aboutsummaryrefslogtreecommitdiffhomepage
path: root/src/core/SkMath.cpp
blob: 0efedd727b08d87562fd9105422b3e14da39d533 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
/*
 * Copyright 2008 The Android Open Source Project
 *
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */

#include "SkMathPriv.h"
#include "SkCordic.h"
#include "SkFloatBits.h"
#include "SkFloatingPoint.h"
#include "Sk64.h"
#include "SkScalar.h"

#ifdef SK_SCALAR_IS_FLOAT
    const uint32_t gIEEENotANumber = 0x7FFFFFFF;
    const uint32_t gIEEEInfinity = 0x7F800000;
    const uint32_t gIEEENegativeInfinity = 0xFF800000;
#endif

#define sub_shift(zeros, x, n)  \
    zeros -= n;                 \
    x >>= n

int SkCLZ_portable(uint32_t x) {
    if (x == 0) {
        return 32;
    }

#ifdef SK_CPU_HAS_CONDITIONAL_INSTR
    int zeros = 31;
    if (x & 0xFFFF0000) {
        sub_shift(zeros, x, 16);
    }
    if (x & 0xFF00) {
        sub_shift(zeros, x, 8);
    }
    if (x & 0xF0) {
        sub_shift(zeros, x, 4);
    }
    if (x & 0xC) {
        sub_shift(zeros, x, 2);
    }
    if (x & 0x2) {
        sub_shift(zeros, x, 1);
    }
#else
    int zeros = ((x >> 16) - 1) >> 31 << 4;
    x <<= zeros;

    int nonzero = ((x >> 24) - 1) >> 31 << 3;
    zeros += nonzero;
    x <<= nonzero;

    nonzero = ((x >> 28) - 1) >> 31 << 2;
    zeros += nonzero;
    x <<= nonzero;

    nonzero = ((x >> 30) - 1) >> 31 << 1;
    zeros += nonzero;
    x <<= nonzero;

    zeros += (~x) >> 31;
#endif

    return zeros;
}

int32_t SkMulDiv(int32_t numer1, int32_t numer2, int32_t denom) {
    SkASSERT(denom);

    Sk64 tmp;
    tmp.setMul(numer1, numer2);
    tmp.div(denom, Sk64::kTrunc_DivOption);
    return tmp.get32();
}

int32_t SkMulShift(int32_t a, int32_t b, unsigned shift) {
    int sign = SkExtractSign(a ^ b);

    if (shift > 63) {
        return sign;
    }

    a = SkAbs32(a);
    b = SkAbs32(b);

    uint32_t ah = a >> 16;
    uint32_t al = a & 0xFFFF;
    uint32_t bh = b >> 16;
    uint32_t bl = b & 0xFFFF;

    uint32_t A = ah * bh;
    uint32_t B = ah * bl + al * bh;
    uint32_t C = al * bl;

    /*  [  A  ]
           [  B  ]
              [  C  ]
    */
    uint32_t lo = C + (B << 16);
    int32_t  hi = A + (B >> 16) + (lo < C);

    if (sign < 0) {
        hi = -hi - Sk32ToBool(lo);
        lo = 0 - lo;
    }

    if (shift == 0) {
#ifdef SK_DEBUGx
        SkASSERT(((int32_t)lo >> 31) == hi);
#endif
        return lo;
    } else if (shift >= 32) {
        return hi >> (shift - 32);
    } else {
#ifdef SK_DEBUGx
        int32_t tmp = hi >> shift;
        SkASSERT(tmp == 0 || tmp == -1);
#endif
        // we want (hi << (32 - shift)) | (lo >> shift) but rounded
        int roundBit = (lo >> (shift - 1)) & 1;
        return ((hi << (32 - shift)) | (lo >> shift)) + roundBit;
    }
}

