aboutsummaryrefslogtreecommitdiffhomepage
path: root/src/core/SkMaskBlurFilter.cpp
blob: 0f0286354cbf091b4ef7966690969df438f0b287 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
/*
 * Copyright 2017 Google Inc.
 *
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */

#include "SkMaskBlurFilter.h"

#include <cmath>

#include "SkMakeUnique.h"

static const double kPi = 3.14159265358979323846264338327950288;

static uint64_t weight_from_diameter(uint32_t d) {
    uint64_t d2 = d * d;
    uint64_t d3 = d2 * d;
    if ((d&1) == 0) {
        // d * d * (d + 1);
        return d3 + d2;
    }

    return d3;
}

static uint32_t filter_window(double sigma) {
    auto possibleWindow = static_cast<uint32_t>(floor(sigma * 3 * sqrt(2*kPi)/4 + 0.5));
    return std::max(1u, possibleWindow);
}

SkMaskBlurFilter::FilterInfo::FilterInfo(double sigma)
    : fFilterWindow{filter_window(sigma)}
    , fScaledWeight{(static_cast<uint64_t>(1) << 32) / weight_from_diameter(fFilterWindow)} {}

uint64_t SkMaskBlurFilter::FilterInfo::weight() const {
    return weight_from_diameter(fFilterWindow);

}
uint32_t SkMaskBlurFilter::FilterInfo::borderSize() const {
    if ((fFilterWindow&1) == 0) {
        return 3 * (fFilterWindow / 2) - 1;
    }
    return 3 * (fFilterWindow / 2);
}

size_t SkMaskBlurFilter::FilterInfo::diameter(uint8_t pass) const {
    SkASSERT(pass <= 2);

    if ((fFilterWindow&1) == 0) {
        // Handle even case.
        switch (pass) {
            case 0: return fFilterWindow;
            case 1: return fFilterWindow;
            case 2: return fFilterWindow+1;
        }
    }

    return fFilterWindow;
}

uint64_t SkMaskBlurFilter::FilterInfo::scaledWeight() const {
    return fScaledWeight;
}

SkMaskBlurFilter::SkMaskBlurFilter(double sigmaW, double sigmaH)
    : fInfoW{sigmaW}, fInfoH{sigmaH}
    , fBuffer0{skstd::make_unique_default<uint32_t[]>(bufferSize(0))}
    , fBuffer1{skstd::make_unique_default<uint32_t[]>(bufferSize(1))}
    , fBuffer2{skstd::make_unique_default<uint32_t[]>(bufferSize(2))} {
}

SkIPoint SkMaskBlurFilter::blur(const SkMask& src, SkMask* dst) const {

    uint64_t weightW = fInfoW.weight();
    uint64_t weightH = fInfoH.weight();

    size_t borderW = fInfoW.borderSize();
    size_t borderH = fInfoH.borderSize();

    size_t srcW = src.fBounds.width();
    size_t srcH = src.fBounds.height();

    size_t dstW = srcW + 2 * borderW;
    size_t dstH = srcH + 2 * borderH;

    dst->fBounds.set(0, 0, dstW, dstH);
    dst->fBounds.offset(src.fBounds.x(), src.fBounds.y());
    dst->fBounds.offset(-SkTo<int32_t>(borderW), -SkTo<int32_t>(borderH));

    dst->fImage = nullptr;
    dst->fRowBytes = dstW;
    dst->fFormat = SkMask::kA8_Format;

    if (src.fImage == nullptr) {
        return {SkTo<int32_t>(borderW), SkTo<int32_t>(borderH)};
    }

    dst->fImage = SkMask::AllocImage(dstW * dstH);

    if (weightW > 1 && weightH > 1) {
        // Blur both directions.
        size_t tmpW = srcH;
        size_t tmpH = dstW;
        auto tmp = skstd::make_unique_default<uint8_t[]>(tmpW * tmpH);

        // Blur horizontally, and transpose.
        for (size_t y = 0; y < srcH; y++) {
            auto srcStart = &src.fImage[y * src.fRowBytes];
            auto tmpStart = &tmp[y];
            this->blurOneScan(fInfoW,
                              srcStart, 1, srcStart + srcW,
                              tmpStart, tmpW, tmpStart + tmpW * tmpH);
        }

        // Blur vertically (scan in memory order because of the transposition),
        // and transpose back to the original orientation.
        for (size_t y = 0; y < tmpH; y++) {
            auto tmpStart = &tmp[y * tmpW];
            auto dstStart = &dst->fImage[y];
            this->blurOneScan(fInfoH,
                              tmpStart, 1, tmpStart + tmpW,
                              dstStart, dst->fRowBytes, dstStart + dst->fRowBytes * dstH);
        }
    } else if (weightW > 1) {
        // Blur only horizontally.

        for (size_t y = 0; y < srcH; y++) {
            auto srcStart = &src.fImage[y * src.fRowBytes];
            auto dstStart = &dst->fImage[y * dst->fRowBytes];
            this->blurOneScan(fInfoW,
                              srcStart, 1, srcStart + srcW,
                              dstStart, 1, dstStart + dstW);
        }
    } else if (weightH > 1) {
        // Blur only vertically.

        for (size_t x = 0; x < srcW; x++) {
            auto srcStart = &src.fImage[x];
            auto srcEnd   = &src.fImage[src.fRowBytes * srcH];
            auto dstStart = &dst->fImage[x];
            auto dstEnd   = &dst->fImage[dst->fRowBytes * dstH];
            this->blurOneScan(fInfoH,
                              srcStart, src.fRowBytes, srcEnd,
                              dstStart, dst->fRowBytes, dstEnd);
        }
    } else {
        // Copy to dst. No Blur.

