aboutsummaryrefslogtreecommitdiffhomepage
path: root/src/core/SkPath.cpp
blob: 99ac492967d409a61d85c1d752373163fd798cd7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
/*
 * Copyright 2006 The Android Open Source Project
 *
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */

#include "SkPath.h"

#include "SkBuffer.h"
#include "SkCubicClipper.h"
#include "SkData.h"
#include "SkGeometry.h"
#include "SkMacros.h"
#include "SkMath.h"
#include "SkMatrixPriv.h"
#include "SkPathPriv.h"
#include "SkPathRef.h"
#include "SkPointPriv.h"
#include "SkRRect.h"
#include "SkSafeMath.h"
#include "SkTo.h"

#include <cmath>
#include <utility>

static float poly_eval(float A, float B, float C, float t) {
    return (A * t + B) * t + C;
}

static float poly_eval(float A, float B, float C, float D, float t) {
    return ((A * t + B) * t + C) * t + D;
}

////////////////////////////////////////////////////////////////////////////

/**
 *  Path.bounds is defined to be the bounds of all the control points.
 *  If we called bounds.join(r) we would skip r if r was empty, which breaks
 *  our promise. Hence we have a custom joiner that doesn't look at emptiness
 */
static void joinNoEmptyChecks(SkRect* dst, const SkRect& src) {
    dst->fLeft = SkMinScalar(dst->fLeft, src.fLeft);
    dst->fTop = SkMinScalar(dst->fTop, src.fTop);
    dst->fRight = SkMaxScalar(dst->fRight, src.fRight);
    dst->fBottom = SkMaxScalar(dst->fBottom, src.fBottom);
}

static bool is_degenerate(const SkPath& path) {
    SkPath::Iter iter(path, false);
    SkPoint pts[4];
    return SkPath::kDone_Verb == iter.next(pts);
}

class SkAutoDisableDirectionCheck {
public:
    SkAutoDisableDirectionCheck(SkPath* path) : fPath(path) {
        fSaved = static_cast<SkPathPriv::FirstDirection>(fPath->fFirstDirection.load());
    }

    ~SkAutoDisableDirectionCheck() {
        fPath->fFirstDirection = fSaved;
    }

private:
    SkPath*                     fPath;
    SkPathPriv::FirstDirection  fSaved;
};
#define SkAutoDisableDirectionCheck(...) SK_REQUIRE_LOCAL_VAR(SkAutoDisableDirectionCheck)

/*  This guy's constructor/destructor bracket a path editing operation. It is
    used when we know the bounds of the amount we are going to add to the path
    (usually a new contour, but not required).

    It captures some state about the path up front (i.e. if it already has a
    cached bounds), and then if it can, it updates the cache bounds explicitly,
    avoiding the need to revisit all of the points in getBounds().

    It also notes if the path was originally degenerate, and if so, sets
    isConvex to true. Thus it can only be used if the contour being added is
    convex.
 */
class SkAutoPathBoundsUpdate {
public:
    SkAutoPathBoundsUpdate(SkPath* path, const SkRect& r) : fRect(r) {
        this->init(path);
    }

    SkAutoPathBoundsUpdate(SkPath* path, SkScalar left, SkScalar top,
                           SkScalar right, SkScalar bottom) {
        fRect.set(left, top, right, bottom);
        this->init(path);
    }

    ~SkAutoPathBoundsUpdate() {
        fPath->setConvexity(fDegenerate ? SkPath::kConvex_Convexity
                                        : SkPath::kUnknown_Convexity);
        if ((fEmpty || fHasValidBounds) && fRect.isFinite()) {
            fPath->setBounds(fRect);
        }
    }

private:
    SkPath* fPath;
    SkRect  fRect;
    bool    fHasValidBounds;
    bool    fDegenerate;
    bool    fEmpty;

    void init(SkPath* path) {
        // Cannot use fRect for our bounds unless we know it is sorted
        fRect.sort();
        fPath = path;
        // Mark the path's bounds as dirty if (1) they are, or (2) the path
        // is non-finite, and therefore its bounds are not meaningful
        fHasValidBounds = path->hasComputedBounds() && path->isFinite();
        fEmpty = path->isEmpty();
        if (fHasValidBounds && !fEmpty) {
            joinNoEmptyChecks(&fRect, fPath->getBounds());
        }
        fDegenerate = is_degenerate(*path);
    }
};
#define SkAutoPathBoundsUpdate(...) SK_REQUIRE_LOCAL_VAR(SkAutoPathBoundsUpdate)

////////////////////////////////////////////////////////////////////////////

/*
    Stores the verbs and points as they are given to us, with exceptions:
    - we only record "Close" if it was immediately preceeded by Move | Line | Quad | Cubic
    - we insert a Move(0,0) if Line | Quad | Cubic is our first command

    The iterator does more cleanup, especially if forceClose == true
    1. If we encounter degenerate segments, remove them
    2. if we encounter Close, return a cons'd up Line() first (if the curr-pt != start-pt)
    3. if we encounter Move without a preceeding Close, and forceClose is true, goto #2
    4. if we encounter Line | Quad | Cubic after Close, cons up a Move
*/

////////////////////////////////////////////////////////////////////////////

// flag to require a moveTo if we begin with something else, like lineTo etc.
#define INITIAL_LASTMOVETOINDEX_VALUE   ~0

SkPath::SkPath()
    : fPathRef(SkPathRef::CreateEmpty()) {
    this->resetFields();
    fIsVolatile = false;
    fIsBadForDAA = false;
}

void SkPath::resetFields() {
    //fPathRef is assumed to have been emptied by the caller.
    fLastMoveToIndex = INITIAL_LASTMOVETOINDEX_VALUE;
    fFillType = kWinding_FillType;
    fConvexity = kUnknown_Convexity;
    fFirstDirection = SkPathPriv::kUnknown_FirstDirection;

    // We don't touch Android's fSourcePath.  It's used to track texture garbage collection, so we
    // don't want to muck with it if it's been set to something non-nullptr.
}

SkPath::SkPath(const SkPath& that)
    : fPathRef(SkRef(that.fPathRef.get())) {
    this->copyFields(that);
    SkDEBUGCODE(that.validate();)
}

SkPath::~SkPath() {
    SkDEBUGCODE(this->validate();)
}

SkPath& SkPath::operator=(const SkPath& that) {
    SkDEBUGCODE(that.validate();)

    if (this != &that) {
        fPathRef.reset(SkRef(that.fPathRef.get()));
        this->copyFields(that);
    }
    SkDEBUGCODE(this->validate();)
    return *this;
}

void SkPath::copyFields(const SkPath& that) {
    //fPathRef is assumed to have been set by the caller.
    fLastMoveToIndex = that.fLastMoveToIndex;
    fFillType        = that.fFillType;
    fIsVolatile      = that.fIsVolatile;
    fIsBadForDAA     = that.fIsBadForDAA;

    // Non-atomic assignment of atomic values.
    fConvexity     .store(that.fConvexity     .load());
    fFirstDirection.store(that.fFirstDirection.load());
}

bool operator==(const SkPath& a, const SkPath& b) {
    // note: don't need to look at isConvex or bounds, since just comparing the
    // raw data is sufficient.
    return &a == &b ||
        (a.fFillType == b.fFillType && *a.fPathRef.get() == *b.fPathRef.get());
}

void SkPath::swap(SkPath& that) {
    if (this != &that) {
        using std::swap;
        fPathRef.swap(that.fPathRef);
        swap(fLastMoveToIndex, that.fLastMoveToIndex);
        swap(fFillType, that.fFillType);
        swap(fIsVolatile, that.fIsVolatile);

        // Non-atomic swaps of atomic values.
        Convexity c = fConvexity.load();
        fConvexity.store(that.fConvexity.load());
        that.fConvexity.store(c);

        uint8_t fd = fFirstDirection.load();
        fFirstDirection.store(that.fFirstDirection.load());
        that.fFirstDirection.store(fd);
    }
}

bool SkPath::isInterpolatable(const SkPath& compare) const {
    int count = fPathRef->countVerbs();
    if (count != compare.fPathRef->countVerbs()) {
        return false;
    }
    if (!count) {
        return true;
    }
    if (memcmp(fPathRef->verbsMemBegin(), compare.fPathRef->verbsMemBegin(),
               count)) {
        return false;
    }
    return !fPathRef->countWeights() ||
            !SkToBool(memcmp(fPathRef->conicWeights(), compare.fPathRef->conicWeights(),
            fPathRef->countWeights() * sizeof(*fPathRef->conicWeights())));
}

bool SkPath::interpolate(const SkPath& ending, SkScalar weight, SkPath* out) const {
    int pointCount = fPathRef->countPoints();
    if (pointCount != ending.fPathRef->countPoints()) {
        return false;
    }
    if (!pointCount) {
        return true;
    }
    out->reset();
    out->addPath(*this);
    fPathRef->interpolate(*ending.fPathRef, weight, out->fPathRef.get());
    return true;
}

static inline bool check_edge_against_rect(const SkPoint& p0,
                                           const SkPoint& p1,
                                           const SkRect& rect,
                                           SkPathPriv::FirstDirection dir) {
    const SkPoint* edgeBegin;
    SkVector v;
    if (SkPathPriv::kCW_FirstDirection == dir) {
        v = p1 - p0;
        edgeBegin = &p0;
    } else {
        v = p0 - p1;
        edgeBegin = &p1;
    }
    if (v.fX || v.fY) {
        // check the cross product of v with the vec from edgeBegin to each rect corner
        SkScalar yL = v.fY * (rect.fLeft - edgeBegin->fX);
        SkScalar xT = v.fX * (rect.fTop - edgeBegin->fY);
        SkScalar yR = v.fY * (rect.fRight - edgeBegin->fX);
        SkScalar xB = v.fX * (rect.fBottom - edgeBegin->fY);
        if ((xT < yL) || (xT < yR) || (xB < yL) || (xB < yR)) {
            return false;
        }
    }
    return true;
}

bool SkPath::conservativelyContainsRect(const SkRect& rect) const {
    // This only handles non-degenerate convex paths currently.
    if (kConvex_Convexity != this->getConvexity()) {
        return false;
    }

    SkPathPriv::FirstDirection direction;
    if (!SkPathPriv::CheapComputeFirstDirection(*this, &direction)) {
        return false;
    }

    SkPoint firstPt;
    SkPoint prevPt;
    SkPath::Iter iter(*this, true);
    SkPath::Verb verb;
    SkPoint pts[4];
    int segmentCount = 0;
    SkDEBUGCODE(int moveCnt = 0;)
    SkDEBUGCODE(int closeCount = 0;)

    while ((verb = iter.next(pts, true, true)) != kDone_Verb) {
        int nextPt = -1;
        switch (verb) {
            case kMove_Verb:
                SkASSERT(!segmentCount && !closeCount);
                SkDEBUGCODE(++moveCnt);
                firstPt = prevPt = pts[0];
                break;
            case kLine_Verb:
                nextPt = 1;
                SkASSERT(moveCnt && !closeCount);
                ++segmentCount;
                break;
            case kQuad_Verb:
            case kConic_Verb:
                SkASSERT(moveCnt && !closeCount);
                ++segmentCount;
                nextPt = 2;
                break;
            case kCubic_Verb:
                SkASSERT(moveCnt && !closeCount);
                ++segmentCount;
                nextPt = 3;
                break;
            case kClose_Verb:
                SkDEBUGCODE(++closeCount;)
                break;
            default:
                SkDEBUGFAIL("unknown verb");
        }
        if (-1 != nextPt) {
            if (SkPath::kConic_Verb == verb) {
                SkConic orig;
                orig.set(pts, iter.conicWeight());
                SkPoint quadPts[5];
                int count = orig.chopIntoQuadsPOW2(quadPts, 1);
                SkASSERT_RELEASE(2 == count);

                if (!check_edge_against_rect(quadPts[0], quadPts[2], rect, direction)) {
                    return false;
                }
                if (!check_edge_against_rect(quadPts[2], quadPts[4], rect, direction)) {
                    return false;
                }
            } else {
                if (!check_edge_against_rect(prevPt, pts[nextPt], rect, direction)) {
                    return false;
                }
            }
            prevPt = pts[nextPt];
        }
    }

    if (segmentCount) {
        return check_edge_against_rect(prevPt, firstPt, rect, direction);
    }
    return false;
}

uint32_t SkPath::getGenerationID() const {
    uint32_t genID = fPathRef->genID();
#ifdef SK_BUILD_FOR_ANDROID_FRAMEWORK
    SkASSERT((unsigned)fFillType < (1 << (32 - SkPathPriv::kPathRefGenIDBitCnt)));
    genID |= static_cast<uint32_t>(fFillType) << SkPathPriv::kPathRefGenIDBitCnt;
#endif
    return genID;
}

void SkPath::reset() {
    SkDEBUGCODE(this->validate();)

    fPathRef.reset(SkPathRef::CreateEmpty());
    this->resetFields();
}

void SkPath::rewind() {
    SkDEBUGCODE(this->validate();)

    SkPathRef::Rewind(&fPathRef);
    this->resetFields();
}

bool SkPath::isLastContourClosed() const {
    int verbCount = fPathRef->countVerbs();
    if (0 == verbCount) {
        return false;
    }
    return kClose_Verb == fPathRef->atVerb(verbCount - 1);
}

bool SkPath::isLine(SkPoint line[2]) const {
    int verbCount = fPathRef->countVerbs();

    if (2 == verbCount) {
        SkASSERT(kMove_Verb == fPathRef->atVerb(0));
        if (kLine_Verb == fPathRef->atVerb(1)) {
            SkASSERT(2 == fPathRef->countPoints());
            if (line) {
                const SkPoint* pts = fPathRef->points();
                line[0] = pts[0];
                line[1] = pts[1];
            }
            return true;
        }
    }
    return false;
}

/*
 Determines if path is a rect by keeping track of changes in direction
 and looking for a loop either clockwise or counterclockwise.

 The direction is computed such that:
  0: vertical up
  1: horizontal left
  2: vertical down
  3: horizontal right

A rectangle cycles up/right/down/left or up/left/down/right.

The test fails if:
  The path is closed, and followed by a line.
  A second move creates a new endpoint.
  A diagonal line is parsed.
  There's more than four changes of direction.
  There's a discontinuity on the line (e.g., a move in the middle)
  The line reverses direction.
  The path contains a quadratic or cubic.
  The path contains fewer than four points.
 *The rectangle doesn't complete a cycle.
 *The final point isn't equal to the first point.

  *These last two conditions we relax if we have a 3-edge path that would
   form a rectangle if it were closed (as we do when we fill a path)

It's OK if the path has:
  Several colinear line segments composing a rectangle side.
  Single points on the rectangle side.

The direction takes advantage of the corners found since opposite sides
must travel in opposite directions.

