aboutsummaryrefslogtreecommitdiffhomepage
path: root/src/core/SkMaskBlurFilter.cpp
blob: 21bcf53bec6e0b7e091394e8b68dc75493c82780 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
/*
 * Copyright 2017 Google Inc.
 *
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */

#include "SkMaskBlurFilter.h"

#include "SkArenaAlloc.h"
#include "SkColorPriv.h"
#include "SkGaussFilter.h"
#include "SkMalloc.h"
#include "SkNx.h"
#include "SkTemplates.h"
#include "SkTo.h"

#include <cmath>
#include <climits>

namespace {
static const double kPi = 3.14159265358979323846264338327950288;

class PlanGauss final {
public:
    explicit PlanGauss(double sigma) {
        auto possibleWindow = static_cast<int>(floor(sigma * 3 * sqrt(2 * kPi) / 4 + 0.5));
        auto window = std::max(1, possibleWindow);

        fPass0Size = window - 1;
        fPass1Size = window - 1;
        fPass2Size = (window & 1) == 1 ? window - 1 : window;

        // Calculating the border is tricky. I will go through the odd case which is simpler, and
        // then through the even case. Given a stack of filters seven wide for the odd case of
        // three passes.
        //
        //        S
        //     aaaAaaa
        //     bbbBbbb
        //     cccCccc
        //        D
        //
        // The furthest changed pixel is when the filters are in the following configuration.
        //
        //                 S
        //           aaaAaaa
        //        bbbBbbb
        //     cccCccc
        //        D
        //
        //  The A pixel is calculated using the value S, the B uses A, and the C uses B, and
        // finally D is C. So, with a window size of seven the border is nine. In general, the
        // border is 3*((window - 1)/2).
        //
        // For even cases the filter stack is more complicated. The spec specifies two passes
        // of even filters and a final pass of odd filters. A stack for a width of six looks like
        // this.
        //
        //       S
        //    aaaAaa
        //     bbBbbb
        //    cccCccc
        //       D
        //
        // The furthest pixel looks like this.
        //
        //               S
        //          aaaAaa
        //        bbBbbb
        //    cccCccc
        //       D
        //
        // For a window of size, the border value is seven. In general the border is 3 *
        // (window/2) -1.
        fBorder = (window & 1) == 1 ? 3 * ((window - 1) / 2) : 3 * (window / 2) - 1;
        fSlidingWindow = 2 * fBorder + 1;

        // If the window is odd then the divisor is just window ^ 3 otherwise,
        // it is window * window * (window + 1) = window ^ 2 + window ^ 3;
        auto window2 = window * window;
        auto window3 = window2 * window;
        auto divisor = (window & 1) == 1 ? window3 : window3 + window2;

        fWeight = static_cast<uint64_t>(round(1.0 / divisor * (1ull << 32)));
    }

    size_t bufferSize() const { return fPass0Size + fPass1Size + fPass2Size; }

    int    border()     const { return fBorder; }

public:
    class Scan {
    public:
        Scan(uint64_t weight, int noChangeCount,
             uint32_t* buffer0, uint32_t* buffer0End,
             uint32_t* buffer1, uint32_t* buffer1End,
             uint32_t* buffer2, uint32_t* buffer2End)
            : fWeight{weight}
            , fNoChangeCount{noChangeCount}
            , fBuffer0{buffer0}
            , fBuffer0End{buffer0End}
            , fBuffer1{buffer1}
            , fBuffer1End{buffer1End}
            , fBuffer2{buffer2}
            , fBuffer2End{buffer2End}
        { }

        template <typename AlphaIter> void blur(const AlphaIter srcBegin, const AlphaIter srcEnd,
                    uint8_t* dst, int dstStride, uint8_t* dstEnd) const {
            auto buffer0Cursor = fBuffer0;
            auto buffer1Cursor = fBuffer1;
            auto buffer2Cursor = fBuffer2;

            std::memset(fBuffer0, 0x00, (fBuffer2End - fBuffer0) * sizeof(*fBuffer0));

            uint32_t sum0 = 0;
            uint32_t sum1 = 0;
            uint32_t sum2 = 0;

            // Consume the source generating pixels.
            for (AlphaIter src = srcBegin; src < srcEnd; ++src, dst += dstStride) {
                uint32_t leadingEdge = *src;
                sum0 += leadingEdge;
                sum1 += sum0;
                sum2 += sum1;

                *dst = this->finalScale(sum2);

                sum2 -= *buffer2Cursor;
                *buffer2Cursor = sum1;
                buffer2Cursor = (buffer2Cursor + 1) < fBuffer2End ? buffer2Cursor + 1 : fBuffer2;

                sum1 -= *buffer1Cursor;
                *buffer1Cursor = sum0;
                buffer1Cursor = (buffer1Cursor + 1) < fBuffer1End ? buffer1Cursor + 1 : fBuffer1;

                sum0 -= *buffer0Cursor;
                *buffer0Cursor = leadingEdge;
                buffer0Cursor = (buffer0Cursor + 1) < fBuffer0End ? buffer0Cursor + 1 : fBuffer0;
            }

