1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
|
/*
* Copyright 2008 The Android Open Source Project
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkPathMeasure.h"
#include "SkGeometry.h"
#include "SkPath.h"
#include "SkTSearch.h"
// these must be 0,1,2,3 since they are in our 2-bit field
enum {
kLine_SegType,
kQuad_SegType,
kCubic_SegType,
kConic_SegType,
};
#define kMaxTValue 0x3FFFFFFF
static inline SkScalar tValue2Scalar(int t) {
SkASSERT((unsigned)t <= kMaxTValue);
const SkScalar kMaxTReciprocal = 1.0f / kMaxTValue;
return t * kMaxTReciprocal;
}
SkScalar SkPathMeasure::Segment::getScalarT() const {
return tValue2Scalar(fTValue);
}
const SkPathMeasure::Segment* SkPathMeasure::NextSegment(const Segment* seg) {
unsigned ptIndex = seg->fPtIndex;
do {
++seg;
} while (seg->fPtIndex == ptIndex);
return seg;
}
///////////////////////////////////////////////////////////////////////////////
static inline int tspan_big_enough(int tspan) {
SkASSERT((unsigned)tspan <= kMaxTValue);
return tspan >> 10;
}
// can't use tangents, since we need [0..1..................2] to be seen
// as definitely not a line (it is when drawn, but not parametrically)
// so we compare midpoints
#define CHEAP_DIST_LIMIT (SK_Scalar1/2) // just made this value up
bool SkPathMeasure::quad_too_curvy(const SkPoint pts[3]) {
// diff = (a/4 + b/2 + c/4) - (a/2 + c/2)
// diff = -a/4 + b/2 - c/4
SkScalar dx = SkScalarHalf(pts[1].fX) -
SkScalarHalf(SkScalarHalf(pts[0].fX + pts[2].fX));
SkScalar dy = SkScalarHalf(pts[1].fY) -
SkScalarHalf(SkScalarHalf(pts[0].fY + pts[2].fY));
SkScalar dist = SkMaxScalar(SkScalarAbs(dx), SkScalarAbs(dy));
return dist > fTolerance;
}
bool SkPathMeasure::conic_too_curvy(const SkPoint& firstPt, const SkPoint& midTPt,
const SkPoint& lastPt) {
SkPoint midEnds = firstPt + lastPt;
midEnds *= 0.5f;
SkVector dxy = midTPt - midEnds;
SkScalar dist = SkMaxScalar(SkScalarAbs(dxy.fX), SkScalarAbs(dxy.fY));
return dist > fTolerance;
}
bool SkPathMeasure::cheap_dist_exceeds_limit(const SkPoint& pt,
SkScalar x, SkScalar y) {
SkScalar dist = SkMaxScalar(SkScalarAbs(x - pt.fX), SkScalarAbs(y - pt.fY));
// just made up the 1/2
return dist > fTolerance;
}
bool SkPathMeasure::cubic_too_curvy(const SkPoint pts[4]) {
return cheap_dist_exceeds_limit(pts[1],
SkScalarInterp(pts[0].fX, pts[3].fX, SK_Scalar1/3),
SkScalarInterp(pts[0].fY, pts[3].fY, SK_Scalar1/3))
||
cheap_dist_exceeds_limit(pts[2],
SkScalarInterp(pts[0].fX, pts[3].fX, SK_Scalar1*2/3),
SkScalarInterp(pts[0].fY, pts[3].fY, SK_Scalar1*2/3));
}
static SkScalar quad_folded_len(const SkPoint pts[3]) {
SkScalar t = SkFindQuadMaxCurvature(pts);
SkPoint pt = SkEvalQuadAt(pts, t);
SkVector a = pts[2] - pt;
SkScalar result = a.length();
if (0 != t) {
SkVector b = pts[0] - pt;
result += b.length();
}
SkASSERT(SkScalarIsFinite(result));
return result;
}
/* from http://www.malczak.linuxpl.com/blog/quadratic-bezier-curve-length/ */
/* This works -- more needs to be done to see if it is performant on all platforms.
