
// fTFPlayback asserts it never has a null, so we plop in
// the default here.
tf.reset(SkTypeface::RefDefault());
}
fTFPlayback.set(i, tf);
}
} break;
case SK_PICT_PICTURE_TAG: {
fPictureCount = 0;
fPictureRefs = new const SkPicture* [size];
for (uint32_t i = 0; i < size; i++) {
fPictureRefs[i] = SkPicture::CreateFromStream(stream, proc, topLevelTFPlayback);
if (!fPictureRefs[i]) {
return false;
}
fPictureCount++;
}
} break;
case SK_PICT_BUFFER_SIZE_TAG: {
SkAutoMalloc storage(size);
if (stream->read(storage.get(), size) != size) {
return false;
}
/* Should we use SkValidatingReadBuffer instead? */
SkReadBuffer buffer(storage.get(), size);
buffer.setFlags(pictInfoFlagsToReadBufferFlags(fInfo.fFlags));
buffer.setVersion(fInfo.fVersion);
fFactoryPlayback->setupBuffer(buffer);
buffer.setBitmapDecoder(proc);
if (fTFPlayback.count() > 0) {
// .skp files <= v43 have typefaces serialized with each sub picture.
fTFPlayback.setupBuffer(buffer);
} else {
// Newer .skp files serialize all typefaces with the top picture.
topLevelTFPlayback->setupBuffer(buffer);
}
while (!buffer.eof() && buffer.isValid()) {
tag = buffer.readUInt();
size = buffer.readUInt();
if (!this->parseBufferTag(buffer, tag, size)) {
return false;
}
}
if (!buffer.isValid()) {
return false;
}
SkDEBUGCODE(haveBuffer = true;)
} break;
}
return true; // success
}
static const SkImage* create_image_from_buffer(SkReadBuffer& buffer) {
return buffer.readImage();
}
// Need a shallow wrapper to return const SkPicture* to match the other factories,
// as SkPicture::CreateFromBuffer() returns SkPicture*
static const SkPicture* create_picture_from_buffer(SkReadBuffer& buffer) {
return SkPicture::CreateFromBuffer(buffer);
}
template <typename T>
bool new_array_from_buffer(SkReadBuffer& buffer, uint32_t inCount,
const T*** array, int* outCount, const T* (*factory)(SkReadBuffer&)) {
if (!buffer.validate((0 == *outCount) && (nullptr == *array))) {
return false;
}
if (0 == inCount) {
return true;
}
*outCount = inCount;
*array = new const T* [*outCount];
bool success = true;
int i = 0;
for (; i < *outCount; i++) {
(*array)[i] = factory(buffer);
if (nullptr == (*array)[i]) {
success = false;
break;
}
}
if (!success) {
// Delete all of the blobs that were already created (up to but excluding i):
for (int j = 0; j < i; j++) {
(*array)[j]->unref();
}
// Delete the array
delete[] * array;
*array = nullptr;
*outCount = 0;
return false;
}
return true;
}
bool SkPictureData::parseBufferTag(SkReadBuffer& buffer, uint32_t tag, uint32_t size) {
switch (tag) {
case SK_PICT_BITMAP_BUFFER_TAG: {
const int count = SkToInt(size);
fBitmaps.reset(count);
for (int i = 0; i < count; ++i) {
SkBitmap* bm = &fBitmaps[i];
if (buffer.readBitmap(bm)) {
bm->setImmutable();
} else {
return false;
}
}
} break;
case SK_PICT_PAINT_BUFFER_TAG: {
const int count = SkToInt(size);
fPaints.reset(count);
for (int i = 0; i < count; ++i) {
buffer.readPaint(&fPaints[i]);
}
} break;
case SK_PICT_PATH_BUFFER_TAG:
if (size > 0) {
const int count = buffer.readInt();
fPaths.reset(count);
for (int i = 0; i < count; i++) {
buffer.readPath(&fPaths[i]);
}
} break;
case SK_PICT_TEXTBLOB_BUFFER_TAG:
if (!new_array_from_buffer(buffer, size, &fTextBlobRefs, &fTextBlobCount,
SkTextBlob::CreateFromBuffer)) {
return false;
}
break;
case SK_PICT_IMAGE_BUFFER_TAG:
if (!new_array_from_buffer(buffer, size, &fImageRefs, &fImageCount,
create_image_from_buffer)) {
return false;
}
break;
case SK_PICT_READER_TAG: {
SkAutoDataUnref data(SkData::NewUninitialized(size));
if (!buffer.readByteArray(data->writable_data(), size) ||
!buffer.validate(nullptr == fOpData)) {
return false;
}
SkASSERT(nullptr == fOpData);
fOpData = data.detach();
} break;
case SK_PICT_PICTURE_TAG:
if (!new_array_from_buffer(buffer, size, &fPictureRefs, &fPictureCount,
create_picture_from_buffer)) {
return false;
}
break;
default:
// The tag was invalid.
return false;
}
return true; // success
}
SkPictureData* SkPictureData::CreateFromStream(SkStream* stream,
const SkPictInfo& info,
SkPicture::InstallPixelRefProc proc,
SkTypefacePlayback* topLevelTFPlayback) {
SkAutoTDelete<SkPictureData> data(new SkPictureData(info));
if (!topLevelTFPlayback) {
topLevelTFPlayback = &data->fTFPlayback;
}
if (!data->parseStream(stream, proc, topLevelTFPlayback)) {
return nullptr;
}
return data.detach();
}
SkPictureData* SkPictureData::CreateFromBuffer(SkReadBuffer& buffer,
const SkPictInfo& info) {
SkAutoTDelete<SkPictureData> data(new SkPictureData(info));
buffer.setVersion(info.fVersion);
if (!data->parseBuffer(buffer)) {
return nullptr;
}
return data.detach();
}
bool SkPictureData::parseStream(SkStream* stream,
SkPicture::InstallPixelRefProc proc,
SkTypefacePlayback* topLevelTFPlayback) {
for (;;) {
uint32_t tag = stream->readU32();
if (SK_PICT_EOF_TAG == tag) {
break;
}
uint32_t size = stream->readU32();
if (!this->parseStreamTag(stream, tag, size, proc, topLevelTFPlayback)) {
return false; // we're invalid
}
}
return true;
}
bool SkPictureData::parseBuffer(SkReadBuffer& buffer) {
for (;;) {
uint32_t tag = buffer.readUInt();
if (SK_PICT_EOF_TAG == tag) {
break;
}
uint32_t size = buffer.readUInt();
if (!this->parseBufferTag(buffer, tag, size)) {
return false; // we're invalid
}
}
return true;
}
///////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////
#if SK_SUPPORT_GPU
bool SkPictureData::suitableForGpuRasterization(GrContext* context, const char **reason,
int sampleCount) const {
return fContentInfo.suitableForGpuRasterization(context, reason, sampleCount);
}
bool SkPictureData::suitableForGpuRasterization(GrContext* context, const char **reason,
GrPixelConfig config, SkScalar dpi) const {
if (context != nullptr) {
return this->suitableForGpuRasterization(context, reason,
context->getRecommendedSampleCount(config, dpi));
} else {
return this->suitableForGpuRasterization(nullptr, reason);
}
}
bool SkPictureData::suitableForLayerOptimization() const {
return fContentInfo.numLayers() > 0;
}
#endif
///////////////////////////////////////////////////////////////////////////////
|