            // The leading edge is off the right side of the mask.
            for (int i = 0; i < fNoChangeCount; i++) {
                uint32_t leadingEdge = 0;
                sum0 += leadingEdge;
                sum1 += sum0;
                sum2 += sum1;

                *dst = this->finalScale(sum2);

                sum2 -= *buffer2Cursor;
                *buffer2Cursor = sum1;
                buffer2Cursor = (buffer2Cursor + 1) < fBuffer2End ? buffer2Cursor + 1 : fBuffer2;

                sum1 -= *buffer1Cursor;
                *buffer1Cursor = sum0;
                buffer1Cursor = (buffer1Cursor + 1) < fBuffer1End ? buffer1Cursor + 1 : fBuffer1;

                sum0 -= *buffer0Cursor;
                *buffer0Cursor = leadingEdge;
                buffer0Cursor = (buffer0Cursor + 1) < fBuffer0End ? buffer0Cursor + 1 : fBuffer0;

                dst += dstStride;
            }

            // Starting from the right, fill in the rest of the buffer.
            std::memset(fBuffer0, 0, (fBuffer2End - fBuffer0) * sizeof(*fBuffer0));

            sum0 = sum1 = sum2 = 0;

            uint8_t* dstCursor = dstEnd;
            AlphaIter src = srcEnd;
            while (dstCursor > dst) {
                dstCursor -= dstStride;
                uint32_t leadingEdge = *(--src);
                sum0 += leadingEdge;
                sum1 += sum0;
                sum2 += sum1;

                *dstCursor = this->finalScale(sum2);

                sum2 -= *buffer2Cursor;
                *buffer2Cursor = sum1;
                buffer2Cursor = (buffer2Cursor + 1) < fBuffer2End ? buffer2Cursor + 1 : fBuffer2;

                sum1 -= *buffer1Cursor;
                *buffer1Cursor = sum0;
                buffer1Cursor = (buffer1Cursor + 1) < fBuffer1End ? buffer1Cursor + 1 : fBuffer1;

                sum0 -= *buffer0Cursor;
                *buffer0Cursor = leadingEdge;
                buffer0Cursor = (buffer0Cursor + 1) < fBuffer0End ? buffer0Cursor + 1 : fBuffer0;
            }
        }

    private:
        static constexpr uint64_t kHalf = static_cast<uint64_t>(1) << 31;

        uint8_t finalScale(uint32_t sum) const {
            return SkTo<uint8_t>((fWeight * sum + kHalf) >> 32);
        }

        uint64_t  fWeight;
        int       fNoChangeCount;
        uint32_t* fBuffer0;
        uint32_t* fBuffer0End;
        uint32_t* fBuffer1;
        uint32_t* fBuffer1End;
        uint32_t* fBuffer2;
        uint32_t* fBuffer2End;
    };

    Scan makeBlurScan(int width, uint32_t* buffer) const {
        uint32_t* buffer0, *buffer0End, *buffer1, *buffer1End, *buffer2, *buffer2End;
        buffer0 = buffer;
        buffer0End = buffer1 = buffer0 + fPass0Size;
        buffer1End = buffer2 = buffer1 + fPass1Size;
        buffer2End = buffer2 + fPass2Size;
        int noChangeCount = fSlidingWindow > width ? fSlidingWindow - width : 0;

        return Scan(
            fWeight, noChangeCount,
            buffer0, buffer0End,
            buffer1, buffer1End,
            buffer2, buffer2End);
    }

    uint64_t fWeight;
    int      fBorder;
    int      fSlidingWindow;
    int      fPass0Size;
    int      fPass1Size;
    int      fPass2Size;
};

} // namespace

// NB 136 is the largest sigma that will not cause a buffer full of 255 mask values to overflow
// using the Gauss filter. It also limits the size of buffers used hold intermediate values.
// Explanation of maximums:
//   sum0 = window * 255
//   sum1 = window * sum0 -> window * window * 255
//   sum2 = window * sum1 -> window * window * window * 255 -> window^3 * 255
//
//   The value window^3 * 255 must fit in a uint32_t. So,
//      window^3 < 2^32. window = 255.
//
//   window = floor(sigma * 3 * sqrt(2 * kPi) / 4 + 0.5)
//   For window <= 255, the largest value for sigma is 136.
SkMaskBlurFilter::SkMaskBlurFilter(double sigmaW, double sigmaH)
    : fSigmaW{SkTPin(sigmaW, 0.0, 136.0)}
    , fSigmaH{SkTPin(sigmaH, 0.0, 136.0)}
{
    SkASSERT(sigmaW >= 0);
    SkASSERT(sigmaH >= 0);
}

bool SkMaskBlurFilter::hasNoBlur() const {
    return (3 * fSigmaW <= 1) && (3 * fSigmaH <= 1);
}