FIXME: Allow colinear quads and cubics to be treated like lines.
FIXME: If the API passes fill-only, return true if the filled stroke
       is a rectangle, though the caller failed to close the path.

 directions values:
    0x1 is set if the segment is horizontal
    0x2 is set if the segment is moving to the right or down
 thus:
    two directions are opposites iff (dirA ^ dirB) == 0x2
    two directions are perpendicular iff (dirA ^ dirB) == 0x1

 */
static int rect_make_dir(SkScalar dx, SkScalar dy) {
    return ((0 != dx) << 0) | ((dx > 0 || dy > 0) << 1);
}

bool SkPath::isRectContour(bool allowPartial, int* currVerb, const SkPoint** ptsPtr,
        bool* isClosed, Direction* direction, SkRect* rect) const {
    int corners = 0;
    SkPoint closeXY;  // used to determine if final line falls on a diagonal
    SkPoint lineStart;  // used to construct line from previous point
    const SkPoint* firstPt = nullptr; // first point in the rect (last of first moves)
    const SkPoint* lastPt = nullptr;  // last point in the rect (last of lines or first if closed)
    SkPoint firstCorner;
    SkPoint thirdCorner;
    const SkPoint* pts = *ptsPtr;
    const SkPoint* savePts = nullptr; // used to allow caller to iterate through a pair of rects
    lineStart.set(0, 0);
    signed char directions[] = {-1, -1, -1, -1, -1};  // -1 to 3; -1 is uninitialized
    bool closedOrMoved = false;
    bool autoClose = false;
    bool insertClose = false;
    int verbCnt = fPathRef->countVerbs();
    while (*currVerb < verbCnt && (!allowPartial || !autoClose)) {
        uint8_t verb = insertClose ? (uint8_t) kClose_Verb : fPathRef->atVerb(*currVerb);
        switch (verb) {
            case kClose_Verb:
                savePts = pts;
                autoClose = true;
                insertClose = false;
            case kLine_Verb: {
                if (kClose_Verb != verb) {
                    lastPt = pts;
                }
                SkPoint lineEnd = kClose_Verb == verb ? *firstPt : *pts++;
                SkVector lineDelta = lineEnd - lineStart;
                if (lineDelta.fX && lineDelta.fY) {
                    return false; // diagonal
                }
                if (!lineDelta.isFinite()) {
                    return false; // path contains infinity or NaN
                }
                if (lineStart == lineEnd) {
                    break; // single point on side OK
                }
                int nextDirection = rect_make_dir(lineDelta.fX, lineDelta.fY); // 0 to 3
                if (0 == corners) {
                    directions[0] = nextDirection;
                    corners = 1;
                    closedOrMoved = false;
                    lineStart = lineEnd;
                    break;
                }
                if (closedOrMoved) {
                    return false; // closed followed by a line
                }
                if (autoClose && nextDirection == directions[0]) {
                    break; // colinear with first
                }
                closedOrMoved = autoClose;
                if (directions[corners - 1] == nextDirection) {
                    if (3 == corners && kLine_Verb == verb) {
                        thirdCorner = lineEnd;
                    }
                    lineStart = lineEnd;
                    break; // colinear segment
                }
                directions[corners++] = nextDirection;
                // opposite lines must point in opposite directions; xoring them should equal 2
                switch (corners) {
                    case 2:
                        firstCorner = lineStart;
                        break;
                    case 3:
                        if ((directions[0] ^ directions[2]) != 2) {
                            return false;
                        }
                        thirdCorner = lineEnd;
                        break;
                    case 4:
                        if ((directions[1] ^ directions[3]) != 2) {
                            return false;
                        }
                        break;
                    default:
                        return false; // too many direction changes
                }
                lineStart = lineEnd;
                break;
            }
            case kQuad_Verb:
            case kConic_Verb:
            case kCubic_Verb:
                return false; // quadratic, cubic not allowed
            case kMove_Verb:
                if (allowPartial && !autoClose && directions[0] >= 0) {
                    insertClose = true;
                    *currVerb -= 1;  // try move again afterwards
                    goto addMissingClose;
                }
                if (!corners) {
                    firstPt = pts;
                } else {
                    closeXY = *firstPt - *lastPt;
                    if (closeXY.fX && closeXY.fY) {
                        return false;   // we're diagonal, abort
                    }
                }
                lineStart = *pts++;
                closedOrMoved = true;
                break;
            default:
                SkDEBUGFAIL("unexpected verb");
                break;
        }
        *currVerb += 1;
addMissingClose:
        ;
    }
    // Success if 4 corners and first point equals last
    if (corners < 3 || corners > 4) {
        return false;
    }
    if (savePts) {
        *ptsPtr = savePts;
    }
    // check if close generates diagonal
    closeXY = *firstPt - *lastPt;
    if (closeXY.fX && closeXY.fY) {
        return false;
    }
    if (rect) {
        rect->set(firstCorner, thirdCorner);
    }
    if (isClosed) {
        *isClosed = autoClose;
    }
    if (direction) {
        *direction = directions[0] == ((directions[1] + 1) & 3) ? kCW_Direction : kCCW_Direction;
    }
    return true;
}

bool SkPath::isRect(SkRect* rect, bool* isClosed, Direction* direction) const {
    SkDEBUGCODE(this->validate();)
    int currVerb = 0;
    const SkPoint* pts = fPathRef->points();
    return this->isRectContour(false, &currVerb, &pts, isClosed, direction, rect);
}

bool SkPath::isNestedFillRects(SkRect rects[2], Direction dirs[2]) const {
    SkDEBUGCODE(this->validate();)
    int currVerb = 0;
    const SkPoint* pts = fPathRef->points();
    Direction testDirs[2];
    SkRect testRects[2];
    if (!isRectContour(true, &currVerb, &pts, nullptr, &testDirs[0], &testRects[0])) {
        return false;
    }
    if (isRectContour(false, &currVerb, &pts, nullptr, &testDirs[1], &testRects[1])) {
        if (testRects[0].contains(testRects[1])) {
            if (rects) {
                rects[0] = testRects[0];
                rects[1] = testRects[1];
            }
            if (dirs) {
                dirs[0] = testDirs[0];
                dirs[1] = testDirs[1];
            }
            return true;
        }
        if (testRects[1].contains(testRects[0])) {
            if (rects) {
                rects[0] = testRects[1];
                rects[1] = testRects[0];
            }
            if (dirs) {
                dirs[0] = testDirs[1];
                dirs[1] = testDirs[0];
            }
            return true;
        }
    }
    return false;
}

bool SkPath::isOval(SkRect* bounds) const {
    return SkPathPriv::IsOval(*this, bounds, nullptr, nullptr);
}

bool SkPath::isRRect(SkRRect* rrect) const {
    return SkPathPriv::IsRRect(*this, rrect, nullptr, nullptr);
}

int SkPath::countPoints() const {
    return fPathRef->countPoints();
}

int SkPath::getPoints(SkPoint dst[], int max) const {
    SkDEBUGCODE(this->validate();)

    SkASSERT(max >= 0);
    SkASSERT(!max || dst);
    int count = SkMin32(max, fPathRef->countPoints());
    sk_careful_memcpy(dst, fPathRef->points(), count * sizeof(SkPoint));
    return fPathRef->countPoints();
}

SkPoint SkPath::getPoint(int index) const {
    if ((unsigned)index < (unsigned)fPathRef->countPoints()) {
        return fPathRef->atPoint(index);
    }
    return SkPoint::Make(0, 0);
}

int SkPath::countVerbs() const {
    return fPathRef->countVerbs();
}

static inline void copy_verbs_reverse(uint8_t* inorderDst,
                                      const uint8_t* reversedSrc,
                                      int count) {
    for (int i = 0; i < count; ++i) {
        inorderDst[i] = reversedSrc[~i];
    }
}

int SkPath::getVerbs(uint8_t dst[], int max) const {
    SkDEBUGCODE(this->validate();)

    SkASSERT(max >= 0);
    SkASSERT(!max || dst);
    int count = SkMin32(max, fPathRef->countVerbs());
    copy_verbs_reverse(dst, fPathRef->verbs(), count);
    return fPathRef->countVerbs();
}

bool SkPath::getLastPt(SkPoint* lastPt) const {
    SkDEBUGCODE(this->validate();)

    int count = fPathRef->countPoints();
    if (count > 0) {
        if (lastPt) {
            *lastPt = fPathRef->atPoint(count - 1);
        }
        return true;
    }
    if (lastPt) {
        lastPt->set(0, 0);
    }
    return false;
}

void SkPath::setPt(int index, SkScalar x, SkScalar y) {
    SkDEBUGCODE(this->validate();)

    int count = fPathRef->countPoints();
    if (count <= index) {
        return;
    } else {
        SkPathRef::Editor ed(&fPathRef);
        ed.atPoint(index)->set(x, y);
    }
}

void SkPath::setLastPt(SkScalar x, SkScalar y) {
    SkDEBUGCODE(this->validate();)

    int count = fPathRef->countPoints();
    if (count == 0) {
        this->moveTo(x, y);
    } else {
        SkPathRef::Editor ed(&fPathRef);
        ed.atPoint(count-1)->set(x, y);
    }
}

void SkPath::setConvexity(Convexity c) {
    if (fConvexity != c) {
        fConvexity = c;
    }
}

//////////////////////////////////////////////////////////////////////////////
//  Construction methods

#define DIRTY_AFTER_EDIT                                        \
    do {                                                        \
        fConvexity = kUnknown_Convexity;                        \
        fFirstDirection = SkPathPriv::kUnknown_FirstDirection;  \
    } while (0)

void SkPath::incReserve(U16CPU inc) {
    SkDEBUGCODE(this->validate();)
    SkPathRef::Editor(&fPathRef, inc, inc);
    SkDEBUGCODE(this->validate();)
}

void SkPath::moveTo(SkScalar x, SkScalar y) {
    SkDEBUGCODE(this->validate();)

    SkPathRef::Editor ed(&fPathRef);

    // remember our index
    fLastMoveToIndex = fPathRef->countPoints();

    ed.growForVerb(kMove_Verb)->set(x, y);

    DIRTY_AFTER_EDIT;
}

void SkPath::rMoveTo(SkScalar x, SkScalar y) {
    SkPoint pt;
    this->getLastPt(&pt);
    this->moveTo(pt.fX + x, pt.fY + y);
}

void SkPath::injectMoveToIfNeeded() {
    if (fLastMoveToIndex < 0) {
        SkScalar x, y;
        if (fPathRef->countVerbs() == 0) {
            x = y = 0;
        } else {
            const SkPoint& pt = fPathRef->atPoint(~fLastMoveToIndex);
            x = pt.fX;
            y = pt.fY;
        }
        this->moveTo(x, y);
    }
}

void SkPath::lineTo(SkScalar x, SkScalar y) {
    SkDEBUGCODE(this->validate();)

    this->injectMoveToIfNeeded();

    SkPathRef::Editor ed(&fPathRef);
    ed.growForVerb(kLine_Verb)->set(x, y);

    DIRTY_AFTER_EDIT;
}

void SkPath::rLineTo(SkScalar x, SkScalar y) {
    this->injectMoveToIfNeeded();  // This can change the result of this->getLastPt().
    SkPoint pt;
    this->getLastPt(&pt);
    this->lineTo(pt.fX + x, pt.fY + y);
}

void SkPath::quadTo(SkScalar x1, SkScalar y1, SkScalar x2, SkScalar y2) {
    SkDEBUGCODE(this->validate();)

    this->injectMoveToIfNeeded();

    SkPathRef::Editor ed(&fPathRef);
    SkPoint* pts = ed.growForVerb(kQuad_Verb);
    pts[0].set(x1, y1);
    pts[1].set(x2, y2);

    DIRTY_AFTER_EDIT;
}

void SkPath::rQuadTo(SkScalar x1, SkScalar y1, SkScalar x2, SkScalar y2) {
    this->injectMoveToIfNeeded();  // This can change the result of this->getLastPt().
    SkPoint pt;
    this->getLastPt(&pt);
    this->quadTo(pt.fX + x1, pt.fY + y1, pt.fX + x2, pt.fY + y2);
}

void SkPath::conicTo(SkScalar x1, SkScalar y1, SkScalar x2, SkScalar y2,
                     SkScalar w) {
    // check for <= 0 or NaN with this test
    if (!(w > 0)) {
        this->lineTo(x2, y2);
    } else if (!SkScalarIsFinite(w)) {
        this->lineTo(x1, y1);
        this->lineTo(x2, y2);
    } else if (SK_Scalar1 == w) {
        this->quadTo(x1, y1, x2, y2);
    } else {
        SkDEBUGCODE(this->validate();)

        this->injectMoveToIfNeeded();

        SkPathRef::Editor ed(&fPathRef);
        SkPoint* pts = ed.growForVerb(kConic_Verb, w);
        pts[0].set(x1, y1);
        pts[1].set(x2, y2);

        DIRTY_AFTER_EDIT;
    }
}

void SkPath::rConicTo(SkScalar dx1, SkScalar dy1, SkScalar dx2, SkScalar dy2,
                      SkScalar w) {
    this->injectMoveToIfNeeded();  // This can change the result of this->getLastPt().
    SkPoint pt;
    this->getLastPt(&pt);
    this->conicTo(pt.fX + dx1, pt.fY + dy1, pt.fX + dx2, pt.fY + dy2, w);
}

void SkPath::cubicTo(SkScalar x1, SkScalar y1, SkScalar x2, SkScalar y2,
                     SkScalar x3, SkScalar y3) {
    SkDEBUGCODE(this->validate();)

    this->injectMoveToIfNeeded();

    SkPathRef::Editor ed(&fPathRef);
    SkPoint* pts = ed.growForVerb(kCubic_Verb);
    pts[0].set(x1, y1);
    pts[1].set(x2, y2);
    pts[2].set(x3, y3);

    DIRTY_AFTER_EDIT;
}

void SkPath::rCubicTo(SkScalar x1, SkScalar y1, SkScalar x2, SkScalar y2,
                      SkScalar x3, SkScalar y3) {
    this->injectMoveToIfNeeded();  // This can change the result of this->getLastPt().
    SkPoint pt;
    this->getLastPt(&pt);
    this->cubicTo(pt.fX + x1, pt.fY + y1, pt.fX + x2, pt.fY + y2,
                  pt.fX + x3, pt.fY + y3);
}

void SkPath::close() {
    SkDEBUGCODE(this->validate();)

    int count = fPathRef->countVerbs();
    if (count > 0) {
        switch (fPathRef->atVerb(count - 1)) {
            case kLine_Verb:
            case kQuad_Verb:
            case kConic_Verb:
            case kCubic_Verb:
            case kMove_Verb: {
                SkPathRef::Editor ed(&fPathRef);
                ed.growForVerb(kClose_Verb);
                break;
            }
            case kClose_Verb:
                // don't add a close if it's the first verb or a repeat
                break;
            default:
                SkDEBUGFAIL("unexpected verb");
                break;
        }
    }

    // signal that we need a moveTo to follow us (unless we're done)
#if 0
    if (fLastMoveToIndex >= 0) {
        fLastMoveToIndex = ~fLastMoveToIndex;
    }
#else
    fLastMoveToIndex ^= ~fLastMoveToIndex >> (8 * sizeof(fLastMoveToIndex) - 1);
#endif
}

