aboutsummaryrefslogtreecommitdiffhomepage
path: root/src/core/SkMaskBlurFilter.cpp
blob: 7cf1dab9f6545ff27aca51397701f312cc6c6b5a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
/*
 * Copyright 2017 Google Inc.
 *
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */

#include "SkMaskBlurFilter.h"

#include <cmath>
#include <climits>

#include "SkArenaAlloc.h"
#include "SkNx.h"
#include "SkSafeMath.h"

static const double kPi = 3.14159265358979323846264338327950288;

#if defined(SK_SUPPORT_LEGACY_USE_GAUSS_FOR_SMALL_RADII)
    static constexpr double kSmallSigma = 0.0;
#else
    static constexpr double kSmallSigma = 2.0;
#endif

class BlurScanInterface {
public:
    virtual ~BlurScanInterface() = default;
    virtual void blur(const uint8_t* src, size_t srcStride, const uint8_t* srcEnd,
                            uint8_t* dst, size_t dstStride,       uint8_t* dstEnd) const = 0;
    virtual bool canBlur4() { return false; }
    virtual void blur4Transpose(
        const uint8_t* src, size_t srcStride, const uint8_t* srcEnd,
              uint8_t* dst, size_t dstStride,       uint8_t* dstEnd) const {
        SK_ABORT("This should not be called.");
    }
};

class PlanningInterface {
public:
    virtual ~PlanningInterface() = default;
    virtual size_t bufferSize() const = 0;
    virtual size_t border() const = 0;
    virtual bool   needsBlur() const = 0;
    virtual BlurScanInterface* makeBlurScan(
        SkArenaAlloc* alloc, size_t width, uint32_t* buffer) const = 0;
};

class None final : public PlanningInterface {
public:
    None() = default;
    size_t bufferSize() const override { return 0; }
    size_t border()     const override { return 0; }
    bool   needsBlur()  const override { return false; }
    BlurScanInterface* makeBlurScan(
        SkArenaAlloc* alloc, size_t width, uint32_t* buffer) const override {
        SK_ABORT("Should never be called.");
        return nullptr;
    }
};

class PlanBox final : public PlanningInterface {
public:
    explicit PlanBox(double sigma) {
        // Calculate the radius from sigma. Taken from the old code until something better is
        // figured out.
        auto possibleRadius = 1.5 * sigma - 0.5;
        auto radius = std::max(std::numeric_limits<double>::epsilon(), possibleRadius);
        auto outerRadius = std::ceil(radius);
        auto outerWindow = 2 * outerRadius + 1;
        auto outerFactor = (1 - (outerRadius - radius)) / outerWindow;
        fOuterWeight = static_cast<uint32_t>(round(outerFactor * (1ull << 24)));

        auto innerRadius = outerRadius - 1;
        auto innerWindow = 2 * innerRadius + 1;
        auto innerFactor = (1 - (radius - innerRadius)) / innerWindow;
        fInnerWeight = static_cast<uint32_t>(round(innerFactor * (1ull << 24)));

        // Sliding window is defined by the relationship between the outer and inner widows.
        // In the single window case, you add the element on the right, and subtract the element on
        // the left. But, because two windows are used, this relationship is more complicated; an
        // element is added from the right of the outer window, and subtracted from the left of the
        // inner window. Because innerWindow = outerWindow - 2, the distance between
        // the left and right in the two window case is outerWindow - 1.
        fSlidingWindow = static_cast<size_t>(outerWindow - 1);
    }

    size_t bufferSize() const override {
        return fSlidingWindow * (sizeof(Sk4u) / sizeof(uint32_t));
    }

    // Remember that sliding window = window - 1. Therefore, radius = sliding window / 2.
    size_t border()     const override { return fSlidingWindow / 2; }

    bool needsBlur()    const override { return true; }

    BlurScanInterface* makeBlurScan(
        SkArenaAlloc* alloc, size_t width, uint32_t* buffer) const override
    {
        size_t noChangeCount;
        size_t trailingEdgeZeroCount;

        // The relation between the slidingWindow and the width dictates two operating modes.
        // * width >= slidingWindow - both sides of the window are contained in the image while
        // scanning. Therefore, we assume that slidingWindow zeros are consumed on the trailing
        // edge of the window. After this count, then both edges are traversing the image.
        // * slidingWindow > width - both sides of the window are off the image while scanning
        // the middle. The front edge of the window can only travel width until it falls off the
        // image. At this point, both edges of the window are off the image consuming zeros
        // and therefore, the destination value does not change. The scan produces unchanged
        // values until the trailing edge of the window enters the image. This count is
        // slidingWindow - width.
        if (width >= fSlidingWindow) {
            noChangeCount = 0;
            trailingEdgeZeroCount = fSlidingWindow;
        } else {
            noChangeCount = fSlidingWindow - width;
            trailingEdgeZeroCount = width;
        }