To use this to measure parts of quads requires recomputing everything -- perhaps
a chop-like interface can start from a larger measurement and get two new measurements
with one call here.
*/
static SkScalar compute_quad_len(const SkPoint pts[3]) {
SkPoint a,b;
a.fX = pts[0].fX - 2 * pts[1].fX + pts[2].fX;
a.fY = pts[0].fY - 2 * pts[1].fY + pts[2].fY;
SkScalar A = 4 * (a.fX * a.fX + a.fY * a.fY);
if (0 == A) {
a = pts[2] - pts[0];
return a.length();
}
b.fX = 2 * (pts[1].fX - pts[0].fX);
b.fY = 2 * (pts[1].fY - pts[0].fY);
SkScalar B = 4 * (a.fX * b.fX + a.fY * b.fY);
SkScalar C = b.fX * b.fX + b.fY * b.fY;
SkScalar Sabc = 2 * SkScalarSqrt(A + B + C);
SkScalar A_2 = SkScalarSqrt(A);
SkScalar A_32 = 2 * A * A_2;
SkScalar C_2 = 2 * SkScalarSqrt(C);
SkScalar BA = B / A_2;
if (0 == BA + C_2) {
return quad_folded_len(pts);
}
SkScalar J = A_32 * Sabc + A_2 * B * (Sabc - C_2);
SkScalar K = 4 * C * A - B * B;
SkScalar L = (2 * A_2 + BA + Sabc) / (BA + C_2);
if (L <= 0) {
return quad_folded_len(pts);
}
SkScalar M = SkScalarLog(L);
SkScalar result = (J + K * M) / (4 * A_32);
SkASSERT(SkScalarIsFinite(result));
return result;
}
SkScalar SkPathMeasure::compute_quad_segs(const SkPoint pts[3],
SkScalar distance, int mint, int maxt, int ptIndex) {
if (tspan_big_enough(maxt - mint) && quad_too_curvy(pts)) {
SkPoint tmp[5];
int halft = (mint + maxt) >> 1;
SkChopQuadAtHalf(pts, tmp);
distance = this->compute_quad_segs(tmp, distance, mint, halft, ptIndex);
distance = this->compute_quad_segs(&tmp[2], distance, halft, maxt, ptIndex);
} else {
SkScalar d = SkPoint::Distance(pts[0], pts[2]);
SkScalar prevD = distance;
distance += d;
if (distance > prevD) {
Segment* seg = fSegments.append();
seg->fDistance = distance;
seg->fPtIndex = ptIndex;
seg->fType = kQuad_SegType;
seg->fTValue = maxt;
}
}
return distance;
}
SkScalar SkPathMeasure::compute_conic_segs(const SkConic& conic, SkScalar distance,
int mint, const SkPoint& minPt,
int maxt, const SkPoint& maxPt, int ptIndex) {
int halft = (mint + maxt) >> 1;
SkPoint halfPt = conic.evalAt(tValue2Scalar(halft));
if (tspan_big_enough(maxt - mint) && conic_too_curvy(minPt, halfPt, maxPt)) {
distance = this->compute_conic_segs(conic, distance, mint, minPt, halft, halfPt, ptIndex);
distance = this->compute_conic_segs(conic, distance, halft, halfPt, maxt, maxPt, ptIndex);
} else {
SkScalar d = SkPoint::Distance(minPt, maxPt);
SkScalar prevD = distance;
distance += d;
if (distance > prevD) {
Segment* seg = fSegments.append();
seg->fDistance = distance;
seg->fPtIndex = ptIndex;
seg->fType = kConic_SegType;
seg->fTValue = maxt;
}
}
return distance;
}
SkScalar SkPathMeasure::compute_cubic_segs(const SkPoint pts[4],
SkScalar distance, int mint, int maxt, int ptIndex) {
if (tspan_big_enough(maxt - mint) && cubic_too_curvy(pts)) {
SkPoint tmp[7];
int halft = (mint + maxt) >> 1;
