aboutsummaryrefslogtreecommitdiffhomepage
path: root/src/core/SkNormalMapSource.cpp
blob: 1b88366690e86f2497d4563aef30cb224354e796 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
/*
 * Copyright 2016 Google Inc.
 *
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */

#include "SkNormalMapSource.h"

#include "SkArenaAlloc.h"
#include "SkLightingShader.h"
#include "SkMatrix.h"
#include "SkNormalSource.h"
#include "SkPM4f.h"
#include "SkReadBuffer.h"
#include "SkWriteBuffer.h"

#if SK_SUPPORT_GPU
#include "GrCoordTransform.h"
#include "glsl/GrGLSLFragmentProcessor.h"
#include "glsl/GrGLSLFragmentShaderBuilder.h"
#include "SkGr.h"

class NormalMapFP : public GrFragmentProcessor {
public:
    static std::unique_ptr<GrFragmentProcessor> Make(std::unique_ptr<GrFragmentProcessor> mapFP,
                                                     const SkMatrix& invCTM) {
        return std::unique_ptr<GrFragmentProcessor>(new NormalMapFP(std::move(mapFP), invCTM));
    }

    const char* name() const override { return "NormalMapFP"; }

    const SkMatrix& invCTM() const { return fInvCTM; }

    std::unique_ptr<GrFragmentProcessor> clone() const override {
        return Make(this->childProcessor(0).clone(), fInvCTM);
    }

private:
    class GLSLNormalMapFP : public GrGLSLFragmentProcessor {
    public:
        GLSLNormalMapFP() : fColumnMajorInvCTM22{0.0f} {}

        void emitCode(EmitArgs& args) override {
            GrGLSLFPFragmentBuilder* fragBuilder = args.fFragBuilder;
            GrGLSLUniformHandler* uniformHandler = args.fUniformHandler;

            // add uniform
            const char* xformUniName = nullptr;
            fXformUni = uniformHandler->addUniform(kFragment_GrShaderFlag, kFloat2x2_GrSLType,
                                                   kDefault_GrSLPrecision, "Xform", &xformUniName);

            SkString dstNormalColorName("dstNormalColor");
            this->emitChild(0, &dstNormalColorName, args);
            fragBuilder->codeAppendf("float3 normal = normalize(%s.rgb - float3(0.5));",
                                     dstNormalColorName.c_str());

            // If there's no x & y components, return (0, 0, +/- 1) instead to avoid division by 0
            fragBuilder->codeAppend( "if (abs(normal.z) > 0.999) {");
            fragBuilder->codeAppendf("    %s = normalize(float4(0.0, 0.0, normal.z, 0.0));",
                    args.fOutputColor);
            // Else, Normalizing the transformed X and Y, while keeping constant both Z and the
            // vector's angle in the XY plane. This maintains the "slope" for the surface while
            // appropriately rotating the normal regardless of any anisotropic scaling that occurs.
            // Here, we call 'scaling factor' the number that must divide the transformed X and Y so
            // that the normal's length remains equal to 1.
            fragBuilder->codeAppend( "} else {");
            fragBuilder->codeAppendf("    float2 transformed = %s * normal.xy;",
                    xformUniName);
            fragBuilder->codeAppend( "    float scalingFactorSquared = "
                                                 "( (transformed.x * transformed.x) "
                                                   "+ (transformed.y * transformed.y) )"
                                                 "/(1.0 - (normal.z * normal.z));");
            fragBuilder->codeAppendf("    %s = float4(transformed*inversesqrt(scalingFactorSquared),"
                                                   "normal.z, 0.0);",
                    args.fOutputColor);
            fragBuilder->codeAppend( "}");
        }

        static void GenKey(const GrProcessor&, const GrShaderCaps&, GrProcessorKeyBuilder* b) {
            b->add32(0x0);
        }

    private:
        void onSetData(const GrGLSLProgramDataManager& pdman,
                       const GrFragmentProcessor& proc) override {
            const NormalMapFP& normalMapFP = proc.cast<NormalMapFP>();

            const SkMatrix& invCTM = normalMapFP.invCTM();
            fColumnMajorInvCTM22[0] = invCTM.get(SkMatrix::kMScaleX);
            fColumnMajorInvCTM22[1] = invCTM.get(SkMatrix::kMSkewY);
            fColumnMajorInvCTM22[2] = invCTM.get(SkMatrix::kMSkewX);
            fColumnMajorInvCTM22[3] = invCTM.get(SkMatrix::kMScaleY);
            pdman.setMatrix2f(fXformUni, fColumnMajorInvCTM22);
        }

    private:
        // Upper-right 2x2 corner of the inverse of the CTM in column-major form
        float fColumnMajorInvCTM22[4];
        GrGLSLProgramDataManager::UniformHandle fXformUni;
    };

    void onGetGLSLProcessorKey(const GrShaderCaps& caps, GrProcessorKeyBuilder* b) const override {
        GLSLNormalMapFP::GenKey(*this, caps, b);
    }
    NormalMapFP(std::unique_ptr<GrFragmentProcessor> mapFP, const SkMatrix& invCTM)
            : INHERITED(kMappedNormalsFP_ClassID, kNone_OptimizationFlags)
            , fInvCTM(invCTM) {
        this->registerChildProcessor(std::move(mapFP));
    }

    GrGLSLFragmentProcessor* onCreateGLSLInstance() const override { return new GLSLNormalMapFP; }

    bool onIsEqual(const GrFragmentProcessor& proc) const override {
        const NormalMapFP& normalMapFP = proc.cast<NormalMapFP>();
        return fInvCTM == normalMapFP.fInvCTM;
    }