        Sk4u* sk4uBuffer = reinterpret_cast<Sk4u*>(buffer);
        return alloc->make<Box>(fOuterWeight, fInnerWeight, noChangeCount, trailingEdgeZeroCount,
                                sk4uBuffer, sk4uBuffer + fSlidingWindow);
    }

private:
    class Box final : public BlurScanInterface {
    public:
        Box(uint32_t outerWeight, uint32_t innerWeight,
            size_t noChangeCount, size_t trailingEdgeZeroCount,
            Sk4u* buffer, Sk4u* bufferEnd)
            : fOuterWeight{outerWeight}
            , fInnerWeight{innerWeight}
            , fNoChangeCount{noChangeCount}
            , fTrailingEdgeZeroCount{trailingEdgeZeroCount}
            , fBuffer{buffer}
            , fBufferEnd{bufferEnd} { }

        void blur(const uint8_t* src, size_t srcStride, const uint8_t* srcEnd,
                        uint8_t* dst, size_t dstStride,       uint8_t* dstEnd) const override {
            auto rightOuter = src;
            auto dstCursor = dst;

            auto interpolateSums = [this](uint32_t outerSum, uint32_t innerSum) {
                return SkTo<uint8_t>(
                    (fOuterWeight * outerSum + fInnerWeight * innerSum + kHalf) >> 24);
            };

            uint32_t outerSum = 0;
            uint32_t innerSum = 0;
            for (size_t i = 0; i < fTrailingEdgeZeroCount; i++) {
                innerSum = outerSum;
                outerSum += *rightOuter;
                *dstCursor = interpolateSums(outerSum, innerSum);

                rightOuter += srcStride;
                dstCursor += dstStride;
            }

            // slidingWindow > width
            for (size_t i = 0; i < fNoChangeCount; i++) {
                *dstCursor = interpolateSums(outerSum, innerSum);;
                dstCursor += dstStride;
            }

            // width > slidingWindow
            auto leftInner = src;
            while (rightOuter < srcEnd) {
                innerSum = outerSum - *leftInner;
                outerSum += *rightOuter;
                *dstCursor = interpolateSums(outerSum, innerSum);
                outerSum -= *leftInner;

                rightOuter += srcStride;
                leftInner += srcStride;
                dstCursor += dstStride;
            }

            auto leftOuter = srcEnd;
            dstCursor = dstEnd;
            outerSum = 0;
            for (size_t i = 0; i < fTrailingEdgeZeroCount; i++) {
                leftOuter -= srcStride;
                dstCursor -= dstStride;

                innerSum = outerSum;
                outerSum += *leftOuter;
                *dstCursor = interpolateSums(outerSum, innerSum);
            }
        }

        bool canBlur4() override { return true; }

        // NB this is a transposing scan. The next src is src+1, and the next down is
        // src+srcStride.
        void blur4Transpose(
            const uint8_t* src, size_t srcStride, const uint8_t* srcEnd,
                  uint8_t* dst, size_t dstStride,       uint8_t* dstEnd) const override {
            auto rightOuter = src;
            auto dstCursor = dst;

            Sk4u* const bufferStart = fBuffer;
            Sk4u* bufferCursor = bufferStart;
            Sk4u* const bufferEnd = fBufferEnd;

            const Sk4u outerWeight(SkTo<uint32_t>(fOuterWeight));
            const Sk4u innerWeight(SkTo<uint32_t>(fInnerWeight));

            auto load = [](const uint8_t* cursor, size_t stride) -> Sk4u {
                return Sk4u(cursor[0*stride], cursor[1*stride], cursor[2*stride], cursor[3*stride]);
            };

            auto interpolateSums = [&] (const Sk4u& outerSum,  const Sk4u& innerSum) {
                return
                    SkNx_cast<uint8_t>(
                        (outerSum * outerWeight + innerSum * innerWeight + kHalf) >> 24);
            };

            Sk4u outerSum = 0;
            Sk4u innerSum = 0;
            for (size_t i = 0; i < fTrailingEdgeZeroCount; i++) {
                innerSum = outerSum;