        for (size_t y = 0; y < srcH; y++) {
            std::memcpy(&dst->fImage[y * dst->fRowBytes], &src.fImage[y * src.fRowBytes], dstW);
        }
    }

    return {SkTo<int32_t>(borderW), SkTo<int32_t>(borderH)};
}

size_t SkMaskBlurFilter::bufferSize(uint8_t bufferPass) const {
    return std::max(fInfoW.diameter(bufferPass), fInfoH.diameter(bufferPass)) - 1;
}

// Blur one horizontal scan into the dst.
void SkMaskBlurFilter::blurOneScan(
    FilterInfo info,
    const uint8_t* src, size_t srcStride, const uint8_t* srcEnd,
          uint8_t* dst, size_t dstStride,       uint8_t* dstEnd) const {

    auto buffer0Begin = &fBuffer0[0];
    auto buffer1Begin = &fBuffer1[0];
    auto buffer2Begin = &fBuffer2[0];

    auto buffer0Cursor = buffer0Begin;
    auto buffer1Cursor = buffer1Begin;
    auto buffer2Cursor = buffer2Begin;

    auto buffer0End = &fBuffer0[0] + info.diameter(0) - 1;
    auto buffer1End = &fBuffer1[0] + info.diameter(1) - 1;
    auto buffer2End = &fBuffer2[0] + info.diameter(2) - 1;

    std::memset(&fBuffer0[0], 0, (buffer0End - buffer0Begin) * sizeof(fBuffer0[0]));
    std::memset(&fBuffer1[0], 0, (buffer1End - buffer1Begin) * sizeof(fBuffer1[0]));
    std::memset(&fBuffer2[0], 0, (buffer2End - buffer2Begin) * sizeof(fBuffer2[0]));

    uint32_t sum0 = 0;
    uint32_t sum1 = 0;
    uint32_t sum2 = 0;

    const uint64_t half = static_cast<uint64_t>(1) << 31;

    // Consume the source generating pixels.
    for (auto srcCursor = src; srcCursor < srcEnd; dst += dstStride, srcCursor += srcStride) {
        uint32_t s = *srcCursor;
        sum0 += s;
        sum1 += sum0;
        sum2 += sum1;

        *dst = SkTo<uint8_t>((info.scaledWeight() * sum2 + half) >> 32);

        sum2 -= *buffer2Cursor;
        *buffer2Cursor = sum1;
        buffer2Cursor = (buffer2Cursor + 1) < buffer2End ? buffer2Cursor + 1 : &fBuffer2[0];

        sum1 -= *buffer1Cursor;
        *buffer1Cursor = sum0;
        buffer1Cursor = (buffer1Cursor + 1) < buffer1End ? buffer1Cursor + 1 : &fBuffer1[0];

        sum0 -= *buffer0Cursor;
        *buffer0Cursor = s;
        buffer0Cursor = (buffer0Cursor + 1) < buffer0End ? buffer0Cursor + 1 : &fBuffer0[0];
    }

    // This handles the case when both ends of the box are not between [src, srcEnd), and both
    // are zero at that point.
    for (auto i = 0; i < static_cast<ptrdiff_t>(2 * info.borderSize()) - (srcEnd - src); i++) {
        uint32_t s = 0;
        sum0 += s;
        sum1 += sum0;
        sum2 += sum1;

        *dst = SkTo<uint8_t>((info.scaledWeight() * sum2 + half) >> 32);

        sum2 -= *buffer2Cursor;
        *buffer2Cursor = sum1;
        buffer2Cursor = (buffer2Cursor + 1) < buffer2End ? buffer2Cursor + 1 : &fBuffer2[0];

        sum1 -= *buffer1Cursor;
        *buffer1Cursor = sum0;
        buffer1Cursor = (buffer1Cursor + 1) < buffer1End ? buffer1Cursor + 1 : &fBuffer1[0];

        sum0 -= *buffer0Cursor;
        *buffer0Cursor = s;
        buffer0Cursor = (buffer0Cursor + 1) < buffer0End ? buffer0Cursor + 1 : &fBuffer0[0];
        dst += dstStride;
    }

    // Starting from the right, fill in the rest of the buffer.
    std::memset(&fBuffer0[0], 0, (buffer0End - &fBuffer0[0]) * sizeof(fBuffer0[0]));
    std::memset(&fBuffer1[0], 0, (buffer1End - &fBuffer1[0]) * sizeof(fBuffer1[0]));
    std::memset(&fBuffer2[0], 0, (buffer2End - &fBuffer2[0]) * sizeof(fBuffer2[0]));

    sum0 = sum1 = sum2 = 0;

    uint8_t* dstCursor = dstEnd;
    const uint8_t* srcCursor = srcEnd;
    do {
        dstCursor -= dstStride;
        srcCursor -= srcStride;
        uint32_t s = *srcCursor;
        sum0 += s;
        sum1 += sum0;
        sum2 += sum1;

        *dstCursor = SkTo<uint8_t>((info.scaledWeight() * sum2 + half) >> 32);

        sum2 -= *buffer2Cursor;
        *buffer2Cursor = sum1;
        buffer2Cursor = (buffer2Cursor + 1) < buffer2End ? buffer2Cursor + 1 : &fBuffer2[0];

        sum1 -= *buffer1Cursor;
        *buffer1Cursor = sum0;
        buffer1Cursor = (buffer1Cursor + 1) < buffer1End ? buffer1Cursor + 1 : &fBuffer1[0];

        sum0 -= *buffer0Cursor;
        *buffer0Cursor = s;
        buffer0Cursor = (buffer0Cursor + 1) < buffer0End ? buffer0Cursor + 1 : &fBuffer0[0];
    } while (dstCursor > dst);
}