aboutsummaryrefslogtreecommitdiffhomepage
path: root/src/core/SkOrderedReadBuffer.cpp
blob: 85491c5607545b04f8c48652399a611b3524cd21 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276

/*
 * Copyright 2012 Google Inc.
 *
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */

#include "SkBitmap.h"
#include "SkErrorInternals.h"
#include "SkOrderedReadBuffer.h"
#include "SkStream.h"
#include "SkTypeface.h"

SkOrderedReadBuffer::SkOrderedReadBuffer() : INHERITED() {
    fMemoryPtr = NULL;

    fBitmapStorage = NULL;
    fTFArray = NULL;
    fTFCount = 0;

    fFactoryTDArray = NULL;
    fFactoryArray = NULL;
    fFactoryCount = 0;
    fBitmapDecoder = NULL;
}

SkOrderedReadBuffer::SkOrderedReadBuffer(const void* data, size_t size) : INHERITED()  {
    fReader.setMemory(data, size);
    fMemoryPtr = NULL;

    fBitmapStorage = NULL;
    fTFArray = NULL;
    fTFCount = 0;

    fFactoryTDArray = NULL;
    fFactoryArray = NULL;
    fFactoryCount = 0;
    fBitmapDecoder = NULL;
}

SkOrderedReadBuffer::SkOrderedReadBuffer(SkStream* stream) {
    const size_t length = stream->getLength();
    fMemoryPtr = sk_malloc_throw(length);
    stream->read(fMemoryPtr, length);
    fReader.setMemory(fMemoryPtr, length);

    fBitmapStorage = NULL;
    fTFArray = NULL;
    fTFCount = 0;

    fFactoryTDArray = NULL;
    fFactoryArray = NULL;
    fFactoryCount = 0;
    fBitmapDecoder = NULL;
}

SkOrderedReadBuffer::~SkOrderedReadBuffer() {
    sk_free(fMemoryPtr);
    SkSafeUnref(fBitmapStorage);
}

bool SkOrderedReadBuffer::readBool() {
    return fReader.readBool();
}

SkColor SkOrderedReadBuffer::readColor() {
    return fReader.readInt();
}

SkFixed SkOrderedReadBuffer::readFixed() {
    return fReader.readS32();
}

int32_t SkOrderedReadBuffer::readInt() {
    return fReader.readInt();
}

SkScalar SkOrderedReadBuffer::readScalar() {
    return fReader.readScalar();
}

uint32_t SkOrderedReadBuffer::readUInt() {
    return fReader.readU32();
}

int32_t SkOrderedReadBuffer::read32() {
    return fReader.readInt();
}

char* SkOrderedReadBuffer::readString() {
    const char* string = fReader.readString();
    const size_t length = strlen(string);
    char* value = (char*)sk_malloc_throw(length + 1);
    strcpy(value, string);
    return value;
}

void* SkOrderedReadBuffer::readEncodedString(size_t* length, SkPaint::TextEncoding encoding) {
    SkDEBUGCODE(int32_t encodingType = ) fReader.readInt();
    SkASSERT(encodingType == encoding);
    *length =  fReader.readInt();
    void* data = sk_malloc_throw(*length);
    memcpy(data, fReader.skip(SkAlign4(*length)), *length);
    return data;
}

void SkOrderedReadBuffer::readPoint(SkPoint* point) {
    point->fX = fReader.readScalar();
    point->fY = fReader.readScalar();
}

void SkOrderedReadBuffer::readMatrix(SkMatrix* matrix) {
    fReader.readMatrix(matrix);
}

void SkOrderedReadBuffer::readIRect(SkIRect* rect) {
    memcpy(rect, fReader.skip(sizeof(SkIRect)), sizeof(SkIRect));
}

void SkOrderedReadBuffer::readRect(SkRect* rect) {
    memcpy(rect, fReader.skip(sizeof(SkRect)), sizeof(SkRect));
}

void SkOrderedReadBuffer::readRegion(SkRegion* region) {
    fReader.readRegion(region);
}

void SkOrderedReadBuffer::readPath(SkPath* path) {
    fReader.readPath(path);
}

uint32_t SkOrderedReadBuffer::readByteArray(void* value) {
    const uint32_t length = fReader.readU32();
    memcpy(value, fReader.skip(SkAlign4(length)), length);
    return length;
}

uint32_t SkOrderedReadBuffer::readColorArray(SkColor* colors) {
    const uint32_t count = fReader.readU32();
    const uint32_t byteLength = count * sizeof(SkColor);
    memcpy(colors, fReader.skip(SkAlign4(byteLength)), byteLength);
    return count;
}

uint32_t SkOrderedReadBuffer::readIntArray(int32_t* values) {
    const uint32_t count = fReader.readU32();
    const uint32_t byteLength = count * sizeof(int32_t);
    memcpy(values, fReader.skip(SkAlign4(byteLength)), byteLength);
    return count;
}