///////////////////////////////////////////////////////////////////////////////

namespace {

template <unsigned N>
class PointIterator {
public:
    PointIterator(SkPath::Direction dir, unsigned startIndex)
        : fCurrent(startIndex % N)
        , fAdvance(dir == SkPath::kCW_Direction ? 1 : N - 1) { }

    const SkPoint& current() const {
        SkASSERT(fCurrent < N);
        return fPts[fCurrent];
    }

    const SkPoint& next() {
        fCurrent = (fCurrent + fAdvance) % N;
        return this->current();
    }

protected:
    SkPoint fPts[N];

private:
    unsigned fCurrent;
    unsigned fAdvance;
};

class RectPointIterator : public PointIterator<4> {
public:
    RectPointIterator(const SkRect& rect, SkPath::Direction dir, unsigned startIndex)
        : PointIterator(dir, startIndex) {

        fPts[0] = SkPoint::Make(rect.fLeft, rect.fTop);
        fPts[1] = SkPoint::Make(rect.fRight, rect.fTop);
        fPts[2] = SkPoint::Make(rect.fRight, rect.fBottom);
        fPts[3] = SkPoint::Make(rect.fLeft, rect.fBottom);
    }
};

class OvalPointIterator : public PointIterator<4> {
public:
    OvalPointIterator(const SkRect& oval, SkPath::Direction dir, unsigned startIndex)
        : PointIterator(dir, startIndex) {

        const SkScalar cx = oval.centerX();
        const SkScalar cy = oval.centerY();

        fPts[0] = SkPoint::Make(cx, oval.fTop);
        fPts[1] = SkPoint::Make(oval.fRight, cy);
        fPts[2] = SkPoint::Make(cx, oval.fBottom);
        fPts[3] = SkPoint::Make(oval.fLeft, cy);
    }
};

class RRectPointIterator : public PointIterator<8> {
public:
    RRectPointIterator(const SkRRect& rrect, SkPath::Direction dir, unsigned startIndex)
        : PointIterator(dir, startIndex) {

        const SkRect& bounds = rrect.getBounds();
        const SkScalar L = bounds.fLeft;
        const SkScalar T = bounds.fTop;
        const SkScalar R = bounds.fRight;
        const SkScalar B = bounds.fBottom;

        fPts[0] = SkPoint::Make(L + rrect.radii(SkRRect::kUpperLeft_Corner).fX, T);
        fPts[1] = SkPoint::Make(R - rrect.radii(SkRRect::kUpperRight_Corner).fX, T);
        fPts[2] = SkPoint::Make(R, T + rrect.radii(SkRRect::kUpperRight_Corner).fY);
        fPts[3] = SkPoint::Make(R, B - rrect.radii(SkRRect::kLowerRight_Corner).fY);
        fPts[4] = SkPoint::Make(R - rrect.radii(SkRRect::kLowerRight_Corner).fX, B);
        fPts[5] = SkPoint::Make(L + rrect.radii(SkRRect::kLowerLeft_Corner).fX, B);
        fPts[6] = SkPoint::Make(L, B - rrect.radii(SkRRect::kLowerLeft_Corner).fY);
        fPts[7] = SkPoint::Make(L, T + rrect.radii(SkRRect::kUpperLeft_Corner).fY);
    }
};

} // anonymous namespace

static void assert_known_direction(int dir) {
    SkASSERT(SkPath::kCW_Direction == dir || SkPath::kCCW_Direction == dir);
}

void SkPath::addRect(const SkRect& rect, Direction dir) {
    this->addRect(rect, dir, 0);
}

void SkPath::addRect(SkScalar left, SkScalar top, SkScalar right,
                     SkScalar bottom, Direction dir) {
    this->addRect(SkRect::MakeLTRB(left, top, right, bottom), dir, 0);
}

void SkPath::addRect(const SkRect &rect, Direction dir, unsigned startIndex) {
    assert_known_direction(dir);
    fFirstDirection = this->hasOnlyMoveTos() ?
        (SkPathPriv::FirstDirection)dir : SkPathPriv::kUnknown_FirstDirection;
    SkAutoDisableDirectionCheck addc(this);
    SkAutoPathBoundsUpdate apbu(this, rect);

    SkDEBUGCODE(int initialVerbCount = this->countVerbs());

    const int kVerbs = 5; // moveTo + 3x lineTo + close
    this->incReserve(kVerbs);

    RectPointIterator iter(rect, dir, startIndex);

    this->moveTo(iter.current());
    this->lineTo(iter.next());
    this->lineTo(iter.next());
    this->lineTo(iter.next());
    this->close();

    SkASSERT(this->countVerbs() == initialVerbCount + kVerbs);
}

void SkPath::addPoly(const SkPoint pts[], int count, bool close) {
    SkDEBUGCODE(this->validate();)
    if (count <= 0) {
        return;
    }

    fLastMoveToIndex = fPathRef->countPoints();

    // +close makes room for the extra kClose_Verb
    SkPathRef::Editor ed(&fPathRef, count+close, count);

    ed.growForVerb(kMove_Verb)->set(pts[0].fX, pts[0].fY);
    if (count > 1) {
        SkPoint* p = ed.growForRepeatedVerb(kLine_Verb, count - 1);
        memcpy(p, &pts[1], (count-1) * sizeof(SkPoint));
    }

    if (close) {
        ed.growForVerb(kClose_Verb);
        fLastMoveToIndex ^= ~fLastMoveToIndex >> (8 * sizeof(fLastMoveToIndex) - 1);
    }

    DIRTY_AFTER_EDIT;
    SkDEBUGCODE(this->validate();)
}

#include "SkGeometry.h"

static bool arc_is_lone_point(const SkRect& oval, SkScalar startAngle, SkScalar sweepAngle,
                              SkPoint* pt) {
    if (0 == sweepAngle && (0 == startAngle || SkIntToScalar(360) == startAngle)) {
        // Chrome uses this path to move into and out of ovals. If not
        // treated as a special case the moves can distort the oval's
        // bounding box (and break the circle special case).
        pt->set(oval.fRight, oval.centerY());
        return true;
    } else if (0 == oval.width() && 0 == oval.height()) {
        // Chrome will sometimes create 0 radius round rects. Having degenerate
        // quad segments in the path prevents the path from being recognized as
        // a rect.
        // TODO: optimizing the case where only one of width or height is zero
        // should also be considered. This case, however, doesn't seem to be
        // as common as the single point case.
        pt->set(oval.fRight, oval.fTop);
        return true;
    }
    return false;
}

// Return the unit vectors pointing at the start/stop points for the given start/sweep angles
//
static void angles_to_unit_vectors(SkScalar startAngle, SkScalar sweepAngle,
                                   SkVector* startV, SkVector* stopV, SkRotationDirection* dir) {
    startV->fY = SkScalarSinCos(SkDegreesToRadians(startAngle), &startV->fX);
    stopV->fY = SkScalarSinCos(SkDegreesToRadians(startAngle + sweepAngle), &stopV->fX);

    /*  If the sweep angle is nearly (but less than) 360, then due to precision
     loss in radians-conversion and/or sin/cos, we may end up with coincident
     vectors, which will fool SkBuildQuadArc into doing nothing (bad) instead
     of drawing a nearly complete circle (good).
     e.g. canvas.drawArc(0, 359.99, ...)
     -vs- canvas.drawArc(0, 359.9, ...)
     We try to detect this edge case, and tweak the stop vector
     */
    if (*startV == *stopV) {
        SkScalar sw = SkScalarAbs(sweepAngle);
        if (sw < SkIntToScalar(360) && sw > SkIntToScalar(359)) {
            SkScalar stopRad = SkDegreesToRadians(startAngle + sweepAngle);
            // make a guess at a tiny angle (in radians) to tweak by
            SkScalar deltaRad = SkScalarCopySign(SK_Scalar1/512, sweepAngle);
            // not sure how much will be enough, so we use a loop
            do {
                stopRad -= deltaRad;
                stopV->fY = SkScalarSinCos(stopRad, &stopV->fX);
            } while (*startV == *stopV);
        }
    }
    *dir = sweepAngle > 0 ? kCW_SkRotationDirection : kCCW_SkRotationDirection;
}

/**
 *  If this returns 0, then the caller should just line-to the singlePt, else it should
 *  ignore singlePt and append the specified number of conics.
 */
static int build_arc_conics(const SkRect& oval, const SkVector& start, const SkVector& stop,
                            SkRotationDirection dir, SkConic conics[SkConic::kMaxConicsForArc],
                            SkPoint* singlePt) {
    SkMatrix    matrix;

    matrix.setScale(SkScalarHalf(oval.width()), SkScalarHalf(oval.height()));
    matrix.postTranslate(oval.centerX(), oval.centerY());

    int count = SkConic::BuildUnitArc(start, stop, dir, &matrix, conics);
    if (0 == count) {
        matrix.mapXY(stop.x(), stop.y(), singlePt);
    }
    return count;
}

void SkPath::addRoundRect(const SkRect& rect, const SkScalar radii[],
                          Direction dir) {
    SkRRect rrect;
    rrect.setRectRadii(rect, (const SkVector*) radii);
    this->addRRect(rrect, dir);
}

void SkPath::addRRect(const SkRRect& rrect, Direction dir) {
    // legacy start indices: 6 (CW) and 7(CCW)
    this->addRRect(rrect, dir, dir == kCW_Direction ? 6 : 7);
}

void SkPath::addRRect(const SkRRect &rrect, Direction dir, unsigned startIndex) {
        assert_known_direction(dir);

        bool isRRect = hasOnlyMoveTos();
        const SkRect& bounds = rrect.getBounds();

        if (rrect.isRect() || rrect.isEmpty()) {
            // degenerate(rect) => radii points are collapsing
            this->addRect(bounds, dir, (startIndex + 1) / 2);
        } else if (rrect.isOval()) {
            // degenerate(oval) => line points are collapsing
            this->addOval(bounds, dir, startIndex / 2);
        } else {
            fFirstDirection = this->hasOnlyMoveTos() ?
                                (SkPathPriv::FirstDirection)dir : SkPathPriv::kUnknown_FirstDirection;

            SkAutoPathBoundsUpdate apbu(this, bounds);
            SkAutoDisableDirectionCheck addc(this);

            // we start with a conic on odd indices when moving CW vs. even indices when moving CCW
            const bool startsWithConic = ((startIndex & 1) == (dir == kCW_Direction));
            const SkScalar weight = SK_ScalarRoot2Over2;

            SkDEBUGCODE(int initialVerbCount = this->countVerbs());
            const int kVerbs = startsWithConic
                ? 9   // moveTo + 4x conicTo + 3x lineTo + close
                : 10; // moveTo + 4x lineTo + 4x conicTo + close
            this->incReserve(kVerbs);

            RRectPointIterator rrectIter(rrect, dir, startIndex);
            // Corner iterator indices follow the collapsed radii model,
            // adjusted such that the start pt is "behind" the radii start pt.
            const unsigned rectStartIndex = startIndex / 2 + (dir == kCW_Direction ? 0 : 1);
            RectPointIterator rectIter(bounds, dir, rectStartIndex);

            this->moveTo(rrectIter.current());
            if (startsWithConic) {
                for (unsigned i = 0; i < 3; ++i) {
                    this->conicTo(rectIter.next(), rrectIter.next(), weight);
                    this->lineTo(rrectIter.next());
                }
                this->conicTo(rectIter.next(), rrectIter.next(), weight);
                // final lineTo handled by close().
            } else {
                for (unsigned i = 0; i < 4; ++i) {
                    this->lineTo(rrectIter.next());
                    this->conicTo(rectIter.next(), rrectIter.next(), weight);
                }
            }
            this->close();

            SkPathRef::Editor ed(&fPathRef);
            ed.setIsRRect(isRRect, dir, startIndex % 8);

            SkASSERT(this->countVerbs() == initialVerbCount + kVerbs);
        }

        SkDEBUGCODE(fPathRef->validate();)
}

bool SkPath::hasOnlyMoveTos() const {
    int count = fPathRef->countVerbs();
    const uint8_t* verbs = const_cast<const SkPathRef*>(fPathRef.get())->verbsMemBegin();
    for (int i = 0; i < count; ++i) {
        if (*verbs == kLine_Verb ||
            *verbs == kQuad_Verb ||
            *verbs == kConic_Verb ||
            *verbs == kCubic_Verb) {
            return false;
        }
        ++verbs;
    }
    return true;
}

bool SkPath::isZeroLengthSincePoint(int startPtIndex) const {
    int count = fPathRef->countPoints() - startPtIndex;
    if (count < 2) {
        return true;
    }
    const SkPoint* pts = fPathRef.get()->points() + startPtIndex;
    const SkPoint& first = *pts;
    for (int index = 1; index < count; ++index) {
        if (first != pts[index]) {
            return false;
        }
    }
    return true;
}

void SkPath::addRoundRect(const SkRect& rect, SkScalar rx, SkScalar ry,
                          Direction dir) {
    assert_known_direction(dir);

    if (rx < 0 || ry < 0) {
        return;
    }

    SkRRect rrect;
    rrect.setRectXY(rect, rx, ry);
    this->addRRect(rrect, dir);
}

void SkPath::addOval(const SkRect& oval, Direction dir) {
    // legacy start index: 1
    this->addOval(oval, dir, 1);
}

void SkPath::addOval(const SkRect &oval, Direction dir, unsigned startPointIndex) {
    assert_known_direction(dir);

    /* If addOval() is called after previous moveTo(),
       this path is still marked as an oval. This is used to
       fit into WebKit's calling sequences.
       We can't simply check isEmpty() in this case, as additional
       moveTo() would mark the path non empty.
     */
    bool isOval = hasOnlyMoveTos();
    if (isOval) {
        fFirstDirection = (SkPathPriv::FirstDirection)dir;
    } else {
        fFirstDirection = SkPathPriv::kUnknown_FirstDirection;
    }

    SkAutoDisableDirectionCheck addc(this);
    SkAutoPathBoundsUpdate apbu(this, oval);

    SkDEBUGCODE(int initialVerbCount = this->countVerbs());
    const int kVerbs = 6; // moveTo + 4x conicTo + close
    this->incReserve(kVerbs);

    OvalPointIterator ovalIter(oval, dir, startPointIndex);
    // The corner iterator pts are tracking "behind" the oval/radii pts.
    RectPointIterator rectIter(oval, dir, startPointIndex + (dir == kCW_Direction ? 0 : 1));
    const SkScalar weight = SK_ScalarRoot2Over2;

    this->moveTo(ovalIter.current());
    for (unsigned i = 0; i < 4; ++i) {
        this->conicTo(rectIter.next(), ovalIter.next(), weight);
    }
    this->close();

    SkASSERT(this->countVerbs() == initialVerbCount + kVerbs);

    SkPathRef::Editor ed(&fPathRef);

    ed.setIsOval(isOval, kCCW_Direction == dir, startPointIndex % 4);
}

void SkPath::addCircle(SkScalar x, SkScalar y, SkScalar r, Direction dir) {
    if (r > 0) {
        this->addOval(SkRect::MakeLTRB(x - r, y - r, x + r, y + r), dir);
    }
}

void SkPath::arcTo(const SkRect& oval, SkScalar startAngle, SkScalar sweepAngle,
                   bool forceMoveTo) {
    if (oval.width() < 0 || oval.height() < 0) {
        return;
    }

    if (fPathRef->countVerbs() == 0) {
        forceMoveTo = true;
    }

    SkPoint lonePt;
    if (arc_is_lone_point(oval, startAngle, sweepAngle, &lonePt)) {
        forceMoveTo ? this->moveTo(lonePt) : this->lineTo(lonePt);
        return;
    }

    SkVector startV, stopV;
    SkRotationDirection dir;
    angles_to_unit_vectors(startAngle, sweepAngle, &startV, &stopV, &dir);

    SkPoint singlePt;

    // Adds a move-to to 'pt' if forceMoveTo is true. Otherwise a lineTo unless we're sufficiently
    // close to 'pt' currently. This prevents spurious lineTos when adding a series of contiguous
    // arcs from the same oval.
    auto addPt = [&forceMoveTo, this](const SkPoint& pt) {
        SkPoint lastPt;
        if (forceMoveTo) {
            this->moveTo(pt);
        } else if (!this->getLastPt(&lastPt) ||
                   !SkScalarNearlyEqual(lastPt.fX, pt.fX) ||
                   !SkScalarNearlyEqual(lastPt.fY, pt.fY)) {
            this->lineTo(pt);
        }
    };