SkChopCubicAtHalf(pts, tmp);
distance = this->compute_cubic_segs(tmp, distance, mint, halft, ptIndex);
distance = this->compute_cubic_segs(&tmp[3], distance, halft, maxt, ptIndex);
} else {
SkScalar d = SkPoint::Distance(pts[0], pts[3]);
SkScalar prevD = distance;
distance += d;
if (distance > prevD) {
Segment* seg = fSegments.append();
seg->fDistance = distance;
seg->fPtIndex = ptIndex;
seg->fType = kCubic_SegType;
seg->fTValue = maxt;
}
}
return distance;
}
void SkPathMeasure::buildSegments() {
SkPoint pts[4];
int ptIndex = fFirstPtIndex;
SkScalar distance = 0;
bool isClosed = fForceClosed;
bool firstMoveTo = ptIndex < 0;
Segment* seg;
/* Note:
* as we accumulate distance, we have to check that the result of +=
* actually made it larger, since a very small delta might be > 0, but
* still have no effect on distance (if distance >>> delta).
*
* We do this check below, and in compute_quad_segs and compute_cubic_segs
*/
fSegments.reset();
bool done = false;
do {
switch (fIter.next(pts)) {
case SkPath::kMove_Verb:
ptIndex += 1;
fPts.append(1, pts);
if (!firstMoveTo) {
done = true;
break;
}
firstMoveTo = false;
break;
case SkPath::kLine_Verb: {
SkScalar d = SkPoint::Distance(pts[0], pts[1]);
SkASSERT(d >= 0);
SkScalar prevD = distance;
distance += d;
if (distance > prevD) {
seg = fSegments.append();
seg->fDistance = distance;
seg->fPtIndex = ptIndex;
seg->fType = kLine_SegType;
seg->fTValue = kMaxTValue;
fPts.append(1, pts + 1);
ptIndex++;
}
} break;
case SkPath::kQuad_Verb: {
SkScalar prevD = distance;
if (false) {
SkScalar length = compute_quad_len(pts);
if (length) {
distance += length;
Segment* seg = fSegments.append();
seg->fDistance = distance;
seg->fPtIndex = ptIndex;
seg->fType = kQuad_SegType;
seg->fTValue = kMaxTValue;
}
} else {
distance = this->compute_quad_segs(pts, distance, 0, kMaxTValue, ptIndex);
}
if (distance > prevD) {
fPts.append(2, pts + 1);
ptIndex += 2;
}
} break;
case SkPath::kConic_Verb: {
const SkConic conic(pts, fIter.conicWeight());
SkScalar prevD = distance;
distance = this->compute_conic_segs(conic, distance, 0, conic.fPts[0],
kMaxTValue, conic.fPts[2], ptIndex);
if (distance > prevD) {
// we store the conic weight in our next point, followed by the last 2 pts
// thus to reconstitue a conic, you'd need to say
// SkConic(pts[0], pts[2], pts[3], weight = pts[1].fX)
fPts.append()->set(conic.fW, 0);
fPts.append(2, pts + 1);
ptIndex += 3;
}
} break;
case SkPath::kCubic_Verb: {
SkScalar prevD = distance;
distance = this->compute_cubic_segs(pts, distance, 0, kMaxTValue, ptIndex);
if (distance > prevD) {
fPts.append(3, pts + 1);
ptIndex += 3;
}
} break;
case SkPath::kClose_Verb:
isClosed = true;
break;
case SkPath::kDone_Verb:
done = true;
break;
}
} while (!done);
fLength = distance;
fIsClosed = isClosed;
fFirstPtIndex = ptIndex;
#ifdef SK_DEBUG
{
const Segment* seg = fSegments.begin();