    SkMatrix fInvCTM;

    typedef GrFragmentProcessor INHERITED;
};

std::unique_ptr<GrFragmentProcessor> SkNormalMapSourceImpl::asFragmentProcessor(
                                                                       const GrFPArgs& args) const {
    std::unique_ptr<GrFragmentProcessor> mapFP = as_SB(fMapShader)->asFragmentProcessor(args);
    if (!mapFP) {
        return nullptr;
    }

    return NormalMapFP::Make(std::move(mapFP), fInvCTM);
}

#endif // SK_SUPPORT_GPU

////////////////////////////////////////////////////////////////////////////

SkNormalMapSourceImpl::Provider::Provider(const SkNormalMapSourceImpl& source,
                                          SkShaderBase::Context* mapContext)
    : fSource(source)
    , fMapContext(mapContext) {}

SkNormalSource::Provider* SkNormalMapSourceImpl::asProvider(const SkShaderBase::ContextRec &rec,
                                                            SkArenaAlloc* alloc) const {
    SkMatrix normTotalInv;
    if (!this->computeNormTotalInverse(rec, &normTotalInv)) {
        return nullptr;
    }

    // Overriding paint's alpha because we need the normal map's RGB channels to be unpremul'd
    SkPaint overridePaint {*(rec.fPaint)};
    overridePaint.setAlpha(0xFF);
    SkShaderBase::ContextRec overrideRec(overridePaint, *(rec.fMatrix), rec.fLocalMatrix,
                                         rec.fPreferredDstType, rec.fDstColorSpace);

    auto* context = as_SB(fMapShader)->makeContext(overrideRec, alloc);
    if (!context) {
        return nullptr;
    }

    return alloc->make<Provider>(*this, context);
}

bool SkNormalMapSourceImpl::computeNormTotalInverse(const SkShaderBase::ContextRec& rec,
                                                    SkMatrix* normTotalInverse) const {
    SkMatrix total = SkMatrix::Concat(*rec.fMatrix, fMapShader->getLocalMatrix());
    if (rec.fLocalMatrix) {
        total.preConcat(*rec.fLocalMatrix);
    }

    return total.invert(normTotalInverse);
}

#define BUFFER_MAX 16
void SkNormalMapSourceImpl::Provider::fillScanLine(int x, int y, SkPoint3 output[],
                                                   int count) const {
    SkPMColor tmpNormalColors[BUFFER_MAX];

    do {
        int n = SkTMin(count, BUFFER_MAX);

        fMapContext->shadeSpan(x, y, tmpNormalColors, n);

        for (int i = 0; i < n; i++) {
            SkPoint3 tempNorm;

            tempNorm.set(SkIntToScalar(SkGetPackedR32(tmpNormalColors[i])) - 127.0f,
                         SkIntToScalar(SkGetPackedG32(tmpNormalColors[i])) - 127.0f,
                         SkIntToScalar(SkGetPackedB32(tmpNormalColors[i])) - 127.0f);

            tempNorm.normalize();


            if (!SkScalarNearlyEqual(SkScalarAbs(tempNorm.fZ), 1.0f)) {
                SkVector transformed = fSource.fInvCTM.mapVector(tempNorm.fX, tempNorm.fY);

                // Normalizing the transformed X and Y, while keeping constant both Z and the
                // vector's angle in the XY plane. This maintains the "slope" for the surface while
                // appropriately rotating the normal for any anisotropic scaling that occurs.
                // Here, we call scaling factor the number that must divide the transformed X and Y
                // so that the normal's length remains equal to 1.
                SkScalar scalingFactorSquared =
                        (SkScalarSquare(transformed.fX) + SkScalarSquare(transformed.fY))
                        / (1.0f - SkScalarSquare(tempNorm.fZ));
                SkScalar invScalingFactor = SkScalarInvert(SkScalarSqrt(scalingFactorSquared));

                output[i].fX = transformed.fX * invScalingFactor;
                output[i].fY = transformed.fY * invScalingFactor;
                output[i].fZ = tempNorm.fZ;
            } else {
                output[i] = {0.0f, 0.0f, tempNorm.fZ};
                output[i].normalize();
            }

            SkASSERT(SkScalarNearlyEqual(output[i].length(), 1.0f));
        }

        output += n;
        x += n;
        count -= n;
    } while (count > 0);
}

////////////////////////////////////////////////////////////////////////////////

sk_sp<SkFlattenable> SkNormalMapSourceImpl::CreateProc(SkReadBuffer& buf) {

    sk_sp<SkShader> mapShader = buf.readFlattenable<SkShaderBase>();

    SkMatrix invCTM;
    buf.readMatrix(&invCTM);

    return sk_make_sp<SkNormalMapSourceImpl>(std::move(mapShader), invCTM);
}

void SkNormalMapSourceImpl::flatten(SkWriteBuffer& buf) const {
    this->INHERITED::flatten(buf);

    buf.writeFlattenable(fMapShader.get());
    buf.writeMatrix(fInvCTM);
}

////////////////////////////////////////////////////////////////////////////

sk_sp<SkNormalSource> SkNormalSource::MakeFromNormalMap(sk_sp<SkShader> map, const SkMatrix& ctm) {
    SkMatrix invCTM;

    if (!ctm.invert(&invCTM) || !map) {
        return nullptr;
    }

    return sk_make_sp<SkNormalMapSourceImpl>(std::move(map), invCTM);
}