                Sk4u leadingEdge = load(rightOuter, srcStride);
                outerSum += leadingEdge;
                Sk4b blurred = interpolateSums(outerSum, innerSum);
                blurred.store(dstCursor);

                leadingEdge.store(bufferCursor);
                bufferCursor = (bufferCursor + 1) < bufferEnd ? bufferCursor + 1 : bufferStart;

                rightOuter += 1;
                dstCursor += dstStride;
            }

            // slidingWindow > width
            for (size_t i = 0; i < fNoChangeCount; i++) {
                Sk4b blurred = interpolateSums(outerSum, innerSum);
                blurred.store(dstCursor);
                dstCursor += dstStride;
            }

            // width > slidingWindow
            auto leftInner = src;
            while (rightOuter < srcEnd) {
                Sk4u trailEdge = Sk4u::Load(bufferCursor);
                Sk4u leadingEdge = load(rightOuter, srcStride);
                innerSum = outerSum - trailEdge;
                outerSum += leadingEdge;

                Sk4b blurred = interpolateSums(outerSum, innerSum);
                blurred.store(dstCursor);

                outerSum -= trailEdge;
                leadingEdge.store(bufferCursor);
                bufferCursor = (bufferCursor + 1) < bufferEnd ? bufferCursor + 1 : bufferStart;

                rightOuter += 1;
                leftInner += 1;
                dstCursor += dstStride;
            }

            auto leftOuter = srcEnd;
            dstCursor = dstEnd;
            outerSum = 0;
            for (size_t i = 0; i < fTrailingEdgeZeroCount; i++) {
                leftOuter -= 1;
                dstCursor -= dstStride;

                innerSum = outerSum;
                outerSum += load(leftOuter, srcStride);
                Sk4b blurred = interpolateSums(outerSum, innerSum);
                blurred.store(dstCursor);
            }
        }

    private:
        static constexpr uint32_t kHalf = static_cast<uint32_t>(1) << 23;

        const uint32_t fOuterWeight;
        const uint32_t fInnerWeight;
        const size_t   fNoChangeCount;
        const size_t   fTrailingEdgeZeroCount;
        Sk4u* const    fBuffer;
        Sk4u* const    fBufferEnd;
    };
private:
    uint32_t fOuterWeight;
    uint32_t fInnerWeight;
    size_t   fSlidingWindow;
};

class PlanGauss final : public PlanningInterface {
public:
    explicit PlanGauss(double sigma) {
        auto possibleWindow = static_cast<size_t>(floor(sigma * 3 * sqrt(2 * kPi) / 4 + 0.5));
        auto window = std::max(static_cast<size_t>(1), possibleWindow);

        fPass0Size = window - 1;
        fPass1Size = window - 1;
        fPass2Size = (window & 1) == 1 ? window - 1 : window;

        // Calculating the border is tricky. I will go through the odd case which is simpler, and
        // then through the even case. Given a stack of filters seven wide for the odd case of
        // three passes.
        //
        //        S
        //     aaaAaaa
        //     bbbBbbb
        //     cccCccc
        //        D
        //
        // The furthest changed pixel is when the filters are in the following configuration.
        //
        //                 S
        //           aaaAaaa
        //        bbbBbbb
        //     cccCccc
        //        D
        //
        //  The A pixel is calculated using the value S, the B uses A, and the C uses B, and
        // finally D is C. So, with a window size of seven the border is nine. In general, the
        // border is 3*((window - 1)/2).
        //
        // For even cases the filter stack is more complicated. The spec specifies two passes
        // of even filters and a final pass of odd filters. A stack for a width of six looks like
        // this.
        //
        //       S
        //    aaaAaa
        //     bbBbbb
        //    cccCccc
        //       D
        //
        // The furthest pixel looks like this.
        //
        //               S
        //          aaaAaa
        //        bbBbbb
        //    cccCccc
        //       D
        //
        // For a window of size, the border value is seven. In general the border is 3 *
        // (window/2) -1.
        fBorder = (window & 1) == 1 ? 3 * ((window - 1) / 2) : 3 * (window / 2) - 1;
        fSlidingWindow = 2 * fBorder + 1;

        // If the window is odd then the divisor is just window ^ 3 otherwise,
        // it is window * window * (window + 1) = window ^ 2 + window ^ 3;
        auto window2 = window * window;
        auto window3 = window2 * window;
        auto divisor = (window & 1) == 1 ? window3 : window3 + window2;