    // At this point, we know that the arc is not a lone point, but startV == stopV
    // indicates that the sweepAngle is too small such that angles_to_unit_vectors
    // cannot handle it.
    if (startV == stopV) {
        SkScalar endAngle = SkDegreesToRadians(startAngle + sweepAngle);
        SkScalar radiusX = oval.width() / 2;
        SkScalar radiusY = oval.height() / 2;
        // We cannot use SkScalarSinCos function in the next line because
        // SkScalarSinCos has a threshold *SkScalarNearlyZero*. When sin(startAngle)
        // is 0 and sweepAngle is very small and radius is huge, the expected
        // behavior here is to draw a line. But calling SkScalarSinCos will
        // make sin(endAngle) to be 0 which will then draw a dot.
        singlePt.set(oval.centerX() + radiusX * sk_float_cos(endAngle),
            oval.centerY() + radiusY * sk_float_sin(endAngle));
        addPt(singlePt);
        return;
    }

    SkConic conics[SkConic::kMaxConicsForArc];
    int count = build_arc_conics(oval, startV, stopV, dir, conics, &singlePt);
    if (count) {
        this->incReserve(count * 2 + 1);
        const SkPoint& pt = conics[0].fPts[0];
        addPt(pt);
        for (int i = 0; i < count; ++i) {
            this->conicTo(conics[i].fPts[1], conics[i].fPts[2], conics[i].fW);
        }
    } else {
        addPt(singlePt);
    }
}

// This converts the SVG arc to conics.
// Partly adapted from Niko's code in kdelibs/kdecore/svgicons.
// Then transcribed from webkit/chrome's SVGPathNormalizer::decomposeArcToCubic()
// See also SVG implementation notes:
// http://www.w3.org/TR/SVG/implnote.html#ArcConversionEndpointToCenter
// Note that arcSweep bool value is flipped from the original implementation.
void SkPath::arcTo(SkScalar rx, SkScalar ry, SkScalar angle, SkPath::ArcSize arcLarge,
                   SkPath::Direction arcSweep, SkScalar x, SkScalar y) {
    this->injectMoveToIfNeeded();
    SkPoint srcPts[2];
    this->getLastPt(&srcPts[0]);
    // If rx = 0 or ry = 0 then this arc is treated as a straight line segment (a "lineto")
    // joining the endpoints.
    // http://www.w3.org/TR/SVG/implnote.html#ArcOutOfRangeParameters
    if (!rx || !ry) {
        this->lineTo(x, y);
        return;
    }
    // If the current point and target point for the arc are identical, it should be treated as a
    // zero length path. This ensures continuity in animations.
    srcPts[1].set(x, y);
    if (srcPts[0] == srcPts[1]) {
        this->lineTo(x, y);
        return;
    }
    rx = SkScalarAbs(rx);
    ry = SkScalarAbs(ry);
    SkVector midPointDistance = srcPts[0] - srcPts[1];
    midPointDistance *= 0.5f;

    SkMatrix pointTransform;
    pointTransform.setRotate(-angle);

    SkPoint transformedMidPoint;
    pointTransform.mapPoints(&transformedMidPoint, &midPointDistance, 1);
    SkScalar squareRx = rx * rx;
    SkScalar squareRy = ry * ry;
    SkScalar squareX = transformedMidPoint.fX * transformedMidPoint.fX;
    SkScalar squareY = transformedMidPoint.fY * transformedMidPoint.fY;

    // Check if the radii are big enough to draw the arc, scale radii if not.
    // http://www.w3.org/TR/SVG/implnote.html#ArcCorrectionOutOfRangeRadii
    SkScalar radiiScale = squareX / squareRx + squareY / squareRy;
    if (radiiScale > 1) {
        radiiScale = SkScalarSqrt(radiiScale);
        rx *= radiiScale;
        ry *= radiiScale;
    }

    pointTransform.setScale(1 / rx, 1 / ry);
    pointTransform.preRotate(-angle);

    SkPoint unitPts[2];
    pointTransform.mapPoints(unitPts, srcPts, (int) SK_ARRAY_COUNT(unitPts));
    SkVector delta = unitPts[1] - unitPts[0];

    SkScalar d = delta.fX * delta.fX + delta.fY * delta.fY;
    SkScalar scaleFactorSquared = SkTMax(1 / d - 0.25f, 0.f);

    SkScalar scaleFactor = SkScalarSqrt(scaleFactorSquared);
    if (SkToBool(arcSweep) != SkToBool(arcLarge)) {  // flipped from the original implementation
        scaleFactor = -scaleFactor;
    }
    delta.scale(scaleFactor);
    SkPoint centerPoint = unitPts[0] + unitPts[1];
    centerPoint *= 0.5f;
    centerPoint.offset(-delta.fY, delta.fX);
    unitPts[0] -= centerPoint;
    unitPts[1] -= centerPoint;
    SkScalar theta1 = SkScalarATan2(unitPts[0].fY, unitPts[0].fX);
    SkScalar theta2 = SkScalarATan2(unitPts[1].fY, unitPts[1].fX);
    SkScalar thetaArc = theta2 - theta1;
    if (thetaArc < 0 && !arcSweep) {  // arcSweep flipped from the original implementation
        thetaArc += SK_ScalarPI * 2;
    } else if (thetaArc > 0 && arcSweep) {  // arcSweep flipped from the original implementation
        thetaArc -= SK_ScalarPI * 2;
    }
    pointTransform.setRotate(angle);
    pointTransform.preScale(rx, ry);

#ifdef SK_SUPPORT_LEGACY_SVG_ARC_TO
    int segments = SkScalarCeilToInt(SkScalarAbs(thetaArc / (SK_ScalarPI / 2)));
#else
    // the arc may be slightly bigger than 1/4 circle, so allow up to 1/3rd
    int segments = SkScalarCeilToInt(SkScalarAbs(thetaArc / (2 * SK_ScalarPI / 3)));
#endif
    SkScalar thetaWidth = thetaArc / segments;
    SkScalar t = SkScalarTan(0.5f * thetaWidth);
    if (!SkScalarIsFinite(t)) {
        return;
    }
    SkScalar startTheta = theta1;
    SkScalar w = SkScalarSqrt(SK_ScalarHalf + SkScalarCos(thetaWidth) * SK_ScalarHalf);
#ifndef SK_SUPPORT_LEGACY_SVG_ARC_TO
    auto scalar_is_integer = [](SkScalar scalar) -> bool {
        return scalar == SkScalarFloorToScalar(scalar);
    };
    bool expectIntegers = SkScalarNearlyZero(SK_ScalarPI/2 - SkScalarAbs(thetaWidth)) &&
        scalar_is_integer(rx) && scalar_is_integer(ry) &&
        scalar_is_integer(x) && scalar_is_integer(y);
#endif
    for (int i = 0; i < segments; ++i) {
        SkScalar endTheta = startTheta + thetaWidth;
        SkScalar cosEndTheta, sinEndTheta = SkScalarSinCos(endTheta, &cosEndTheta);

        unitPts[1].set(cosEndTheta, sinEndTheta);
        unitPts[1] += centerPoint;
        unitPts[0] = unitPts[1];
        unitPts[0].offset(t * sinEndTheta, -t * cosEndTheta);
        SkPoint mapped[2];
        pointTransform.mapPoints(mapped, unitPts, (int) SK_ARRAY_COUNT(unitPts));
        /*
        Computing the arc width introduces rounding errors that cause arcs to start
        outside their marks. A round rect may lose convexity as a result. If the input
        values are on integers, place the conic on integers as well.
         */
#ifndef SK_SUPPORT_LEGACY_SVG_ARC_TO
        if (expectIntegers) {
            SkScalar* mappedScalars = &mapped[0].fX;
            for (unsigned index = 0; index < sizeof(mapped) / sizeof(SkScalar); ++index) {
                mappedScalars[index] = SkScalarRoundToScalar(mappedScalars[index]);
            }
        }
#endif
        this->conicTo(mapped[0], mapped[1], w);
        startTheta = endTheta;
    }
}

void SkPath::rArcTo(SkScalar rx, SkScalar ry, SkScalar xAxisRotate, SkPath::ArcSize largeArc,
                    SkPath::Direction sweep, SkScalar dx, SkScalar dy) {
    SkPoint currentPoint;
    this->getLastPt(&currentPoint);
    this->arcTo(rx, ry, xAxisRotate, largeArc, sweep, currentPoint.fX + dx, currentPoint.fY + dy);
}

void SkPath::addArc(const SkRect& oval, SkScalar startAngle, SkScalar sweepAngle) {
    if (oval.isEmpty() || 0 == sweepAngle) {
        return;
    }

    const SkScalar kFullCircleAngle = SkIntToScalar(360);

    if (sweepAngle >= kFullCircleAngle || sweepAngle <= -kFullCircleAngle) {
        // We can treat the arc as an oval if it begins at one of our legal starting positions.
        // See SkPath::addOval() docs.
        SkScalar startOver90 = startAngle / 90.f;
        SkScalar startOver90I = SkScalarRoundToScalar(startOver90);
        SkScalar error = startOver90 - startOver90I;
        if (SkScalarNearlyEqual(error, 0)) {
            // Index 1 is at startAngle == 0.
            SkScalar startIndex = std::fmod(startOver90I + 1.f, 4.f);
            startIndex = startIndex < 0 ? startIndex + 4.f : startIndex;
            this->addOval(oval, sweepAngle > 0 ? kCW_Direction : kCCW_Direction,
                          (unsigned) startIndex);
            return;
        }
    }
    this->arcTo(oval, startAngle, sweepAngle, true);
}

/*
    Need to handle the case when the angle is sharp, and our computed end-points
    for the arc go behind pt1 and/or p2...
*/
void SkPath::arcTo(SkScalar x1, SkScalar y1, SkScalar x2, SkScalar y2, SkScalar radius) {
    if (radius == 0) {
        this->lineTo(x1, y1);
        return;
    }

    SkVector before, after;

    // need to know our prev pt so we can construct tangent vectors
    {
        SkPoint start;
        this->getLastPt(&start);
        // Handle degenerate cases by adding a line to the first point and
        // bailing out.
        before.setNormalize(x1 - start.fX, y1 - start.fY);
        after.setNormalize(x2 - x1, y2 - y1);
    }

    SkScalar cosh = SkPoint::DotProduct(before, after);
    SkScalar sinh = SkPoint::CrossProduct(before, after);

    if (SkScalarNearlyZero(sinh)) {   // angle is too tight
        this->lineTo(x1, y1);
        return;
    }

    SkScalar dist = SkScalarAbs(radius * (1 - cosh) / sinh);

    SkScalar xx = x1 - dist * before.fX;
    SkScalar yy = y1 - dist * before.fY;
    after.setLength(dist);
    this->lineTo(xx, yy);
    SkScalar weight = SkScalarSqrt(SK_ScalarHalf + cosh * SK_ScalarHalf);
    this->conicTo(x1, y1, x1 + after.fX, y1 + after.fY, weight);
}

///////////////////////////////////////////////////////////////////////////////

void SkPath::addPath(const SkPath& path, SkScalar dx, SkScalar dy, AddPathMode mode) {
    SkMatrix matrix;

    matrix.setTranslate(dx, dy);
    this->addPath(path, matrix, mode);
}

void SkPath::addPath(const SkPath& path, const SkMatrix& matrix, AddPathMode mode) {
    SkPathRef::Editor(&fPathRef, path.countVerbs(), path.countPoints());

    RawIter iter(path);
    SkPoint pts[4];
    Verb    verb;

    SkMatrixPriv::MapPtsProc proc = SkMatrixPriv::GetMapPtsProc(matrix);
    bool firstVerb = true;
    while ((verb = iter.next(pts)) != kDone_Verb) {
        switch (verb) {
            case kMove_Verb:
                proc(matrix, &pts[0], &pts[0], 1);
                if (firstVerb && mode == kExtend_AddPathMode && !isEmpty()) {
                    injectMoveToIfNeeded(); // In case last contour is closed
                    this->lineTo(pts[0]);
                } else {
                    this->moveTo(pts[0]);
                }
                break;
            case kLine_Verb:
                proc(matrix, &pts[1], &pts[1], 1);
                this->lineTo(pts[1]);
                break;
            case kQuad_Verb:
                proc(matrix, &pts[1], &pts[1], 2);
                this->quadTo(pts[1], pts[2]);
                break;
            case kConic_Verb:
                proc(matrix, &pts[1], &pts[1], 2);
                this->conicTo(pts[1], pts[2], iter.conicWeight());
                break;
            case kCubic_Verb:
                proc(matrix, &pts[1], &pts[1], 3);
                this->cubicTo(pts[1], pts[2], pts[3]);
                break;
            case kClose_Verb:
                this->close();
                break;
            default:
                SkDEBUGFAIL("unknown verb");
        }
        firstVerb = false;
    }
}

///////////////////////////////////////////////////////////////////////////////

static int pts_in_verb(unsigned verb) {
    static const uint8_t gPtsInVerb[] = {
        1,  // kMove
        1,  // kLine
        2,  // kQuad
        2,  // kConic
        3,  // kCubic
        0,  // kClose
        0   // kDone
    };

    SkASSERT(verb < SK_ARRAY_COUNT(gPtsInVerb));
    return gPtsInVerb[verb];
}

// ignore the last point of the 1st contour
void SkPath::reversePathTo(const SkPath& path) {
    const uint8_t* verbs = path.fPathRef->verbsMemBegin(); // points at the last verb
    if (!verbs) {  // empty path returns nullptr
        return;
    }
    const uint8_t* verbsEnd = path.fPathRef->verbs() - 1; // points just past the first verb
    SkASSERT(verbsEnd[0] == kMove_Verb);
    const SkPoint*  pts = path.fPathRef->pointsEnd() - 1;
    const SkScalar* conicWeights = path.fPathRef->conicWeightsEnd();

    while (verbs < verbsEnd) {
        uint8_t v = *verbs++;
        pts -= pts_in_verb(v);
        switch (v) {
            case kMove_Verb:
                // if the path has multiple contours, stop after reversing the last
                return;
            case kLine_Verb:
                this->lineTo(pts[0]);
                break;
            case kQuad_Verb:
                this->quadTo(pts[1], pts[0]);
                break;
            case kConic_Verb:
                this->conicTo(pts[1], pts[0], *--conicWeights);
                break;
            case kCubic_Verb:
                this->cubicTo(pts[2], pts[1], pts[0]);
                break;
            case kClose_Verb:
                SkASSERT(verbs - path.fPathRef->verbsMemBegin() == 1);
                break;
            default:
                SkDEBUGFAIL("bad verb");
                break;
        }
    }
}

void SkPath::reverseAddPath(const SkPath& src) {
    SkPathRef::Editor ed(&fPathRef, src.fPathRef->countPoints(), src.fPathRef->countVerbs());

    const SkPoint* pts = src.fPathRef->pointsEnd();
    // we will iterator through src's verbs backwards
    const uint8_t* verbs = src.fPathRef->verbsMemBegin(); // points at the last verb
    const uint8_t* verbsEnd = src.fPathRef->verbs(); // points just past the first verb
    const SkScalar* conicWeights = src.fPathRef->conicWeightsEnd();

    bool needMove = true;
    bool needClose = false;
    while (verbs < verbsEnd) {
        uint8_t v = *(verbs++);
        int n = pts_in_verb(v);

        if (needMove) {
            --pts;
            this->moveTo(pts->fX, pts->fY);
            needMove = false;
        }
        pts -= n;
        switch (v) {
            case kMove_Verb:
                if (needClose) {
                    this->close();
                    needClose = false;
                }
                needMove = true;
                pts += 1;   // so we see the point in "if (needMove)" above
                break;
            case kLine_Verb:
                this->lineTo(pts[0]);
                break;
            case kQuad_Verb:
                this->quadTo(pts[1], pts[0]);
                break;
            case kConic_Verb:
                this->conicTo(pts[1], pts[0], *--conicWeights);
                break;
            case kCubic_Verb:
                this->cubicTo(pts[2], pts[1], pts[0]);
                break;
            case kClose_Verb:
                needClose = true;
                break;
            default:
                SkDEBUGFAIL("unexpected verb");
        }
    }
}