SkFixed SkFixedMul_portable(SkFixed a, SkFixed b) {
#if 0
    Sk64    tmp;

    tmp.setMul(a, b);
    tmp.shiftRight(16);
    return tmp.fLo;
#elif defined(SkLONGLONG)
    return static_cast<SkFixed>((SkLONGLONG)a * b >> 16);
#else
    int sa = SkExtractSign(a);
    int sb = SkExtractSign(b);
    // now make them positive
    a = SkApplySign(a, sa);
    b = SkApplySign(b, sb);

    uint32_t    ah = a >> 16;
    uint32_t    al = a & 0xFFFF;
    uint32_t bh = b >> 16;
    uint32_t bl = b & 0xFFFF;

    uint32_t R = ah * b + al * bh + (al * bl >> 16);

    return SkApplySign(R, sa ^ sb);
#endif
}

SkFract SkFractMul_portable(SkFract a, SkFract b) {
#if 0
    Sk64 tmp;
    tmp.setMul(a, b);
    return tmp.getFract();
#elif defined(SkLONGLONG)
    return static_cast<SkFract>((SkLONGLONG)a * b >> 30);
#else
    int sa = SkExtractSign(a);
    int sb = SkExtractSign(b);
    // now make them positive
    a = SkApplySign(a, sa);
    b = SkApplySign(b, sb);

    uint32_t ah = a >> 16;
    uint32_t al = a & 0xFFFF;
    uint32_t bh = b >> 16;
    uint32_t bl = b & 0xFFFF;

    uint32_t A = ah * bh;
    uint32_t B = ah * bl + al * bh;
    uint32_t C = al * bl;

    /*  [  A  ]
           [  B  ]
              [  C  ]
    */
    uint32_t Lo = C + (B << 16);
    uint32_t Hi = A + (B >>16) + (Lo < C);

    SkASSERT((Hi >> 29) == 0);  // else overflow

    int32_t R = (Hi << 2) + (Lo >> 30);

    return SkApplySign(R, sa ^ sb);
#endif
}

int SkFixedMulCommon(SkFixed a, int b, int bias) {
    // this function only works if b is 16bits
    SkASSERT(b == (int16_t)b);
    SkASSERT(b >= 0);

    int sa = SkExtractSign(a);
    a = SkApplySign(a, sa);
    uint32_t ah = a >> 16;
    uint32_t al = a & 0xFFFF;
    uint32_t R = ah * b + ((al * b + bias) >> 16);
    return SkApplySign(R, sa);
}

#ifdef SK_DEBUGx
    #define TEST_FASTINVERT
#endif

SkFixed SkFixedFastInvert(SkFixed x) {
/*  Adapted (stolen) from gglRecip()
*/

    if (x == SK_Fixed1) {
        return SK_Fixed1;
    }

    int      sign = SkExtractSign(x);
    uint32_t a = SkApplySign(x, sign);

    if (a <= 2) {
        return SkApplySign(SK_MaxS32, sign);
    }

#ifdef TEST_FASTINVERT
    SkFixed orig = a;
    uint32_t slow = SkFixedDiv(SK_Fixed1, a);
#endif

    // normalize a
    int lz = SkCLZ(a);
    a = a << lz >> 16;

    // compute 1/a approximation (0.5 <= a < 1.0)
    uint32_t r = 0x17400 - a;      // (2.90625 (~2.914) - 2*a) >> 1

    // Newton-Raphson iteration:
    // x = r*(2 - a*r) = ((r/2)*(1 - a*r/2))*4
    r = ( (0x10000 - ((a*r)>>16)) * r ) >> 15;
    r = ( (0x10000 - ((a*r)>>16)) * r ) >> (30 - lz);

#ifdef TEST_FASTINVERT
    SkDebugf("SkFixedFastInvert(%x %g) = %x %g Slow[%x %g]\n",
                orig, orig/65536.,
                r, r/65536.,
                slow, slow/65536.);
#endif

    return SkApplySign(r, sign);
}

///////////////////////////////////////////////////////////////////////////////

#define DIVBITS_ITER(n)                                 \
    case n:                                             \
        if ((numer = (numer << 1) - denom) >= 0)        \
            result |= 1 << (n - 1); else numer += denom

int32_t SkDivBits(int32_t numer, int32_t denom, int shift_bias) {
    SkASSERT(denom != 0);
    if (numer == 0) {
        return 0;
    }

    // make numer and denom positive, and sign hold the resulting sign
    int32_t sign = SkExtractSign(numer ^ denom);
    numer = SkAbs32(numer);
    denom = SkAbs32(denom);

    int nbits = SkCLZ(numer) - 1;
    int dbits = SkCLZ(denom) - 1;
    int bits = shift_bias - nbits + dbits;

    if (bits < 0) {  // answer will underflow
        return 0;
    }
    if (bits > 31) {  // answer will overflow
        return SkApplySign(SK_MaxS32, sign);
    }

    denom <<= dbits;
    numer <<= nbits;