        #if defined(SK_LEGACY_SUPPORT_INTEGER_SMALL_RADII)
            fWeight = (static_cast<uint64_t>(1) << 32) / divisor;
        #else
            fWeight = static_cast<uint64_t>(round(1.0 / divisor * (1ull << 32)));
        #endif
    }

    size_t bufferSize() const override { return fPass0Size + fPass1Size + fPass2Size; }

    size_t border()     const override { return fBorder; }

    bool needsBlur()    const override { return true; }

    BlurScanInterface* makeBlurScan(
        SkArenaAlloc* alloc, size_t width, uint32_t* buffer) const override
    {
        uint32_t* buffer0, *buffer0End, *buffer1, *buffer1End, *buffer2, *buffer2End;
        buffer0 = buffer;
        buffer0End = buffer1 = buffer0 + fPass0Size;
        buffer1End = buffer2 = buffer1 + fPass1Size;
        buffer2End = buffer2 + fPass2Size;
        size_t noChangeCount = fSlidingWindow > width ? fSlidingWindow - width : 0;

        return alloc->make<Gauss>(
            fWeight, noChangeCount,
            buffer0, buffer0End,
            buffer1, buffer1End,
            buffer2, buffer2End);
    }

public:
    class Gauss final : public BlurScanInterface {
    public:
        Gauss(uint64_t weight, size_t noChangeCount,
              uint32_t* buffer0, uint32_t* buffer0End,
              uint32_t* buffer1, uint32_t* buffer1End,
              uint32_t* buffer2, uint32_t* buffer2End)
            : fWeight{weight}
            , fNoChangeCount{noChangeCount}
            , fBuffer0{buffer0}
            , fBuffer0End{buffer0End}
            , fBuffer1{buffer1}
            , fBuffer1End{buffer1End}
            , fBuffer2{buffer2}
            , fBuffer2End{buffer2End}
        { }

        void blur(const uint8_t* src, size_t srcStride, const uint8_t* srcEnd,
                  uint8_t* dst, size_t dstStride, uint8_t* dstEnd) const override {
            auto buffer0Cursor = fBuffer0;
            auto buffer1Cursor = fBuffer1;
            auto buffer2Cursor = fBuffer2;

            std::memset(fBuffer0, 0x00, (fBuffer2End - fBuffer0) * sizeof(*fBuffer0));

            uint32_t sum0 = 0;
            uint32_t sum1 = 0;
            uint32_t sum2 = 0;

            // Consume the source generating pixels.
            for (auto srcCursor = src;
                 srcCursor < srcEnd; dst += dstStride, srcCursor += srcStride) {
                uint32_t leadingEdge = *srcCursor;
                sum0 += leadingEdge;
                sum1 += sum0;
                sum2 += sum1;

                *dst = this->finalScale(sum2);

                sum2 -= *buffer2Cursor;
                *buffer2Cursor = sum1;
                buffer2Cursor = (buffer2Cursor + 1) < fBuffer2End ? buffer2Cursor + 1 : fBuffer2;

                sum1 -= *buffer1Cursor;
                *buffer1Cursor = sum0;
                buffer1Cursor = (buffer1Cursor + 1) < fBuffer1End ? buffer1Cursor + 1 : fBuffer1;

                sum0 -= *buffer0Cursor;
                *buffer0Cursor = leadingEdge;
                buffer0Cursor = (buffer0Cursor + 1) < fBuffer0End ? buffer0Cursor + 1 : fBuffer0;
            }

            // The leading edge is off the right side of the mask.
            for (size_t i = 0; i < fNoChangeCount; i++) {
                uint32_t leadingEdge = 0;
                sum0 += leadingEdge;
                sum1 += sum0;
                sum2 += sum1;

                *dst = this->finalScale(sum2);

                sum2 -= *buffer2Cursor;
                *buffer2Cursor = sum1;
                buffer2Cursor = (buffer2Cursor + 1) < fBuffer2End ? buffer2Cursor + 1 : fBuffer2;

                sum1 -= *buffer1Cursor;
                *buffer1Cursor = sum0;
                buffer1Cursor = (buffer1Cursor + 1) < fBuffer1End ? buffer1Cursor + 1 : fBuffer1;

                sum0 -= *buffer0Cursor;
                *buffer0Cursor = leadingEdge;
                buffer0Cursor = (buffer0Cursor + 1) < fBuffer0End ? buffer0Cursor + 1 : fBuffer0;

                dst += dstStride;
            }

            // Starting from the right, fill in the rest of the buffer.
            std::memset(fBuffer0, 0, (fBuffer2End - fBuffer0) * sizeof(*fBuffer0));

            sum0 = sum1 = sum2 = 0;

            uint8_t* dstCursor = dstEnd;
            const uint8_t* srcCursor = srcEnd;
            while (dstCursor > dst) {
                dstCursor -= dstStride;
                srcCursor -= srcStride;
                uint32_t leadingEdge = *srcCursor;
                sum0 += leadingEdge;
                sum1 += sum0;
                sum2 += sum1;