///////////////////////////////////////////////////////////////////////////////

void SkPath::offset(SkScalar dx, SkScalar dy, SkPath* dst) const {
    SkMatrix    matrix;

    matrix.setTranslate(dx, dy);
    this->transform(matrix, dst);
}

static void subdivide_cubic_to(SkPath* path, const SkPoint pts[4],
                               int level = 2) {
    if (--level >= 0) {
        SkPoint tmp[7];

        SkChopCubicAtHalf(pts, tmp);
        subdivide_cubic_to(path, &tmp[0], level);
        subdivide_cubic_to(path, &tmp[3], level);
    } else {
        path->cubicTo(pts[1], pts[2], pts[3]);
    }
}

void SkPath::transform(const SkMatrix& matrix, SkPath* dst) const {
    SkDEBUGCODE(this->validate();)
    if (dst == nullptr) {
        dst = (SkPath*)this;
    }

    if (matrix.hasPerspective()) {
        SkPath  tmp;
        tmp.fFillType = fFillType;

        SkPath::Iter    iter(*this, false);
        SkPoint         pts[4];
        SkPath::Verb    verb;

        while ((verb = iter.next(pts, false)) != kDone_Verb) {
            switch (verb) {
                case kMove_Verb:
                    tmp.moveTo(pts[0]);
                    break;
                case kLine_Verb:
                    tmp.lineTo(pts[1]);
                    break;
                case kQuad_Verb:
                    // promote the quad to a conic
                    tmp.conicTo(pts[1], pts[2],
                                SkConic::TransformW(pts, SK_Scalar1, matrix));
                    break;
                case kConic_Verb:
                    tmp.conicTo(pts[1], pts[2],
                                SkConic::TransformW(pts, iter.conicWeight(), matrix));
                    break;
                case kCubic_Verb:
                    subdivide_cubic_to(&tmp, pts);
                    break;
                case kClose_Verb:
                    tmp.close();
                    break;
                default:
                    SkDEBUGFAIL("unknown verb");
                    break;
            }
        }

        dst->swap(tmp);
        SkPathRef::Editor ed(&dst->fPathRef);
        matrix.mapPoints(ed.points(), ed.pathRef()->countPoints());
        dst->fFirstDirection = SkPathPriv::kUnknown_FirstDirection;
    } else {
        SkPathRef::CreateTransformedCopy(&dst->fPathRef, *fPathRef.get(), matrix);

        if (this != dst) {
            dst->fFillType = fFillType;
            dst->fConvexity.store(fConvexity);
            dst->fIsVolatile = fIsVolatile;
        }

        if (SkPathPriv::kUnknown_FirstDirection == fFirstDirection) {
            dst->fFirstDirection = SkPathPriv::kUnknown_FirstDirection;
        } else {
            SkScalar det2x2 =
                matrix.get(SkMatrix::kMScaleX) * matrix.get(SkMatrix::kMScaleY) -
                matrix.get(SkMatrix::kMSkewX)  * matrix.get(SkMatrix::kMSkewY);
            if (det2x2 < 0) {
                dst->fFirstDirection = SkPathPriv::OppositeFirstDirection(
                        (SkPathPriv::FirstDirection)fFirstDirection.load());
            } else if (det2x2 > 0) {
                dst->fFirstDirection = fFirstDirection.load();
            } else {
                dst->fConvexity = kUnknown_Convexity;
                dst->fFirstDirection = SkPathPriv::kUnknown_FirstDirection;
            }
        }

        SkDEBUGCODE(dst->validate();)
    }
}

///////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////

SkPath::Iter::Iter() {
#ifdef SK_DEBUG
    fPts = nullptr;
    fConicWeights = nullptr;
    fMoveTo.fX = fMoveTo.fY = fLastPt.fX = fLastPt.fY = 0;
    fForceClose = fCloseLine = false;
    fSegmentState = kEmptyContour_SegmentState;
#endif
    // need to init enough to make next() harmlessly return kDone_Verb
    fVerbs = nullptr;
    fVerbStop = nullptr;
    fNeedClose = false;
}

SkPath::Iter::Iter(const SkPath& path, bool forceClose) {
    this->setPath(path, forceClose);
}

void SkPath::Iter::setPath(const SkPath& path, bool forceClose) {
    fPts = path.fPathRef->points();
    fVerbs = path.fPathRef->verbs();
    fVerbStop = path.fPathRef->verbsMemBegin();
    fConicWeights = path.fPathRef->conicWeights();
    if (fConicWeights) {
      fConicWeights -= 1;  // begin one behind
    }
    fLastPt.fX = fLastPt.fY = 0;
    fMoveTo.fX = fMoveTo.fY = 0;
    fForceClose = SkToU8(forceClose);
    fNeedClose = false;
    fSegmentState = kEmptyContour_SegmentState;
}

bool SkPath::Iter::isClosedContour() const {
    if (fVerbs == nullptr || fVerbs == fVerbStop) {
        return false;
    }
    if (fForceClose) {
        return true;
    }

    const uint8_t* verbs = fVerbs;
    const uint8_t* stop = fVerbStop;

    if (kMove_Verb == *(verbs - 1)) {
        verbs -= 1; // skip the initial moveto
    }

    while (verbs > stop) {
        // verbs points one beyond the current verb, decrement first.
        unsigned v = *(--verbs);
        if (kMove_Verb == v) {
            break;
        }
        if (kClose_Verb == v) {
            return true;
        }
    }
    return false;
}

SkPath::Verb SkPath::Iter::autoClose(SkPoint pts[2]) {
    SkASSERT(pts);
    if (fLastPt != fMoveTo) {
        // A special case: if both points are NaN, SkPoint::operation== returns
        // false, but the iterator expects that they are treated as the same.
        // (consider SkPoint is a 2-dimension float point).
        if (SkScalarIsNaN(fLastPt.fX) || SkScalarIsNaN(fLastPt.fY) ||
            SkScalarIsNaN(fMoveTo.fX) || SkScalarIsNaN(fMoveTo.fY)) {
            return kClose_Verb;
        }

        pts[0] = fLastPt;
        pts[1] = fMoveTo;
        fLastPt = fMoveTo;
        fCloseLine = true;
        return kLine_Verb;
    } else {
        pts[0] = fMoveTo;
        return kClose_Verb;
    }
}

const SkPoint& SkPath::Iter::cons_moveTo() {
    if (fSegmentState == kAfterMove_SegmentState) {
        // Set the first return pt to the move pt
        fSegmentState = kAfterPrimitive_SegmentState;
        return fMoveTo;
    }

    SkASSERT(fSegmentState == kAfterPrimitive_SegmentState);
    // Set the first return pt to the last pt of the previous primitive.
    return fPts[-1];
}

void SkPath::Iter::consumeDegenerateSegments(bool exact) {
    // We need to step over anything that will not move the current draw point
    // forward before the next move is seen
    const uint8_t* lastMoveVerb = nullptr;
    const SkPoint* lastMovePt = nullptr;
    const SkScalar* lastMoveWeight = nullptr;
    SkPoint lastPt = fLastPt;
    while (fVerbs != fVerbStop) {
        unsigned verb = *(fVerbs - 1); // fVerbs is one beyond the current verb
        switch (verb) {
            case kMove_Verb:
                // Keep a record of this most recent move
                lastMoveVerb = fVerbs;
                lastMovePt = fPts;
                lastMoveWeight = fConicWeights;
                lastPt = fPts[0];
                fVerbs--;
                fPts++;
                break;

            case kClose_Verb:
                // A close when we are in a segment is always valid except when it
                // follows a move which follows a segment.
                if (fSegmentState == kAfterPrimitive_SegmentState && !lastMoveVerb) {
                    return;
                }
                // A close at any other time must be ignored
                fVerbs--;
                break;

            case kLine_Verb:
                if (!IsLineDegenerate(lastPt, fPts[0], exact)) {
                    if (lastMoveVerb) {
                        fVerbs = lastMoveVerb;
                        fPts = lastMovePt;
                        fConicWeights = lastMoveWeight;
                        return;
                    }
                    return;
                }
                // Ignore this line and continue
                fVerbs--;
                fPts++;
                break;

            case kConic_Verb:
            case kQuad_Verb:
                if (!IsQuadDegenerate(lastPt, fPts[0], fPts[1], exact)) {
                    if (lastMoveVerb) {
                        fVerbs = lastMoveVerb;
                        fPts = lastMovePt;
                        fConicWeights = lastMoveWeight;
                        return;
                    }
                    return;
                }
                // Ignore this line and continue
                fVerbs--;
                fPts += 2;
                fConicWeights += (kConic_Verb == verb);
                break;

            case kCubic_Verb:
                if (!IsCubicDegenerate(lastPt, fPts[0], fPts[1], fPts[2], exact)) {
                    if (lastMoveVerb) {
                        fVerbs = lastMoveVerb;
                        fPts = lastMovePt;
                        fConicWeights = lastMoveWeight;
                        return;
                    }
                    return;
                }
                // Ignore this line and continue
                fVerbs--;
                fPts += 3;
                break;

            default:
                SkDEBUGFAIL("Should never see kDone_Verb");
        }
    }
}

SkPath::Verb SkPath::Iter::doNext(SkPoint ptsParam[4]) {
    SkASSERT(ptsParam);

    if (fVerbs == fVerbStop) {
        // Close the curve if requested and if there is some curve to close
        if (fNeedClose && fSegmentState == kAfterPrimitive_SegmentState) {
            if (kLine_Verb == this->autoClose(ptsParam)) {
                return kLine_Verb;
            }
            fNeedClose = false;
            return kClose_Verb;
        }
        return kDone_Verb;
    }

    // fVerbs is one beyond the current verb, decrement first
    unsigned verb = *(--fVerbs);
    const SkPoint* SK_RESTRICT srcPts = fPts;
    SkPoint* SK_RESTRICT       pts = ptsParam;

    switch (verb) {
        case kMove_Verb:
            if (fNeedClose) {
                fVerbs++; // move back one verb
                verb = this->autoClose(pts);
                if (verb == kClose_Verb) {
                    fNeedClose = false;
                }
                return (Verb)verb;
            }
            if (fVerbs == fVerbStop) {    // might be a trailing moveto
                return kDone_Verb;
            }
            fMoveTo = *srcPts;
            pts[0] = *srcPts;
            srcPts += 1;
            fSegmentState = kAfterMove_SegmentState;
            fLastPt = fMoveTo;
            fNeedClose = fForceClose;
            break;
        case kLine_Verb:
            pts[0] = this->cons_moveTo();
            pts[1] = srcPts[0];
            fLastPt = srcPts[0];
            fCloseLine = false;
            srcPts += 1;
            break;
        case kConic_Verb:
            fConicWeights += 1;
            // fall-through
        case kQuad_Verb:
            pts[0] = this->cons_moveTo();
            memcpy(&pts[1], srcPts, 2 * sizeof(SkPoint));
            fLastPt = srcPts[1];
            srcPts += 2;
            break;
        case kCubic_Verb:
            pts[0] = this->cons_moveTo();
            memcpy(&pts[1], srcPts, 3 * sizeof(SkPoint));
            fLastPt = srcPts[2];
            srcPts += 3;
            break;
        case kClose_Verb:
            verb = this->autoClose(pts);
            if (verb == kLine_Verb) {
                fVerbs++; // move back one verb
            } else {
                fNeedClose = false;
                fSegmentState = kEmptyContour_SegmentState;
            }
            fLastPt = fMoveTo;
            break;
    }
    fPts = srcPts;
    return (Verb)verb;
}

///////////////////////////////////////////////////////////////////////////////

#include "SkString.h"
#include "SkStringUtils.h"
#include "SkStream.h"

static void append_params(SkString* str, const char label[], const SkPoint pts[],
                          int count, SkScalarAsStringType strType, SkScalar conicWeight = -12345) {
    str->append(label);
    str->append("(");

    const SkScalar* values = &pts[0].fX;
    count *= 2;

    for (int i = 0; i < count; ++i) {
        SkAppendScalar(str, values[i], strType);
        if (i < count - 1) {
            str->append(", ");
        }
    }
    if (conicWeight != -12345) {
        str->append(", ");
        SkAppendScalar(str, conicWeight, strType);
    }
    str->append(");");
    if (kHex_SkScalarAsStringType == strType) {
        str->append("  // ");
        for (int i = 0; i < count; ++i) {
            SkAppendScalarDec(str, values[i]);
            if (i < count - 1) {
                str->append(", ");
            }
        }
        if (conicWeight >= 0) {
            str->append(", ");
            SkAppendScalarDec(str, conicWeight);
        }
    }
    str->append("\n");
}

void SkPath::dump(SkWStream* wStream, bool forceClose, bool dumpAsHex) const {
    SkScalarAsStringType asType = dumpAsHex ? kHex_SkScalarAsStringType : kDec_SkScalarAsStringType;
    Iter    iter(*this, forceClose);
    SkPoint pts[4];
    Verb    verb;

    SkString builder;
    char const * const gFillTypeStrs[] = {
        "Winding",
        "EvenOdd",
        "InverseWinding",
        "InverseEvenOdd",
    };
    builder.printf("path.setFillType(SkPath::k%s_FillType);\n",
            gFillTypeStrs[(int) this->getFillType()]);
    while ((verb = iter.next(pts, false)) != kDone_Verb) {
        switch (verb) {
            case kMove_Verb:
                append_params(&builder, "path.moveTo", &pts[0], 1, asType);
                break;
            case kLine_Verb:
                append_params(&builder, "path.lineTo", &pts[1], 1, asType);
                break;
            case kQuad_Verb:
                append_params(&builder, "path.quadTo", &pts[1], 2, asType);
                break;
            case kConic_Verb:
                append_params(&builder, "path.conicTo", &pts[1], 2, asType, iter.conicWeight());
                break;
            case kCubic_Verb:
                append_params(&builder, "path.cubicTo", &pts[1], 3, asType);
                break;
            case kClose_Verb:
                builder.append("path.close();\n");
                break;
            default:
                SkDebugf("  path: UNKNOWN VERB %d, aborting dump...\n", verb);
                verb = kDone_Verb;  // stop the loop
                break;
        }
        if (!wStream && builder.size()) {
            SkDebugf("%s", builder.c_str());
            builder.reset();
        }
    }
    if (wStream) {
        wStream->writeText(builder.c_str());
    }
}

void SkPath::dump() const {
    this->dump(nullptr, false, false);
}

void SkPath::dumpHex() const {
    this->dump(nullptr, false, true);
}


bool SkPath::isValidImpl() const {
    if ((fFillType & ~3) != 0) {
        return false;
    }

#ifdef SK_DEBUG_PATH
    if (!fBoundsIsDirty) {
        SkRect bounds;

        bool isFinite = compute_pt_bounds(&bounds, *fPathRef.get());
        if (SkToBool(fIsFinite) != isFinite) {
            return false;
        }

        if (fPathRef->countPoints() <= 1) {
            // if we're empty, fBounds may be empty but translated, so we can't
            // necessarily compare to bounds directly
            // try path.addOval(2, 2, 2, 2) which is empty, but the bounds will
            // be [2, 2, 2, 2]
            if (!bounds.isEmpty() || !fBounds.isEmpty()) {
                return false;
            }
        } else {
            if (bounds.isEmpty()) {
                if (!fBounds.isEmpty()) {
                    return false;
                }
            } else {
                if (!fBounds.isEmpty()) {
                    if (!fBounds.contains(bounds)) {
                        return false;
                    }
                }
            }
        }
    }
#endif // SK_DEBUG_PATH
    return true;
}