const Segment* stop = fSegments.end();
unsigned ptIndex = 0;
SkScalar distance = 0;
while (seg < stop) {
SkASSERT(seg->fDistance > distance);
SkASSERT(seg->fPtIndex >= ptIndex);
SkASSERT(seg->fTValue > 0);
const Segment* s = seg;
while (s < stop - 1 && s[0].fPtIndex == s[1].fPtIndex) {
SkASSERT(s[0].fType == s[1].fType);
SkASSERT(s[0].fTValue < s[1].fTValue);
s += 1;
}
distance = seg->fDistance;
ptIndex = seg->fPtIndex;
seg += 1;
}
// SkDebugf("\n");
}
#endif
}
static void compute_pos_tan(const SkPoint pts[], int segType,
SkScalar t, SkPoint* pos, SkVector* tangent) {
switch (segType) {
case kLine_SegType:
if (pos) {
pos->set(SkScalarInterp(pts[0].fX, pts[1].fX, t),
SkScalarInterp(pts[0].fY, pts[1].fY, t));
}
if (tangent) {
tangent->setNormalize(pts[1].fX - pts[0].fX, pts[1].fY - pts[0].fY);
}
break;
case kQuad_SegType:
SkEvalQuadAt(pts, t, pos, tangent);
if (tangent) {
tangent->normalize();
}
break;
case kConic_SegType: {
SkConic(pts[0], pts[2], pts[3], pts[1].fX).evalAt(t, pos, tangent);
if (tangent) {
tangent->normalize();
}
} break;
case kCubic_SegType:
SkEvalCubicAt(pts, t, pos, tangent, nullptr);
if (tangent) {
tangent->normalize();
}
break;
default:
SkDEBUGFAIL("unknown segType");
}
}
static void seg_to(const SkPoint pts[], int segType,
SkScalar startT, SkScalar stopT, SkPath* dst) {
SkASSERT(startT >= 0 && startT <= SK_Scalar1);
SkASSERT(stopT >= 0 && stopT <= SK_Scalar1);
SkASSERT(startT <= stopT);
if (startT == stopT) {
/* if the dash as a zero-length on segment, add a corresponding zero-length line.
The stroke code will add end caps to zero length lines as appropriate */
SkPoint lastPt;
SkAssertResult(dst->getLastPt(&lastPt));
dst->lineTo(lastPt);
return;
}
SkPoint tmp0[7], tmp1[7];
switch (segType) {
case kLine_SegType:
if (SK_Scalar1 == stopT) {
dst->lineTo(pts[1]);
} else {
dst->lineTo(SkScalarInterp(pts[0].fX, pts[1].fX, stopT),
SkScalarInterp(pts[0].fY, pts[1].fY, stopT));
}
break;
case kQuad_SegType:
if (0 == startT) {
if (SK_Scalar1 == stopT) {
dst->quadTo(pts[1], pts[2]);
} else {
SkChopQuadAt(pts, tmp0, stopT);
dst->quadTo(tmp0[1], tmp0[2]);
}
} else {
SkChopQuadAt(pts, tmp0, startT);
if (SK_Scalar1 == stopT) {
dst->quadTo(tmp0[3], tmp0[4]);
} else {
SkChopQuadAt(&tmp0[2], tmp1, (stopT - startT) / (1 - startT));
dst->quadTo(tmp1[1], tmp1[2]);
}
}
break;
case kConic_SegType: {
SkConic conic(pts[0], pts[2], pts[3], pts[1].fX);
if (0 == startT) {
if (SK_Scalar1 == stopT) {
dst->conicTo(conic.fPts[1], conic.fPts[2], conic.fW);
} else {
SkConic tmp[2];
conic.chopAt(stopT, tmp);
dst->conicTo(tmp[0].fPts[1], tmp[0].fPts[2], tmp[0].fW);
}
} else {
if (SK_Scalar1 == stopT) {
SkConic tmp1[2];
conic.chopAt(startT, tmp1);
dst->conicTo(tmp1[1].fPts[1], tmp1[1].fPts[2], tmp1[1].fW);
} else {
SkConic tmp;
conic.chopAt(startT, stopT, &tmp);
dst->conicTo(tmp.fPts[1], tmp.fPts[2], tmp.fW);
}
}
} break;