                *dstCursor = this->finalScale(sum2);

                sum2 -= *buffer2Cursor;
                *buffer2Cursor = sum1;
                buffer2Cursor = (buffer2Cursor + 1) < fBuffer2End ? buffer2Cursor + 1 : fBuffer2;

                sum1 -= *buffer1Cursor;
                *buffer1Cursor = sum0;
                buffer1Cursor = (buffer1Cursor + 1) < fBuffer1End ? buffer1Cursor + 1 : fBuffer1;

                sum0 -= *buffer0Cursor;
                *buffer0Cursor = leadingEdge;
                buffer0Cursor = (buffer0Cursor + 1) < fBuffer0End ? buffer0Cursor + 1 : fBuffer0;
            }
        }

    private:
        static constexpr uint64_t kHalf = static_cast<uint64_t>(1) << 31;

        uint8_t finalScale(uint32_t sum) const {
            return SkTo<uint8_t>((fWeight * sum + kHalf) >> 32);
        }

        uint64_t  fWeight;
        size_t    fNoChangeCount;
        uint32_t* fBuffer0;
        uint32_t* fBuffer0End;
        uint32_t* fBuffer1;
        uint32_t* fBuffer1End;
        uint32_t* fBuffer2;
        uint32_t* fBuffer2End;
    };

    uint64_t fWeight;
    size_t   fBorder;
    size_t   fSlidingWindow;
    size_t   fPass0Size;
    size_t   fPass1Size;
    size_t   fPass2Size;
};

static PlanningInterface* make_plan(SkArenaAlloc* alloc, double sigma) {
    PlanningInterface* plan = nullptr;

    if (3 * sigma <= 1) {
        plan = alloc->make<None>();
    } else if (sigma < kSmallSigma) {
        plan = alloc->make<PlanBox>(sigma);
    } else {
        plan = alloc->make<PlanGauss>(sigma);
    }

    return plan;
};

// NB 136 is the largest sigma that will not cause a buffer full of 255 mask values to overflow
// using the Gauss filter. It also limits the size of buffers used hold intermediate values.
// Explanation of maximums:
//   sum0 = window * 255
//   sum1 = window * sum0 -> window * window * 255
//   sum2 = window * sum1 -> window * window * window * 255 -> window^3 * 255
//
//   The value window^3 * 255 must fit in a uint32_t. So,
//      window^3 < 2^32. window = 255.
//
//   window = floor(sigma * 3 * sqrt(2 * kPi) / 4 + 0.5)
//   For window <= 255, the largest value for sigma is 136.
SkMaskBlurFilter::SkMaskBlurFilter(double sigmaW, double sigmaH)
    : fSigmaW{SkTPin(sigmaW, 0.0, 136.0)}
    , fSigmaH{SkTPin(sigmaH, 0.0, 136.0)}
{
    SkASSERT(sigmaW >= 0);
    SkASSERT(sigmaH >= 0);
}

bool SkMaskBlurFilter::hasNoBlur() const {
    return (3 * fSigmaW <= 1) && (3 * fSigmaH <= 1);
}

SkIPoint SkMaskBlurFilter::blur(const SkMask& src, SkMask* dst) const {

    // 1024 is a place holder guess until more analysis can be done.
    SkSTArenaAlloc<1024> alloc;

    PlanningInterface* planW = make_plan(&alloc, fSigmaW);
    PlanningInterface* planH = make_plan(&alloc, fSigmaH);

    size_t borderW = planW->border();
    size_t borderH = planH->border();

    auto srcW = SkTo<size_t>(src.fBounds.width());
    auto srcH = SkTo<size_t>(src.fBounds.height());

    SkSafeMath safe;