///////////////////////////////////////////////////////////////////////////////

static int sign(SkScalar x) { return x < 0; }
#define kValueNeverReturnedBySign   2

enum DirChange {
    kLeft_DirChange,
    kRight_DirChange,
    kStraight_DirChange,
    kBackwards_DirChange,

    kInvalid_DirChange
};


static bool almost_equal(SkScalar compA, SkScalar compB) {
    // The error epsilon was empirically derived; worse case round rects
    // with a mid point outset by 2x float epsilon in tests had an error
    // of 12.
    const int epsilon = 16;
    if (!SkScalarIsFinite(compA) || !SkScalarIsFinite(compB)) {
        return false;
    }
    // no need to check for small numbers because SkPath::Iter has removed degenerate values
    int aBits = SkFloatAs2sCompliment(compA);
    int bBits = SkFloatAs2sCompliment(compB);
    return aBits < bBits + epsilon && bBits < aBits + epsilon;
}

static bool approximately_zero_when_compared_to(double x, double y) {
    return x == 0 || fabs(x) < fabs(y * FLT_EPSILON);
}


// only valid for a single contour
struct Convexicator {
    Convexicator()
    : fPtCount(0)
    , fConvexity(SkPath::kConvex_Convexity)
    , fFirstDirection(SkPathPriv::kUnknown_FirstDirection)
    , fIsFinite(true)
    , fIsCurve(false)
    , fBackwards(false) {
        fExpectedDir = kInvalid_DirChange;
        // warnings
        fPriorPt.set(0,0);
        fLastPt.set(0, 0);
        fCurrPt.set(0, 0);
        fLastVec.set(0, 0);
        fFirstVec.set(0, 0);

        fDx = fDy = 0;
        fSx = fSy = kValueNeverReturnedBySign;
    }

    SkPath::Convexity getConvexity() const { return fConvexity; }

    /** The direction returned is only valid if the path is determined convex */
    SkPathPriv::FirstDirection getFirstDirection() const { return fFirstDirection; }

    void addPt(const SkPoint& pt) {
        if (SkPath::kConcave_Convexity == fConvexity || !fIsFinite) {
            return;
        }

        if (0 == fPtCount) {
            fCurrPt = pt;
            ++fPtCount;
        } else {
            SkVector vec = pt - fCurrPt;
            SkScalar lengthSqd = SkPointPriv::LengthSqd(vec);
            if (!SkScalarIsFinite(lengthSqd)) {
                fIsFinite = false;
            } else if (lengthSqd) {
                fPriorPt = fLastPt;
                fLastPt = fCurrPt;
                fCurrPt = pt;
                if (++fPtCount == 2) {
                    fFirstVec = fLastVec = vec;
                } else {
                    SkASSERT(fPtCount > 2);
                    this->addVec(vec);
                }

                int sx = sign(vec.fX);
                int sy = sign(vec.fY);
                fDx += (sx != fSx);
                fDy += (sy != fSy);
                fSx = sx;
                fSy = sy;

                if (fDx > 3 || fDy > 3) {
                    fConvexity = SkPath::kConcave_Convexity;
                }
            }
        }
    }

    void close() {
        if (fPtCount > 2) {
            this->addVec(fFirstVec);
        }
    }

    DirChange directionChange(const SkVector& curVec) {
        SkScalar cross = SkPoint::CrossProduct(fLastVec, curVec);

        SkScalar smallest = SkTMin(fCurrPt.fX, SkTMin(fCurrPt.fY, SkTMin(fLastPt.fX, fLastPt.fY)));
        SkScalar largest = SkTMax(fCurrPt.fX, SkTMax(fCurrPt.fY, SkTMax(fLastPt.fX, fLastPt.fY)));
        largest = SkTMax(largest, -smallest);

        if (!almost_equal(largest, largest + cross)) {
            int sign = SkScalarSignAsInt(cross);
            if (sign) {
                return (1 == sign) ? kRight_DirChange : kLeft_DirChange;
            }
        }

        if (cross) {
            double dLastVecX = SkScalarToDouble(fLastPt.fX) - SkScalarToDouble(fPriorPt.fX);
            double dLastVecY = SkScalarToDouble(fLastPt.fY) - SkScalarToDouble(fPriorPt.fY);
            double dCurrVecX = SkScalarToDouble(fCurrPt.fX) - SkScalarToDouble(fLastPt.fX);
            double dCurrVecY = SkScalarToDouble(fCurrPt.fY) - SkScalarToDouble(fLastPt.fY);
            double dCross = dLastVecX * dCurrVecY - dLastVecY * dCurrVecX;
            if (!approximately_zero_when_compared_to(dCross, SkScalarToDouble(largest))) {
                int sign = SkScalarSignAsInt(SkDoubleToScalar(dCross));
                if (sign) {
                    return (1 == sign) ? kRight_DirChange : kLeft_DirChange;
                }
            }
        }

        if (!SkScalarNearlyZero(SkPointPriv::LengthSqd(fLastVec),
                                SK_ScalarNearlyZero*SK_ScalarNearlyZero) &&
            !SkScalarNearlyZero(SkPointPriv::LengthSqd(curVec),
                                SK_ScalarNearlyZero*SK_ScalarNearlyZero) &&
            fLastVec.dot(curVec) < 0.0f) {
            return kBackwards_DirChange;
        }

        return kStraight_DirChange;
    }

    bool hasBackwards() const {
        return fBackwards;
    }

    bool isFinite() const {
        return fIsFinite;
    }

    void setCurve(bool isCurve) {
        fIsCurve = isCurve;
    }

private:
    void addVec(const SkVector& vec) {
        SkASSERT(vec.fX || vec.fY);
        DirChange dir = this->directionChange(vec);
        switch (dir) {
            case kLeft_DirChange:       // fall through
            case kRight_DirChange:
                if (kInvalid_DirChange == fExpectedDir) {
                    fExpectedDir = dir;
                    fFirstDirection = (kRight_DirChange == dir) ? SkPathPriv::kCW_FirstDirection
                                                                : SkPathPriv::kCCW_FirstDirection;
                } else if (dir != fExpectedDir) {
                    fConvexity = SkPath::kConcave_Convexity;
                    fFirstDirection = SkPathPriv::kUnknown_FirstDirection;
                }
                fLastVec = vec;
                break;
            case kStraight_DirChange:
                break;
            case kBackwards_DirChange:
                if (fIsCurve) {
                    // If any of the subsequent dir is non-backward, it'll be concave.
                    // Otherwise, it's still convex.
                    fExpectedDir = dir;
                }
                fLastVec = vec;
                fBackwards = true;
                break;
            case kInvalid_DirChange:
                SK_ABORT("Use of invalid direction change flag");
                break;
        }
    }

    SkPoint             fPriorPt;
    SkPoint             fLastPt;
    SkPoint             fCurrPt;
    // fLastVec does not necessarily start at fLastPt. We only advance it when the cross product
    // value with the current vec is deemed to be of a significant value.
    SkVector            fLastVec, fFirstVec;
    int                 fPtCount;   // non-degenerate points
    DirChange           fExpectedDir;
    SkPath::Convexity   fConvexity;
    SkPathPriv::FirstDirection   fFirstDirection;
    int                 fDx, fDy, fSx, fSy;
    bool                fIsFinite;
    bool                fIsCurve;
    bool                fBackwards;
};

SkPath::Convexity SkPath::internalGetConvexity() const {
    // Sometimes we think we need to calculate convexity but another thread already did.
    for (auto c = (Convexity)fConvexity; c != kUnknown_Convexity; ) {
        return c;
    }

    SkPoint         pts[4];
    SkPath::Verb    verb;
    SkPath::Iter    iter(*this, true);

    int             contourCount = 0;
    int             count;
    Convexicator    state;

    if (!isFinite()) {
        return kUnknown_Convexity;
    }
    while ((verb = iter.next(pts, false, false)) != SkPath::kDone_Verb) {
        switch (verb) {
            case kMove_Verb:
                if (++contourCount > 1) {
                    fConvexity = kConcave_Convexity;
                    return kConcave_Convexity;
                }
                pts[1] = pts[0];
                // fall through
            case kLine_Verb:
                count = 1;
                state.setCurve(false);
                break;
            case kQuad_Verb:
                // fall through
            case kConic_Verb:
                // fall through
            case kCubic_Verb:
                count = 2 + (kCubic_Verb == verb);
                // As an additional enhancement, this could set curve true only
                // if the curve is nonlinear
                state.setCurve(true);
                break;
            case kClose_Verb:
                state.setCurve(false);
                state.close();
                count = 0;
                break;
            default:
                SkDEBUGFAIL("bad verb");
                fConvexity = kConcave_Convexity;
                return kConcave_Convexity;
        }

        for (int i = 1; i <= count; i++) {
            state.addPt(pts[i]);
        }
        // early exit
        if (!state.isFinite()) {
            return kUnknown_Convexity;
        }
        if (kConcave_Convexity == state.getConvexity()) {
            fConvexity = kConcave_Convexity;
            return kConcave_Convexity;
        }
    }
    fConvexity = state.getConvexity();
    if (kConvex_Convexity == fConvexity && SkPathPriv::kUnknown_FirstDirection == fFirstDirection) {
        if (SkPathPriv::kUnknown_FirstDirection == state.getFirstDirection() &&
                !this->getBounds().isEmpty() && !state.hasBackwards()) {
            fConvexity = Convexity::kConcave_Convexity;
        } else {
            fFirstDirection = state.getFirstDirection();
        }
    }
    return static_cast<Convexity>(fConvexity);
}

///////////////////////////////////////////////////////////////////////////////

class ContourIter {
public:
    ContourIter(const SkPathRef& pathRef);

    bool done() const { return fDone; }
    // if !done() then these may be called
    int count() const { return fCurrPtCount; }
    const SkPoint* pts() const { return fCurrPt; }
    void next();

private:
    int fCurrPtCount;
    const SkPoint* fCurrPt;
    const uint8_t* fCurrVerb;
    const uint8_t* fStopVerbs;
    const SkScalar* fCurrConicWeight;
    bool fDone;
    SkDEBUGCODE(int fContourCounter;)
};

ContourIter::ContourIter(const SkPathRef& pathRef) {
    fStopVerbs = pathRef.verbsMemBegin();
    fDone = false;
    fCurrPt = pathRef.points();
    fCurrVerb = pathRef.verbs();
    fCurrConicWeight = pathRef.conicWeights();
    fCurrPtCount = 0;
    SkDEBUGCODE(fContourCounter = 0;)
    this->next();
}

void ContourIter::next() {
    if (fCurrVerb <= fStopVerbs) {
        fDone = true;
    }
    if (fDone) {
        return;
    }

    // skip pts of prev contour
    fCurrPt += fCurrPtCount;

    SkASSERT(SkPath::kMove_Verb == fCurrVerb[~0]);
    int ptCount = 1;    // moveTo
    const uint8_t* verbs = fCurrVerb;

    for (--verbs; verbs > fStopVerbs; --verbs) {
        switch (verbs[~0]) {
            case SkPath::kMove_Verb:
                goto CONTOUR_END;
            case SkPath::kLine_Verb:
                ptCount += 1;
                break;
            case SkPath::kConic_Verb:
                fCurrConicWeight += 1;
                // fall-through
            case SkPath::kQuad_Verb:
                ptCount += 2;
                break;
            case SkPath::kCubic_Verb:
                ptCount += 3;
                break;
            case SkPath::kClose_Verb:
                break;
            default:
                SkDEBUGFAIL("unexpected verb");
                break;
        }
    }
CONTOUR_END:
    fCurrPtCount = ptCount;
    fCurrVerb = verbs;
    SkDEBUGCODE(++fContourCounter;)
}

// returns cross product of (p1 - p0) and (p2 - p0)
static SkScalar cross_prod(const SkPoint& p0, const SkPoint& p1, const SkPoint& p2) {
    SkScalar cross = SkPoint::CrossProduct(p1 - p0, p2 - p0);
    // We may get 0 when the above subtracts underflow. We expect this to be
    // very rare and lazily promote to double.
    if (0 == cross) {
        double p0x = SkScalarToDouble(p0.fX);
        double p0y = SkScalarToDouble(p0.fY);

        double p1x = SkScalarToDouble(p1.fX);
        double p1y = SkScalarToDouble(p1.fY);

        double p2x = SkScalarToDouble(p2.fX);
        double p2y = SkScalarToDouble(p2.fY);

        cross = SkDoubleToScalar((p1x - p0x) * (p2y - p0y) -
                                 (p1y - p0y) * (p2x - p0x));

    }
    return cross;
}

// Returns the first pt with the maximum Y coordinate
static int find_max_y(const SkPoint pts[], int count) {
    SkASSERT(count > 0);
    SkScalar max = pts[0].fY;
    int firstIndex = 0;
    for (int i = 1; i < count; ++i) {
        SkScalar y = pts[i].fY;
        if (y > max) {
            max = y;
            firstIndex = i;
        }
    }
    return firstIndex;
}

static int find_diff_pt(const SkPoint pts[], int index, int n, int inc) {
    int i = index;
    for (;;) {
        i = (i + inc) % n;
        if (i == index) {   // we wrapped around, so abort
            break;
        }
        if (pts[index] != pts[i]) { // found a different point, success!
            break;
        }
    }
    return i;
}

/**
 *  Starting at index, and moving forward (incrementing), find the xmin and
 *  xmax of the contiguous points that have the same Y.
 */
static int find_min_max_x_at_y(const SkPoint pts[], int index, int n,
                               int* maxIndexPtr) {
    const SkScalar y = pts[index].fY;
    SkScalar min = pts[index].fX;
    SkScalar max = min;
    int minIndex = index;
    int maxIndex = index;
    for (int i = index + 1; i < n; ++i) {
        if (pts[i].fY != y) {
            break;
        }
        SkScalar x = pts[i].fX;
        if (x < min) {
            min = x;
            minIndex = i;
        } else if (x > max) {
            max = x;
            maxIndex = i;
        }
    }
    *maxIndexPtr = maxIndex;
    return minIndex;
}

static void crossToDir(SkScalar cross, SkPathPriv::FirstDirection* dir) {
    *dir = cross > 0 ? SkPathPriv::kCW_FirstDirection : SkPathPriv::kCCW_FirstDirection;
}

/*
 *  We loop through all contours, and keep the computed cross-product of the
 *  contour that contained the global y-max. If we just look at the first
 *  contour, we may find one that is wound the opposite way (correctly) since
 *  it is the interior of a hole (e.g. 'o'). Thus we must find the contour
 *  that is outer most (or at least has the global y-max) before we can consider
 *  its cross product.
 */
bool SkPathPriv::CheapComputeFirstDirection(const SkPath& path, FirstDirection* dir) {
    if (kUnknown_FirstDirection != path.fFirstDirection.load()) {
        *dir = static_cast<FirstDirection>(path.fFirstDirection.load());
        return true;
    }

    // don't want to pay the cost for computing this if it
    // is unknown, so we don't call isConvex()
    if (SkPath::kConvex_Convexity == path.getConvexityOrUnknown()) {
        SkASSERT(kUnknown_FirstDirection == path.fFirstDirection);
        *dir = static_cast<FirstDirection>(path.fFirstDirection.load());
        return false;
    }

    ContourIter iter(*path.fPathRef.get());

    // initialize with our logical y-min
    SkScalar ymax = path.getBounds().fTop;
    SkScalar ymaxCross = 0;

    for (; !iter.done(); iter.next()) {
        int n = iter.count();
        if (n < 3) {
            continue;
        }

        const SkPoint* pts = iter.pts();
        SkScalar cross = 0;
        int index = find_max_y(pts, n);
        if (pts[index].fY < ymax) {
            continue;
        }

        // If there is more than 1 distinct point at the y-max, we take the
        // x-min and x-max of them and just subtract to compute the dir.
        if (pts[(index + 1) % n].fY == pts[index].fY) {
            int maxIndex;
            int minIndex = find_min_max_x_at_y(pts, index, n, &maxIndex);
            if (minIndex == maxIndex) {
                goto TRY_CROSSPROD;
            }
            SkASSERT(pts[minIndex].fY == pts[index].fY);
            SkASSERT(pts[maxIndex].fY == pts[index].fY);
            SkASSERT(pts[minIndex].fX <= pts[maxIndex].fX);
            // we just subtract the indices, and let that auto-convert to
            // SkScalar, since we just want - or + to signal the direction.
            cross = minIndex - maxIndex;
        } else {
            TRY_CROSSPROD:
            // Find a next and prev index to use for the cross-product test,
            // but we try to find pts that form non-zero vectors from pts[index]
            //
            // Its possible that we can't find two non-degenerate vectors, so
            // we have to guard our search (e.g. all the pts could be in the
            // same place).