    SkFixed result = 0;

    // do the first one
    if ((numer -= denom) >= 0) {
        result = 1;
    } else {
        numer += denom;
    }

    // Now fall into our switch statement if there are more bits to compute
    if (bits > 0) {
        // make room for the rest of the answer bits
        result <<= bits;
        switch (bits) {
            DIVBITS_ITER(31); DIVBITS_ITER(30); DIVBITS_ITER(29);
            DIVBITS_ITER(28); DIVBITS_ITER(27); DIVBITS_ITER(26);
            DIVBITS_ITER(25); DIVBITS_ITER(24); DIVBITS_ITER(23);
            DIVBITS_ITER(22); DIVBITS_ITER(21); DIVBITS_ITER(20);
            DIVBITS_ITER(19); DIVBITS_ITER(18); DIVBITS_ITER(17);
            DIVBITS_ITER(16); DIVBITS_ITER(15); DIVBITS_ITER(14);
            DIVBITS_ITER(13); DIVBITS_ITER(12); DIVBITS_ITER(11);
            DIVBITS_ITER(10); DIVBITS_ITER( 9); DIVBITS_ITER( 8);
            DIVBITS_ITER( 7); DIVBITS_ITER( 6); DIVBITS_ITER( 5);
            DIVBITS_ITER( 4); DIVBITS_ITER( 3); DIVBITS_ITER( 2);
            // we merge these last two together, makes GCC make better ARM
            default:
            DIVBITS_ITER( 1);
        }
    }

    if (result < 0) {
        result = SK_MaxS32;
    }
    return SkApplySign(result, sign);
}

/*  mod(float numer, float denom) seems to always return the sign
    of the numer, so that's what we do too
*/
SkFixed SkFixedMod(SkFixed numer, SkFixed denom) {
    int sn = SkExtractSign(numer);
    int sd = SkExtractSign(denom);

    numer = SkApplySign(numer, sn);
    denom = SkApplySign(denom, sd);

    if (numer < denom) {
        return SkApplySign(numer, sn);
    } else if (numer == denom) {
        return 0;
    } else {
        SkFixed div = SkFixedDiv(numer, denom);
        return SkApplySign(SkFixedMul(denom, div & 0xFFFF), sn);
    }
}

/* www.worldserver.com/turk/computergraphics/FixedSqrt.pdf
*/
int32_t SkSqrtBits(int32_t x, int count) {
    SkASSERT(x >= 0 && count > 0 && (unsigned)count <= 30);

    uint32_t    root = 0;
    uint32_t    remHi = 0;
    uint32_t    remLo = x;

    do {
        root <<= 1;

        remHi = (remHi<<2) | (remLo>>30);
        remLo <<= 2;

        uint32_t testDiv = (root << 1) + 1;
        if (remHi >= testDiv) {
            remHi -= testDiv;
            root++;
        }
    } while (--count >= 0);

    return root;
}

int32_t SkCubeRootBits(int32_t value, int bits) {
    SkASSERT(bits > 0);

    int sign = SkExtractSign(value);
    value = SkApplySign(value, sign);

    uint32_t root = 0;
    uint32_t curr = (uint32_t)value >> 30;
    value <<= 2;

    do {
        root <<= 1;
        uint32_t guess = root * root + root;
        guess = (guess << 1) + guess;   // guess *= 3
        if (guess < curr) {
            curr -= guess + 1;
            root |= 1;
        }
        curr = (curr << 3) | ((uint32_t)value >> 29);
        value <<= 3;
    } while (--bits);

    return SkApplySign(root, sign);
}

SkFixed SkFixedMean(SkFixed a, SkFixed b) {
    Sk64 tmp;

    tmp.setMul(a, b);
    return tmp.getSqrt();
}

///////////////////////////////////////////////////////////////////////////////

#ifdef SK_SCALAR_IS_FLOAT
float SkScalarSinCos(float radians, float* cosValue) {
    float sinValue = sk_float_sin(radians);

    if (cosValue) {
        *cosValue = sk_float_cos(radians);
        if (SkScalarNearlyZero(*cosValue)) {
            *cosValue = 0;
        }
    }

    if (SkScalarNearlyZero(sinValue)) {
        sinValue = 0;
    }
    return sinValue;
}
#endif