    // size_t dstW = srcW + 2 * borderW;
    size_t dstW = safe.add(srcW, safe.add(borderW, borderW));
    //size_t dstH = srcH + 2 * borderH;
    size_t dstH = safe.add(srcH, safe.add(borderH, borderH));

    dst->fBounds.set(0, 0, dstW, dstH);
    dst->fBounds.offset(src.fBounds.x(), src.fBounds.y());
    dst->fBounds.offset(-SkTo<int32_t>(borderW), -SkTo<int32_t>(borderH));

    dst->fImage = nullptr;
    dst->fRowBytes = SkTo<uint32_t>(dstW);
    dst->fFormat = SkMask::kA8_Format;

    if (src.fImage == nullptr) {
        return {SkTo<int32_t>(borderW), SkTo<int32_t>(borderH)};
    }

    size_t toAlloc = safe.mul(dstW, dstH);
    if (!safe) {
        dst->fBounds = SkIRect::MakeEmpty();
        // There is no border offset because we are not drawing.
        return {0, 0};
    }
    dst->fImage = SkMask::AllocImage(toAlloc);

    auto bufferSize = std::max(planW->bufferSize(), planH->bufferSize());
    auto buffer = alloc.makeArrayDefault<uint32_t>(bufferSize);

    if (planW->needsBlur() && planH->needsBlur()) {
        // Blur both directions.
        size_t tmpW = srcH;
        size_t tmpH = dstW;

        auto tmp = alloc.makeArrayDefault<uint8_t>(tmpW * tmpH);

        // Blur horizontally, and transpose.
        auto scanW = planW->makeBlurScan(&alloc, srcW, buffer);
        size_t y = 0;
        if (scanW->canBlur4() && srcH > 4) {
            for (;y + 4 <= srcH; y += 4) {
                auto srcStart = &src.fImage[y * src.fRowBytes];
                auto tmpStart = &tmp[y];
                scanW->blur4Transpose(srcStart, src.fRowBytes, srcStart + srcW,
                                      tmpStart, tmpW, tmpStart + tmpW * tmpH);
            }
        }

        for (;y < srcH; y++) {
            auto srcStart = &src.fImage[y * src.fRowBytes];
            auto tmpStart = &tmp[y];
            scanW->blur(srcStart,    1, srcStart + srcW,
                        tmpStart, tmpW, tmpStart + tmpW * tmpH);
        }


        // Blur vertically (scan in memory order because of the transposition),
        // and transpose back to the original orientation.
        auto scanH = planH->makeBlurScan(&alloc, tmpW, buffer);
        y = 0;
        if (scanH->canBlur4() && tmpH > 4) {
            for (;y + 4 <= tmpH; y += 4) {
                auto tmpStart = &tmp[y * tmpW];
                auto dstStart = &dst->fImage[y];

                scanH->blur4Transpose(
                    tmpStart, tmpW, tmpStart + tmpW,
                    dstStart, dst->fRowBytes, dstStart + dst->fRowBytes * dstH);
            }
        }
        for (;y < tmpH; y++) {
            auto tmpStart = &tmp[y * tmpW];
            auto dstStart = &dst->fImage[y];

            scanH->blur(tmpStart, 1, tmpStart + tmpW,
                        dstStart, dst->fRowBytes, dstStart + dst->fRowBytes * dstH);
        }
    } else if (planW->needsBlur()) {
        // Blur only horizontally.

        auto scanW = planW->makeBlurScan(&alloc, srcW, buffer);
        for (size_t y = 0; y < srcH; y++) {
            auto srcStart = &src.fImage[y * src.fRowBytes];
            auto dstStart = &dst->fImage[y * dst->fRowBytes];
            scanW->blur(srcStart, 1, srcStart + srcW,
                        dstStart, 1, dstStart + dstW);

        }
    } else if (planH->needsBlur()) {
        // Blur only vertically.

        auto srcEnd   = &src.fImage[src.fRowBytes * srcH];
        auto dstEnd   = &dst->fImage[dst->fRowBytes * dstH];
        auto scanH = planH->makeBlurScan(&alloc, srcH, buffer);
        for (size_t x = 0; x < srcW; x++) {
            auto srcStart = &src.fImage[x];
            auto dstStart = &dst->fImage[x];
            scanH->blur(srcStart, src.fRowBytes, srcEnd,
                        dstStart, dst->fRowBytes, dstEnd);
        }
    } else {
        // Copy to dst. No Blur.
        SkASSERT(false);    // should not get here
        for (size_t y = 0; y < srcH; y++) {
            std::memcpy(&dst->fImage[y * dst->fRowBytes], &src.fImage[y * src.fRowBytes], dstW);
        }
    }

    return {SkTo<int32_t>(borderW), SkTo<int32_t>(borderH)};
}