            // we pass n - 1 instead of -1 so we don't foul up % operator by
            // passing it a negative LH argument.
            int prev = find_diff_pt(pts, index, n, n - 1);
            if (prev == index) {
                // completely degenerate, skip to next contour
                continue;
            }
            int next = find_diff_pt(pts, index, n, 1);
            SkASSERT(next != index);
            cross = cross_prod(pts[prev], pts[index], pts[next]);
            // if we get a zero and the points are horizontal, then we look at the spread in
            // x-direction. We really should continue to walk away from the degeneracy until
            // there is a divergence.
            if (0 == cross && pts[prev].fY == pts[index].fY && pts[next].fY == pts[index].fY) {
                // construct the subtract so we get the correct Direction below
                cross = pts[index].fX - pts[next].fX;
            }
        }

        if (cross) {
            // record our best guess so far
            ymax = pts[index].fY;
            ymaxCross = cross;
        }
    }
    if (ymaxCross) {
        crossToDir(ymaxCross, dir);
        path.fFirstDirection = *dir;
        return true;
    } else {
        return false;
    }
}

///////////////////////////////////////////////////////////////////////////////

static bool between(SkScalar a, SkScalar b, SkScalar c) {
    SkASSERT(((a <= b && b <= c) || (a >= b && b >= c)) == ((a - b) * (c - b) <= 0)
            || (SkScalarNearlyZero(a) && SkScalarNearlyZero(b) && SkScalarNearlyZero(c)));
    return (a - b) * (c - b) <= 0;
}

static SkScalar eval_cubic_pts(SkScalar c0, SkScalar c1, SkScalar c2, SkScalar c3,
                               SkScalar t) {
    SkScalar A = c3 + 3*(c1 - c2) - c0;
    SkScalar B = 3*(c2 - c1 - c1 + c0);
    SkScalar C = 3*(c1 - c0);
    SkScalar D = c0;
    return poly_eval(A, B, C, D, t);
}

template <size_t N> static void find_minmax(const SkPoint pts[],
                                            SkScalar* minPtr, SkScalar* maxPtr) {
    SkScalar min, max;
    min = max = pts[0].fX;
    for (size_t i = 1; i < N; ++i) {
        min = SkMinScalar(min, pts[i].fX);
        max = SkMaxScalar(max, pts[i].fX);
    }
    *minPtr = min;
    *maxPtr = max;
}

static bool checkOnCurve(SkScalar x, SkScalar y, const SkPoint& start, const SkPoint& end) {
    if (start.fY == end.fY) {
        return between(start.fX, x, end.fX) && x != end.fX;
    } else {
        return x == start.fX && y == start.fY;
    }
}

static int winding_mono_cubic(const SkPoint pts[], SkScalar x, SkScalar y, int* onCurveCount) {
    SkScalar y0 = pts[0].fY;
    SkScalar y3 = pts[3].fY;

    int dir = 1;
    if (y0 > y3) {
        using std::swap;
        swap(y0, y3);
        dir = -1;
    }
    if (y < y0 || y > y3) {
        return 0;
    }
    if (checkOnCurve(x, y, pts[0], pts[3])) {
        *onCurveCount += 1;
        return 0;
    }
    if (y == y3) {
        return 0;
    }

    // quickreject or quickaccept
    SkScalar min, max;
    find_minmax<4>(pts, &min, &max);
    if (x < min) {
        return 0;
    }
    if (x > max) {
        return dir;
    }

    // compute the actual x(t) value
    SkScalar t;
    if (!SkCubicClipper::ChopMonoAtY(pts, y, &t)) {
        return 0;
    }
    SkScalar xt = eval_cubic_pts(pts[0].fX, pts[1].fX, pts[2].fX, pts[3].fX, t);
    if (SkScalarNearlyEqual(xt, x)) {
        if (x != pts[3].fX || y != pts[3].fY) {  // don't test end points; they're start points
            *onCurveCount += 1;
            return 0;
        }
    }
    return xt < x ? dir : 0;
}

static int winding_cubic(const SkPoint pts[], SkScalar x, SkScalar y, int* onCurveCount) {
    SkPoint dst[10];
    int n = SkChopCubicAtYExtrema(pts, dst);
    int w = 0;
    for (int i = 0; i <= n; ++i) {
        w += winding_mono_cubic(&dst[i * 3], x, y, onCurveCount);
    }
    return w;
}

static double conic_eval_numerator(const SkScalar src[], SkScalar w, SkScalar t) {
    SkASSERT(src);
    SkASSERT(t >= 0 && t <= 1);
    SkScalar src2w = src[2] * w;
    SkScalar C = src[0];
    SkScalar A = src[4] - 2 * src2w + C;
    SkScalar B = 2 * (src2w - C);
    return poly_eval(A, B, C, t);
}


static double conic_eval_denominator(SkScalar w, SkScalar t) {
    SkScalar B = 2 * (w - 1);
    SkScalar C = 1;
    SkScalar A = -B;
    return poly_eval(A, B, C, t);
}

static int winding_mono_conic(const SkConic& conic, SkScalar x, SkScalar y, int* onCurveCount) {
    const SkPoint* pts = conic.fPts;
    SkScalar y0 = pts[0].fY;
    SkScalar y2 = pts[2].fY;

    int dir = 1;
    if (y0 > y2) {
        using std::swap;
        swap(y0, y2);
        dir = -1;
    }
    if (y < y0 || y > y2) {
        return 0;
    }
    if (checkOnCurve(x, y, pts[0], pts[2])) {
        *onCurveCount += 1;
        return 0;
    }
    if (y == y2) {
        return 0;
    }

    SkScalar roots[2];
    SkScalar A = pts[2].fY;
    SkScalar B = pts[1].fY * conic.fW - y * conic.fW + y;
    SkScalar C = pts[0].fY;
    A += C - 2 * B;  // A = a + c - 2*(b*w - yCept*w + yCept)
    B -= C;  // B = b*w - w * yCept + yCept - a
    C -= y;
    int n = SkFindUnitQuadRoots(A, 2 * B, C, roots);
    SkASSERT(n <= 1);
    SkScalar xt;
    if (0 == n) {
        // zero roots are returned only when y0 == y
        // Need [0] if dir == 1
        // and  [2] if dir == -1
        xt = pts[1 - dir].fX;
    } else {
        SkScalar t = roots[0];
        xt = conic_eval_numerator(&pts[0].fX, conic.fW, t) / conic_eval_denominator(conic.fW, t);
    }
    if (SkScalarNearlyEqual(xt, x)) {
        if (x != pts[2].fX || y != pts[2].fY) {  // don't test end points; they're start points
            *onCurveCount += 1;
            return 0;
        }
    }
    return xt < x ? dir : 0;
}

static bool is_mono_quad(SkScalar y0, SkScalar y1, SkScalar y2) {
    //    return SkScalarSignAsInt(y0 - y1) + SkScalarSignAsInt(y1 - y2) != 0;
    if (y0 == y1) {
        return true;
    }
    if (y0 < y1) {
        return y1 <= y2;
    } else {
        return y1 >= y2;
    }
}

static int winding_conic(const SkPoint pts[], SkScalar x, SkScalar y, SkScalar weight,
                         int* onCurveCount) {
    SkConic conic(pts, weight);
    SkConic chopped[2];
    // If the data points are very large, the conic may not be monotonic but may also
    // fail to chop. Then, the chopper does not split the original conic in two.
    bool isMono = is_mono_quad(pts[0].fY, pts[1].fY, pts[2].fY) || !conic.chopAtYExtrema(chopped);
    int w = winding_mono_conic(isMono ? conic : chopped[0], x, y, onCurveCount);
    if (!isMono) {
        w += winding_mono_conic(chopped[1], x, y, onCurveCount);
    }
    return w;
}

static int winding_mono_quad(const SkPoint pts[], SkScalar x, SkScalar y, int* onCurveCount) {
    SkScalar y0 = pts[0].fY;
    SkScalar y2 = pts[2].fY;

    int dir = 1;
    if (y0 > y2) {
        using std::swap;
        swap(y0, y2);
        dir = -1;
    }
    if (y < y0 || y > y2) {
        return 0;
    }
    if (checkOnCurve(x, y, pts[0], pts[2])) {
        *onCurveCount += 1;
        return 0;
    }
    if (y == y2) {
        return 0;
    }
    // bounds check on X (not required. is it faster?)
#if 0
    if (pts[0].fX > x && pts[1].fX > x && pts[2].fX > x) {
        return 0;
    }
#endif

    SkScalar roots[2];
    int n = SkFindUnitQuadRoots(pts[0].fY - 2 * pts[1].fY + pts[2].fY,
                                2 * (pts[1].fY - pts[0].fY),
                                pts[0].fY - y,
                                roots);
    SkASSERT(n <= 1);
    SkScalar xt;
    if (0 == n) {
        // zero roots are returned only when y0 == y
        // Need [0] if dir == 1
        // and  [2] if dir == -1
        xt = pts[1 - dir].fX;
    } else {
        SkScalar t = roots[0];
        SkScalar C = pts[0].fX;
        SkScalar A = pts[2].fX - 2 * pts[1].fX + C;
        SkScalar B = 2 * (pts[1].fX - C);
        xt = poly_eval(A, B, C, t);
    }
    if (SkScalarNearlyEqual(xt, x)) {
        if (x != pts[2].fX || y != pts[2].fY) {  // don't test end points; they're start points
            *onCurveCount += 1;
            return 0;
        }
    }
    return xt < x ? dir : 0;
}

static int winding_quad(const SkPoint pts[], SkScalar x, SkScalar y, int* onCurveCount) {
    SkPoint dst[5];
    int     n = 0;

    if (!is_mono_quad(pts[0].fY, pts[1].fY, pts[2].fY)) {
        n = SkChopQuadAtYExtrema(pts, dst);
        pts = dst;
    }
    int w = winding_mono_quad(pts, x, y, onCurveCount);
    if (n > 0) {
        w += winding_mono_quad(&pts[2], x, y, onCurveCount);
    }
    return w;
}

static int winding_line(const SkPoint pts[], SkScalar x, SkScalar y, int* onCurveCount) {
    SkScalar x0 = pts[0].fX;
    SkScalar y0 = pts[0].fY;
    SkScalar x1 = pts[1].fX;
    SkScalar y1 = pts[1].fY;

    SkScalar dy = y1 - y0;

    int dir = 1;
    if (y0 > y1) {
        using std::swap;
        swap(y0, y1);
        dir = -1;
    }
    if (y < y0 || y > y1) {
        return 0;
    }
    if (checkOnCurve(x, y, pts[0], pts[1])) {
        *onCurveCount += 1;
        return 0;
    }
    if (y == y1) {
        return 0;
    }
    SkScalar cross = (x1 - x0) * (y - pts[0].fY) - dy * (x - x0);

    if (!cross) {
        // zero cross means the point is on the line, and since the case where
        // y of the query point is at the end point is handled above, we can be
        // sure that we're on the line (excluding the end point) here
        if (x != x1 || y != pts[1].fY) {
            *onCurveCount += 1;
        }
        dir = 0;
    } else if (SkScalarSignAsInt(cross) == dir) {
        dir = 0;
    }
    return dir;
}

static void tangent_cubic(const SkPoint pts[], SkScalar x, SkScalar y,
        SkTDArray<SkVector>* tangents) {
    if (!between(pts[0].fY, y, pts[1].fY) && !between(pts[1].fY, y, pts[2].fY)
             && !between(pts[2].fY, y, pts[3].fY)) {
        return;
    }
    if (!between(pts[0].fX, x, pts[1].fX) && !between(pts[1].fX, x, pts[2].fX)
             && !between(pts[2].fX, x, pts[3].fX)) {
        return;
    }
    SkPoint dst[10];
    int n = SkChopCubicAtYExtrema(pts, dst);
    for (int i = 0; i <= n; ++i) {
        SkPoint* c = &dst[i * 3];
        SkScalar t;
        if (!SkCubicClipper::ChopMonoAtY(c, y, &t)) {
            continue;
        }
        SkScalar xt = eval_cubic_pts(c[0].fX, c[1].fX, c[2].fX, c[3].fX, t);
        if (!SkScalarNearlyEqual(x, xt)) {
            continue;
        }
        SkVector tangent;
        SkEvalCubicAt(c, t, nullptr, &tangent, nullptr);
        tangents->push(tangent);
    }
}

static void tangent_conic(const SkPoint pts[], SkScalar x, SkScalar y, SkScalar w,
            SkTDArray<SkVector>* tangents) {
    if (!between(pts[0].fY, y, pts[1].fY) && !between(pts[1].fY, y, pts[2].fY)) {
        return;
    }
    if (!between(pts[0].fX, x, pts[1].fX) && !between(pts[1].fX, x, pts[2].fX)) {
        return;
    }
    SkScalar roots[2];
    SkScalar A = pts[2].fY;
    SkScalar B = pts[1].fY * w - y * w + y;
    SkScalar C = pts[0].fY;
    A += C - 2 * B;  // A = a + c - 2*(b*w - yCept*w + yCept)
    B -= C;  // B = b*w - w * yCept + yCept - a
    C -= y;
    int n = SkFindUnitQuadRoots(A, 2 * B, C, roots);
    for (int index = 0; index < n; ++index) {
        SkScalar t = roots[index];
        SkScalar xt = conic_eval_numerator(&pts[0].fX, w, t) / conic_eval_denominator(w, t);
        if (!SkScalarNearlyEqual(x, xt)) {
            continue;
        }
        SkConic conic(pts, w);
        tangents->push(conic.evalTangentAt(t));
    }
}

static void tangent_quad(const SkPoint pts[], SkScalar x, SkScalar y,
        SkTDArray<SkVector>* tangents) {
    if (!between(pts[0].fY, y, pts[1].fY) && !between(pts[1].fY, y, pts[2].fY)) {
        return;
    }
    if (!between(pts[0].fX, x, pts[1].fX) && !between(pts[1].fX, x, pts[2].fX)) {
        return;
    }
    SkScalar roots[2];
    int n = SkFindUnitQuadRoots(pts[0].fY - 2 * pts[1].fY + pts[2].fY,
                                2 * (pts[1].fY - pts[0].fY),
                                pts[0].fY - y,
                                roots);
    for (int index = 0; index < n; ++index) {
        SkScalar t = roots[index];
        SkScalar C = pts[0].fX;
        SkScalar A = pts[2].fX - 2 * pts[1].fX + C;
        SkScalar B = 2 * (pts[1].fX - C);
        SkScalar xt = poly_eval(A, B, C, t);
        if (!SkScalarNearlyEqual(x, xt)) {
            continue;
        }
        tangents->push(SkEvalQuadTangentAt(pts, t));
    }
}

static void tangent_line(const SkPoint pts[], SkScalar x, SkScalar y,
        SkTDArray<SkVector>* tangents) {
    SkScalar y0 = pts[0].fY;
    SkScalar y1 = pts[1].fY;
    if (!between(y0, y, y1)) {
        return;
    }
    SkScalar x0 = pts[0].fX;
    SkScalar x1 = pts[1].fX;
    if (!between(x0, x, x1)) {
        return;
    }
    SkScalar dx = x1 - x0;
    SkScalar dy = y1 - y0;
    if (!SkScalarNearlyEqual((x - x0) * dy, dx * (y - y0))) {
        return;
    }
    SkVector v;
    v.set(dx, dy);
    tangents->push(v);
}

static bool contains_inclusive(const SkRect& r, SkScalar x, SkScalar y) {
    return r.fLeft <= x && x <= r.fRight && r.fTop <= y && y <= r.fBottom;
}

bool SkPath::contains(SkScalar x, SkScalar y) const {
    bool isInverse = this->isInverseFillType();
    if (this->isEmpty()) {
        return isInverse;
    }

    if (!contains_inclusive(this->getBounds(), x, y)) {
        return isInverse;
    }