#define INTERP_SINTABLE
#define BUILD_TABLE_AT_RUNTIMEx

#define kTableSize  256

#ifdef BUILD_TABLE_AT_RUNTIME
    static uint16_t gSkSinTable[kTableSize];

    static void build_sintable(uint16_t table[]) {
        for (int i = 0; i < kTableSize; i++) {
            double  rad = i * 3.141592653589793 / (2*kTableSize);
            double  val = sin(rad);
            int     ival = (int)(val * SK_Fixed1);
            table[i] = SkToU16(ival);
        }
    }
#else
    #include "SkSinTable.h"
#endif

#define SK_Fract1024SizeOver2PI     0x28BE60    /* floatToFract(1024 / 2PI) */

#ifdef INTERP_SINTABLE
static SkFixed interp_table(const uint16_t table[], int index, int partial255) {
    SkASSERT((unsigned)index < kTableSize);
    SkASSERT((unsigned)partial255 <= 255);

    SkFixed lower = table[index];
    SkFixed upper = (index == kTableSize - 1) ? SK_Fixed1 : table[index + 1];

    SkASSERT(lower < upper);
    SkASSERT(lower >= 0);
    SkASSERT(upper <= SK_Fixed1);

    partial255 += (partial255 >> 7);
    return lower + ((upper - lower) * partial255 >> 8);
}
#endif

SkFixed SkFixedSinCos(SkFixed radians, SkFixed* cosValuePtr) {
    SkASSERT(SK_ARRAY_COUNT(gSkSinTable) == kTableSize);

#ifdef BUILD_TABLE_AT_RUNTIME
    static bool gFirstTime = true;
    if (gFirstTime) {
        build_sintable(gSinTable);
        gFirstTime = false;
    }
#endif

    // make radians positive
    SkFixed sinValue, cosValue;
    int32_t cosSign = 0;
    int32_t sinSign = SkExtractSign(radians);
    radians = SkApplySign(radians, sinSign);
    // scale it to 0...1023 ...

#ifdef INTERP_SINTABLE
    radians = SkMulDiv(radians, 2 * kTableSize * 256, SK_FixedPI);
    int findex = radians & (kTableSize * 256 - 1);
    int index = findex >> 8;
    int partial = findex & 255;
    sinValue = interp_table(gSkSinTable, index, partial);

    findex = kTableSize * 256 - findex - 1;
    index = findex >> 8;
    partial = findex & 255;
    cosValue = interp_table(gSkSinTable, index, partial);

    int quad = ((unsigned)radians / (kTableSize * 256)) & 3;
#else
    radians = SkMulDiv(radians, 2 * kTableSize, SK_FixedPI);
    int     index = radians & (kTableSize - 1);

    if (index == 0) {
        sinValue = 0;
        cosValue = SK_Fixed1;
    } else {
        sinValue = gSkSinTable[index];
        cosValue = gSkSinTable[kTableSize - index];
    }
    int quad = ((unsigned)radians / kTableSize) & 3;
#endif

    if (quad & 1) {
        SkTSwap<SkFixed>(sinValue, cosValue);
    }
    if (quad & 2) {
        sinSign = ~sinSign;
    }
    if (((quad - 1) & 2) == 0) {
        cosSign = ~cosSign;
    }

    // restore the sign for negative angles
    sinValue = SkApplySign(sinValue, sinSign);
    cosValue = SkApplySign(cosValue, cosSign);

#ifdef SK_DEBUG
    if (1) {
        SkFixed sin2 = SkFixedMul(sinValue, sinValue);
        SkFixed cos2 = SkFixedMul(cosValue, cosValue);
        int diff = cos2 + sin2 - SK_Fixed1;
        SkASSERT(SkAbs32(diff) <= 7);
    }
#endif

    if (cosValuePtr) {
        *cosValuePtr = cosValue;
    }
    return sinValue;
}

///////////////////////////////////////////////////////////////////////////////

SkFixed SkFixedTan(SkFixed radians) { return SkCordicTan(radians); }
SkFixed SkFixedASin(SkFixed x) { return SkCordicASin(x); }
SkFixed SkFixedACos(SkFixed x) { return SkCordicACos(x); }
SkFixed SkFixedATan2(SkFixed y, SkFixed x) { return SkCordicATan2(y, x); }
SkFixed SkFixedExp(SkFixed x) { return SkCordicExp(x); }
SkFixed SkFixedLog(SkFixed x) { return SkCordicLog(x); }