case kCubic_SegType:
if (0 == startT) {
if (SK_Scalar1 == stopT) {
dst->cubicTo(pts[1], pts[2], pts[3]);
} else {
SkChopCubicAt(pts, tmp0, stopT);
dst->cubicTo(tmp0[1], tmp0[2], tmp0[3]);
}
} else {
SkChopCubicAt(pts, tmp0, startT);
if (SK_Scalar1 == stopT) {
dst->cubicTo(tmp0[4], tmp0[5], tmp0[6]);
} else {
SkChopCubicAt(&tmp0[3], tmp1, (stopT - startT) / (1 - startT));
dst->cubicTo(tmp1[1], tmp1[2], tmp1[3]);
}
}
break;
default:
SkDEBUGFAIL("unknown segType");
sk_throw();
}
}
////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////
SkPathMeasure::SkPathMeasure() {
fPath = nullptr;
fTolerance = CHEAP_DIST_LIMIT;
fLength = -1; // signal we need to compute it
fForceClosed = false;
fFirstPtIndex = -1;
}
SkPathMeasure::SkPathMeasure(const SkPath& path, bool forceClosed, SkScalar resScale) {
fPath = &path;
fTolerance = CHEAP_DIST_LIMIT * SkScalarInvert(resScale);
fLength = -1; // signal we need to compute it
fForceClosed = forceClosed;
fFirstPtIndex = -1;
fIter.setPath(path, forceClosed);
}
SkPathMeasure::~SkPathMeasure() {}
/** Assign a new path, or null to have none.
*/
void SkPathMeasure::setPath(const SkPath* path, bool forceClosed) {
fPath = path;
fLength = -1; // signal we need to compute it
fForceClosed = forceClosed;
fFirstPtIndex = -1;
if (path) {
fIter.setPath(*path, forceClosed);
}
fSegments.reset();
fPts.reset();
}
SkScalar SkPathMeasure::getLength() {
if (fPath == nullptr) {
return 0;
}
if (fLength < 0) {
this->buildSegments();
}
SkASSERT(fLength >= 0);
return fLength;
}
template <typename T, typename K>
int SkTKSearch(const T base[], int count, const K& key) {
SkASSERT(count >= 0);
if (count <= 0) {
return ~0;
}
SkASSERT(base != nullptr); // base may be nullptr if count is zero
int lo = 0;
int hi = count - 1;
while (lo < hi) {
int mid = (hi + lo) >> 1;
if (base[mid].fDistance < key) {
lo = mid + 1;
} else {
hi = mid;
}
}
if (base[hi].fDistance < key) {
hi += 1;
hi = ~hi;
} else if (key < base[hi].fDistance) {
hi = ~hi;
}
return hi;
}
const SkPathMeasure::Segment* SkPathMeasure::distanceToSegment(
SkScalar distance, SkScalar* t) {
SkDEBUGCODE(SkScalar length = ) this->getLength();
SkASSERT(distance >= 0 && distance <= length);
const Segment* seg = fSegments.begin();
int count = fSegments.count();
int index = SkTKSearch<Segment, SkScalar>(seg, count, distance);
// don't care if we hit an exact match or not, so we xor index if it is negative
index ^= (index >> 31);
seg = &seg[index];
// now interpolate t-values with the prev segment (if possible)
SkScalar startT = 0, startD = 0;
// check if the prev segment is legal, and references the same set of points
if (index > 0) {
startD = seg[-1].fDistance;
if (seg[-1].fPtIndex == seg->fPtIndex) {
SkASSERT(seg[-1].fType == seg->fType);
startT = seg[-1].getScalarT();
}
}
SkASSERT(seg->getScalarT() > startT);
SkASSERT(distance >= startD);