    SkPath::Iter iter(*this, true);
    bool done = false;
    int w = 0;
    int onCurveCount = 0;
    do {
        SkPoint pts[4];
        switch (iter.next(pts, false)) {
            case SkPath::kMove_Verb:
            case SkPath::kClose_Verb:
                break;
            case SkPath::kLine_Verb:
                w += winding_line(pts, x, y, &onCurveCount);
                break;
            case SkPath::kQuad_Verb:
                w += winding_quad(pts, x, y, &onCurveCount);
                break;
            case SkPath::kConic_Verb:
                w += winding_conic(pts, x, y, iter.conicWeight(), &onCurveCount);
                break;
            case SkPath::kCubic_Verb:
                w += winding_cubic(pts, x, y, &onCurveCount);
                break;
            case SkPath::kDone_Verb:
                done = true;
                break;
       }
    } while (!done);
    bool evenOddFill = SkPath::kEvenOdd_FillType == this->getFillType()
            || SkPath::kInverseEvenOdd_FillType == this->getFillType();
    if (evenOddFill) {
        w &= 1;
    }
    if (w) {
        return !isInverse;
    }
    if (onCurveCount <= 1) {
        return SkToBool(onCurveCount) ^ isInverse;
    }
    if ((onCurveCount & 1) || evenOddFill) {
        return SkToBool(onCurveCount & 1) ^ isInverse;
    }
    // If the point touches an even number of curves, and the fill is winding, check for
    // coincidence. Count coincidence as places where the on curve points have identical tangents.
    iter.setPath(*this, true);
    done = false;
    SkTDArray<SkVector> tangents;
    do {
        SkPoint pts[4];
        int oldCount = tangents.count();
        switch (iter.next(pts, false)) {
            case SkPath::kMove_Verb:
            case SkPath::kClose_Verb:
                break;
            case SkPath::kLine_Verb:
                tangent_line(pts, x, y, &tangents);
                break;
            case SkPath::kQuad_Verb:
                tangent_quad(pts, x, y, &tangents);
                break;
            case SkPath::kConic_Verb:
                tangent_conic(pts, x, y, iter.conicWeight(), &tangents);
                break;
            case SkPath::kCubic_Verb:
                tangent_cubic(pts, x, y, &tangents);
                break;
            case SkPath::kDone_Verb:
                done = true;
                break;
       }
       if (tangents.count() > oldCount) {
            int last = tangents.count() - 1;
            const SkVector& tangent = tangents[last];
            if (SkScalarNearlyZero(SkPointPriv::LengthSqd(tangent))) {
                tangents.remove(last);
            } else {
                for (int index = 0; index < last; ++index) {
                    const SkVector& test = tangents[index];
                    if (SkScalarNearlyZero(test.cross(tangent))
                            && SkScalarSignAsInt(tangent.fX * test.fX) <= 0
                            && SkScalarSignAsInt(tangent.fY * test.fY) <= 0) {
                        tangents.remove(last);
                        tangents.removeShuffle(index);
                        break;
                    }
                }
            }
        }
    } while (!done);
    return SkToBool(tangents.count()) ^ isInverse;
}

int SkPath::ConvertConicToQuads(const SkPoint& p0, const SkPoint& p1, const SkPoint& p2,
                                SkScalar w, SkPoint pts[], int pow2) {
    const SkConic conic(p0, p1, p2, w);
    return conic.chopIntoQuadsPOW2(pts, pow2);
}

bool SkPathPriv::IsSimpleClosedRect(const SkPath& path, SkRect* rect, SkPath::Direction* direction,
                                    unsigned* start) {
    if (path.getSegmentMasks() != SkPath::kLine_SegmentMask) {
        return false;
    }
    SkPath::RawIter iter(path);
    SkPoint verbPts[4];
    SkPath::Verb v;
    SkPoint rectPts[5];
    int rectPtCnt = 0;
    while ((v = iter.next(verbPts)) != SkPath::kDone_Verb) {
        switch (v) {
            case SkPath::kMove_Verb:
                if (0 != rectPtCnt) {
                    return false;
                }
                rectPts[0] = verbPts[0];
                ++rectPtCnt;
                break;
            case SkPath::kLine_Verb:
                if (5 == rectPtCnt) {
                    return false;
                }
                rectPts[rectPtCnt] = verbPts[1];
                ++rectPtCnt;
                break;
            case SkPath::kClose_Verb:
                if (4 == rectPtCnt) {
                    rectPts[4] = rectPts[0];
                    rectPtCnt = 5;
                }
                break;
            default:
                return false;
        }
    }
    if (rectPtCnt < 5) {
        return false;
    }
    if (rectPts[0] != rectPts[4]) {
        return false;
    }
    // Check for two cases of rectangles: pts 0 and 3 form a vertical edge or a horizontal edge (
    // and pts 1 and 2 the opposite vertical or horizontal edge).
    bool vec03IsVertical;
    if (rectPts[0].fX == rectPts[3].fX && rectPts[1].fX == rectPts[2].fX &&
        rectPts[0].fY == rectPts[1].fY && rectPts[3].fY == rectPts[2].fY) {
        // Make sure it has non-zero width and height
        if (rectPts[0].fX == rectPts[1].fX || rectPts[0].fY == rectPts[3].fY) {
            return false;
        }
        vec03IsVertical = true;
    } else if (rectPts[0].fY == rectPts[3].fY && rectPts[1].fY == rectPts[2].fY &&
               rectPts[0].fX == rectPts[1].fX && rectPts[3].fX == rectPts[2].fX) {
        // Make sure it has non-zero width and height
        if (rectPts[0].fY == rectPts[1].fY || rectPts[0].fX == rectPts[3].fX) {
            return false;
        }
        vec03IsVertical = false;
    } else {
        return false;
    }
    // Set sortFlags so that it has the low bit set if pt index 0 is on right edge and second bit
    // set if it is on the bottom edge.
    unsigned sortFlags =
            ((rectPts[0].fX < rectPts[2].fX) ? 0b00 : 0b01) |
            ((rectPts[0].fY < rectPts[2].fY) ? 0b00 : 0b10);
    switch (sortFlags) {
        case 0b00:
            rect->set(rectPts[0].fX, rectPts[0].fY, rectPts[2].fX, rectPts[2].fY);
            *direction = vec03IsVertical ? SkPath::kCW_Direction : SkPath::kCCW_Direction;
            *start = 0;
            break;
        case 0b01:
            rect->set(rectPts[2].fX, rectPts[0].fY, rectPts[0].fX, rectPts[2].fY);
            *direction = vec03IsVertical ? SkPath::kCCW_Direction : SkPath::kCW_Direction;
            *start = 1;
            break;
        case 0b10:
            rect->set(rectPts[0].fX, rectPts[2].fY, rectPts[2].fX, rectPts[0].fY);
            *direction = vec03IsVertical ? SkPath::kCCW_Direction : SkPath::kCW_Direction;
            *start = 3;
            break;
        case 0b11:
            rect->set(rectPts[2].fX, rectPts[2].fY, rectPts[0].fX, rectPts[0].fY);
            *direction = vec03IsVertical ? SkPath::kCW_Direction : SkPath::kCCW_Direction;
            *start = 2;
            break;
    }
    return true;
}

bool SkPathPriv::DrawArcIsConvex(SkScalar sweepAngle, bool useCenter, bool isFillNoPathEffect) {
    if (isFillNoPathEffect && SkScalarAbs(sweepAngle) >= 360.f) {
        // This gets converted to an oval.
        return true;
    }
    if (useCenter) {
        // This is a pie wedge. It's convex if the angle is <= 180.
        return SkScalarAbs(sweepAngle) <= 180.f;
    }
    // When the angle exceeds 360 this wraps back on top of itself. Otherwise it is a circle clipped
    // to a secant, i.e. convex.
    return SkScalarAbs(sweepAngle) <= 360.f;
}

void SkPathPriv::CreateDrawArcPath(SkPath* path, const SkRect& oval, SkScalar startAngle,
                                   SkScalar sweepAngle, bool useCenter, bool isFillNoPathEffect) {
    SkASSERT(!oval.isEmpty());
    SkASSERT(sweepAngle);

    path->reset();
    path->setIsVolatile(true);
    path->setFillType(SkPath::kWinding_FillType);
    if (isFillNoPathEffect && SkScalarAbs(sweepAngle) >= 360.f) {
        path->addOval(oval);
        SkASSERT(path->isConvex() && DrawArcIsConvex(sweepAngle, false, isFillNoPathEffect));
        return;
    }
    if (useCenter) {
        path->moveTo(oval.centerX(), oval.centerY());
    }
    auto firstDir =
            sweepAngle > 0 ? SkPathPriv::kCW_FirstDirection : SkPathPriv::kCCW_FirstDirection;
    bool convex = DrawArcIsConvex(sweepAngle, useCenter, isFillNoPathEffect);
    // Arc to mods at 360 and drawArc is not supposed to.
    bool forceMoveTo = !useCenter;
    while (sweepAngle <= -360.f) {
        path->arcTo(oval, startAngle, -180.f, forceMoveTo);
        startAngle -= 180.f;
        path->arcTo(oval, startAngle, -180.f, false);
        startAngle -= 180.f;
        forceMoveTo = false;
        sweepAngle += 360.f;
    }
    while (sweepAngle >= 360.f) {
        path->arcTo(oval, startAngle, 180.f, forceMoveTo);
        startAngle += 180.f;
        path->arcTo(oval, startAngle, 180.f, false);
        startAngle += 180.f;
        forceMoveTo = false;
        sweepAngle -= 360.f;
    }
    path->arcTo(oval, startAngle, sweepAngle, forceMoveTo);
    if (useCenter) {
        path->close();
    }
    path->setConvexity(convex ? SkPath::kConvex_Convexity : SkPath::kConcave_Convexity);
    path->fFirstDirection.store(firstDir);
}

///////////////////////////////////////////////////////////////////////////////////////////////////
#include "SkNx.h"

static int compute_quad_extremas(const SkPoint src[3], SkPoint extremas[3]) {
    SkScalar ts[2];
    int n  = SkFindQuadExtrema(src[0].fX, src[1].fX, src[2].fX, ts);
        n += SkFindQuadExtrema(src[0].fY, src[1].fY, src[2].fY, &ts[n]);
    SkASSERT(n >= 0 && n <= 2);
    for (int i = 0; i < n; ++i) {
        extremas[i] = SkEvalQuadAt(src, ts[i]);
    }
    extremas[n] = src[2];
    return n + 1;
}

static int compute_conic_extremas(const SkPoint src[3], SkScalar w, SkPoint extremas[3]) {
    SkConic conic(src[0], src[1], src[2], w);
    SkScalar ts[2];
    int n  = conic.findXExtrema(ts);
        n += conic.findYExtrema(&ts[n]);
    SkASSERT(n >= 0 && n <= 2);
    for (int i = 0; i < n; ++i) {
        extremas[i] = conic.evalAt(ts[i]);
    }
    extremas[n] = src[2];
    return n + 1;
}

static int compute_cubic_extremas(const SkPoint src[3], SkPoint extremas[5]) {
    SkScalar ts[4];
    int n  = SkFindCubicExtrema(src[0].fX, src[1].fX, src[2].fX, src[3].fX, ts);
        n += SkFindCubicExtrema(src[0].fY, src[1].fY, src[2].fY, src[3].fY, &ts[n]);
    SkASSERT(n >= 0 && n <= 4);
    for (int i = 0; i < n; ++i) {
        SkEvalCubicAt(src, ts[i], &extremas[i], nullptr, nullptr);
    }
    extremas[n] = src[3];
    return n + 1;
}

SkRect SkPath::computeTightBounds() const {
    if (0 == this->countVerbs()) {
        return SkRect::MakeEmpty();
    }

    if (this->getSegmentMasks() == SkPath::kLine_SegmentMask) {
        return this->getBounds();
    }

    SkPoint extremas[5]; // big enough to hold worst-case curve type (cubic) extremas + 1
    SkPoint pts[4];
    SkPath::RawIter iter(*this);

    // initial with the first MoveTo, so we don't have to check inside the switch
    Sk2s min, max;
    min = max = from_point(this->getPoint(0));
    for (;;) {
        int count = 0;
        switch (iter.next(pts)) {
            case SkPath::kMove_Verb:
                extremas[0] = pts[0];
                count = 1;
                break;
            case SkPath::kLine_Verb:
                extremas[0] = pts[1];
                count = 1;
                break;
            case SkPath::kQuad_Verb:
                count = compute_quad_extremas(pts, extremas);
                break;
            case SkPath::kConic_Verb:
                count = compute_conic_extremas(pts, iter.conicWeight(), extremas);
                break;
            case SkPath::kCubic_Verb:
                count = compute_cubic_extremas(pts, extremas);
                break;
            case SkPath::kClose_Verb:
                break;
            case SkPath::kDone_Verb:
                goto DONE;
        }
        for (int i = 0; i < count; ++i) {
            Sk2s tmp = from_point(extremas[i]);
            min = Sk2s::Min(min, tmp);
            max = Sk2s::Max(max, tmp);
        }
    }
DONE:
    SkRect bounds;
    min.store((SkPoint*)&bounds.fLeft);
    max.store((SkPoint*)&bounds.fRight);
    return bounds;
}

bool SkPath::IsLineDegenerate(const SkPoint& p1, const SkPoint& p2, bool exact) {
    return exact ? p1 == p2 : SkPointPriv::EqualsWithinTolerance(p1, p2);
}

bool SkPath::IsQuadDegenerate(const SkPoint& p1, const SkPoint& p2,
                                const SkPoint& p3, bool exact) {
    return exact ? p1 == p2 && p2 == p3 : SkPointPriv::EqualsWithinTolerance(p1, p2) &&
            SkPointPriv::EqualsWithinTolerance(p2, p3);
}

bool SkPath::IsCubicDegenerate(const SkPoint& p1, const SkPoint& p2,
                                const SkPoint& p3, const SkPoint& p4, bool exact) {
    return exact ? p1 == p2 && p2 == p3 && p3 == p4 :
            SkPointPriv::EqualsWithinTolerance(p1, p2) &&
            SkPointPriv::EqualsWithinTolerance(p2, p3) &&
            SkPointPriv::EqualsWithinTolerance(p3, p4);
}