uint32_t SkOrderedReadBuffer::readPointArray(SkPoint* points) {
    const uint32_t count = fReader.readU32();
    const uint32_t byteLength = count * sizeof(SkPoint);
    memcpy(points, fReader.skip(SkAlign4(byteLength)), byteLength);
    return count;
}

uint32_t SkOrderedReadBuffer::readScalarArray(SkScalar* values) {
    const uint32_t count = fReader.readU32();
    const uint32_t byteLength = count * sizeof(SkScalar);
    memcpy(values, fReader.skip(SkAlign4(byteLength)), byteLength);
    return count;
}

uint32_t SkOrderedReadBuffer::getArrayCount() {
    return *(uint32_t*)fReader.peek();
}

void SkOrderedReadBuffer::readBitmap(SkBitmap* bitmap) {
    const int width = this->readInt();
    const int height = this->readInt();
    // The writer stored a boolean value to determine whether an SkBitmapHeap was used during
    // writing.
    if (this->readBool()) {
        // An SkBitmapHeap was used for writing. Read the index from the stream and find the
        // corresponding SkBitmap in fBitmapStorage.
        const uint32_t index = fReader.readU32();
        fReader.readU32(); // bitmap generation ID (see SkOrderedWriteBuffer::writeBitmap)
        if (fBitmapStorage) {
            *bitmap = *fBitmapStorage->getBitmap(index);
            fBitmapStorage->releaseRef(index);
            return;
        } else {
            // The bitmap was stored in a heap, but there is no way to access it. Set an error and
            // fall through to use a place holder bitmap.
            SkErrorInternals::SetError(kParseError_SkError, "SkOrderedWriteBuffer::writeBitmap "
                                       "stored the SkBitmap in an SkBitmapHeap, but "
                                       "SkOrderedReadBuffer has no SkBitmapHeapReader to "
                                       "retrieve the SkBitmap.");
        }
    } else {
        // The writer stored false, meaning the SkBitmap was not stored in an SkBitmapHeap.
        const size_t length = this->readUInt();
        if (length > 0) {
            // A non-zero size means the SkBitmap was encoded.
            const void* data = this->skip(length);
            if (fBitmapDecoder != NULL && fBitmapDecoder(data, length, bitmap)) {
                SkASSERT(bitmap->width() == width && bitmap->height() == height);
                return;
            }
            // This bitmap was encoded when written, but we are unable to decode, possibly due to
            // not having a decoder.
            SkErrorInternals::SetError(kParseError_SkError,
                                       "Could not decode bitmap. Resulting bitmap will be red.");
        } else {
            // A size of zero means the SkBitmap was simply flattened.
            bitmap->unflatten(*this);
            return;
        }
    }
    // Could not read the SkBitmap. Use a placeholder bitmap.
    bitmap->setConfig(SkBitmap::kARGB_8888_Config, width, height);
    bitmap->allocPixels();
    bitmap->eraseColor(SK_ColorRED);
}

SkTypeface* SkOrderedReadBuffer::readTypeface() {

    uint32_t index = fReader.readU32();
    if (0 == index || index > (unsigned)fTFCount) {
        if (index) {
            SkDebugf("====== typeface index %d\n", index);
        }
        return NULL;
    } else {
        SkASSERT(fTFArray);
        return fTFArray[index - 1];
    }
}

SkFlattenable* SkOrderedReadBuffer::readFlattenable() {
    SkFlattenable::Factory factory = NULL;

    if (fFactoryCount > 0) {
        int32_t index = fReader.readU32();
        if (0 == index) {
            return NULL; // writer failed to give us the flattenable
        }
        index -= 1;     // we stored the index-base-1
        SkASSERT(index < fFactoryCount);
        factory = fFactoryArray[index];
    } else if (fFactoryTDArray) {
        int32_t index = fReader.readU32();
        if (0 == index) {
            return NULL; // writer failed to give us the flattenable
        }
        index -= 1;     // we stored the index-base-1
        factory = (*fFactoryTDArray)[index];
    } else {
        factory = (SkFlattenable::Factory)readFunctionPtr();
        if (NULL == factory) {
            return NULL; // writer failed to give us the flattenable
        }
    }

    // if we get here, factory may still be null, but if that is the case, the
    // failure was ours, not the writer.
    SkFlattenable* obj = NULL;
    uint32_t sizeRecorded = fReader.readU32();
    if (factory) {
        uint32_t offset = fReader.offset();
        obj = (*factory)(*this);
        // check that we read the amount we expected
        uint32_t sizeRead = fReader.offset() - offset;
        if (sizeRecorded != sizeRead) {
            // we could try to fix up the offset...
            sk_throw();
        }
    } else {
        // we must skip the remaining data
        fReader.skip(sizeRecorded);
    }
    return obj;
}