SkASSERT(seg->fDistance > startD);
*t = startT + SkScalarMulDiv(seg->getScalarT() - startT,
distance - startD,
seg->fDistance - startD);
return seg;
}
bool SkPathMeasure::getPosTan(SkScalar distance, SkPoint* pos,
SkVector* tangent) {
if (nullptr == fPath) {
return false;
}
SkScalar length = this->getLength(); // call this to force computing it
int count = fSegments.count();
if (count == 0 || length == 0) {
return false;
}
// pin the distance to a legal range
if (distance < 0) {
distance = 0;
} else if (distance > length) {
distance = length;
}
SkScalar t;
const Segment* seg = this->distanceToSegment(distance, &t);
compute_pos_tan(&fPts[seg->fPtIndex], seg->fType, t, pos, tangent);
return true;
}
bool SkPathMeasure::getMatrix(SkScalar distance, SkMatrix* matrix,
MatrixFlags flags) {
if (nullptr == fPath) {
return false;
}
SkPoint position;
SkVector tangent;
if (this->getPosTan(distance, &position, &tangent)) {
if (matrix) {
if (flags & kGetTangent_MatrixFlag) {
matrix->setSinCos(tangent.fY, tangent.fX, 0, 0);
} else {
matrix->reset();
}
if (flags & kGetPosition_MatrixFlag) {
matrix->postTranslate(position.fX, position.fY);
}
}
return true;
}
return false;
}
bool SkPathMeasure::getSegment(SkScalar startD, SkScalar stopD, SkPath* dst,
bool startWithMoveTo) {
SkASSERT(dst);
SkScalar length = this->getLength(); // ensure we have built our segments
if (startD < 0) {
startD = 0;
}
if (stopD > length) {
stopD = length;
}
if (startD > stopD) {
return false;
}
if (!fSegments.count()) {
return false;
}
SkPoint p;
SkScalar startT, stopT;
const Segment* seg = this->distanceToSegment(startD, &startT);
const Segment* stopSeg = this->distanceToSegment(stopD, &stopT);
SkASSERT(seg <= stopSeg);
if (startWithMoveTo) {
compute_pos_tan(&fPts[seg->fPtIndex], seg->fType, startT, &p, nullptr);
dst->moveTo(p);
}
if (seg->fPtIndex == stopSeg->fPtIndex) {
seg_to(&fPts[seg->fPtIndex], seg->fType, startT, stopT, dst);
} else {
do {
seg_to(&fPts[seg->fPtIndex], seg->fType, startT, SK_Scalar1, dst);
seg = SkPathMeasure::NextSegment(seg);
startT = 0;
} while (seg->fPtIndex < stopSeg->fPtIndex);
seg_to(&fPts[seg->fPtIndex], seg->fType, 0, stopT, dst);
}
return true;
}
bool SkPathMeasure::isClosed() {
(void)this->getLength();
return fIsClosed;
}
/** Move to the next contour in the path. Return true if one exists, or false if
we're done with the path.
*/
bool SkPathMeasure::nextContour() {
fLength = -1;
return this->getLength() > 0;
}
///////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////
#ifdef SK_DEBUG
void SkPathMeasure::dump() {
SkDebugf("pathmeas: length=%g, segs=%d\n", fLength, fSegments.count());
for (int i = 0; i < fSegments.count(); i++) {
const Segment* seg = &fSegments[i];
SkDebugf("pathmeas: seg[%d] distance=%g, point=%d, t=%g, type=%d\n",
i, seg->fDistance, seg->fPtIndex, seg->getScalarT(),
seg->fType);
}
}
#endif
|