// We favor A8 masks, and if we need to work with another format, we'll convert to A8 first.
// Each of these converts width (up to 8) mask values to A8.
static void bw_to_a8(uint8_t* a8, const uint8_t* from, int width) {
    SkASSERT(0 < width && width <= 8);

    uint8_t masks = *from;
    for (int i = 0; i < width; ++i) {
        a8[i] = (masks >> (7 - i)) & 1 ? 0xFF
                                       : 0x00;
    }
}
static void lcd_to_a8(uint8_t* a8, const uint8_t* from, int width) {
    SkASSERT(0 < width && width <= 8);

    for (int i = 0; i < width; ++i) {
        unsigned rgb = reinterpret_cast<const uint16_t*>(from)[i],
                   r = SkPacked16ToR32(rgb),
                   g = SkPacked16ToG32(rgb),
                   b = SkPacked16ToB32(rgb);
        a8[i] = (r + g + b) / 3;
    }
}
static void argb32_to_a8(uint8_t* a8, const uint8_t* from, int width) {
    SkASSERT(0 < width && width <= 8);
    for (int i = 0; i < width; ++i) {
        uint32_t rgba = reinterpret_cast<const uint32_t*>(from)[i];
        a8[i] = SkGetPackedA32(rgba);
    }
}
using ToA8 = decltype(bw_to_a8);

static Sk8h load(const uint8_t* from, int width, ToA8* toA8) {
    // Our fast path is a full 8-byte load of A8.
    // So we'll conditionally handle the two slow paths using tmp:
    //    - if we have a function to convert another mask to A8, use it;
    //    - if not but we have less than 8 bytes to load, load them one at a time.
    uint8_t tmp[8] = {0,0,0,0, 0,0,0,0};
    if (toA8) {
        toA8(tmp, from, width);
        from = tmp;
    } else if (width < 8) {
        for (int i = 0; i < width; ++i) {
            tmp[i] = from[i];
        }
        from = tmp;
    }

    // Load A8 and convert to 8.8 fixed-point.
    return SkNx_cast<uint16_t>(Sk8b::Load(from)) << 8;
}

static void store(uint8_t* to, const Sk8h& v, int width) {
    Sk8b b = SkNx_cast<uint8_t>(v >> 8);
    if (width == 8) {
        b.store(to);
    } else {
        uint8_t buffer[8];
        b.store(buffer);
        for (int i = 0; i < width; i++) {
            to[i] = buffer[i];
        }
    }
};

static constexpr uint16_t _____ = 0u;
static constexpr uint16_t kHalf = 0x80u;

// In all the blur_x_radius_N and blur_y_radius_N functions the gaussian values are encoded
// in 0.16 format, none of the values is greater than one. The incoming mask values are in 8.8
// format. The resulting multiply has a 8.24 format, by the mulhi truncates the lower 16 bits
// resulting in a 8.8 format.
//
// The blur_x_radius_N function below blur along a row of pixels using a kernel with radius N. This
// system is setup to minimize the number of multiplies needed.
//
// Explanation:
//    Blurring a specific mask value is given by the following equation where D_n is the resulting
// mask value and S_n is the source value. The example below is for a filter with a radius of 1
// and a width of 3 (radius == (width-1)/2). The indexes for the source and destination are
// aligned. The filter is given by G_n where n is the symmetric filter value.
//
//   D[n] = S[n-1]*G[1] + S[n]*G[0] + S[n+1]*G[1].
//
// We can start the source index at an offset relative to the destination separated by the
// radius. This results in a non-traditional restating of the above filter.
//
//  D[n] = S[n]*G[1] + S[n+1]*G[0] + S[n+2]*G[1]
//
// If we look at three specific consecutive destinations the following equations result:
//
//   D[5] = S[5]*G[1] + S[6]*G[0] + S[7]*G[1]
//   D[7] = S[6]*G[1] + S[7]*G[0] + S[8]*G[1]
//   D[8] = S[7]*G[1] + S[8]*G[0] + S[9]*G[1].
//
// In the above equations, notice that S[7] is used in all three. In particular, two values are
// used: S[7]*G[0] and S[7]*G[1]. So, S[7] is only multiplied twice, but used in D[5], D[6] and
// D[7].
//
// From the point of view of a source value we end up with the following three equations.
//
// Given S[7]:
//   D[5] += S[7]*G[1]
//   D[6] += S[7]*G[0]
//   D[7] += S[7]*G[1]
//
// In General:
//   D[n]   += S[n]*G[1]
//   D[n+1] += S[n]*G[0]
//   D[n+2] += S[n]*G[1]
//
// Now these equations can be ganged using SIMD to form:
//   D[n..n+7]   += S[n..n+7]*G[1]
//   D[n+1..n+8] += S[n..n+7]*G[0]
//   D[n+2..n+9] += S[n..n+7]*G[1]
// The next set of values becomes.
//   D[n+8..n+15]  += S[n+8..n+15]*G[1]
//   D[n+9..n+16]  += S[n+8..n+15]*G[0]
//   D[n+10..n+17] += S[n+8..n+15]*G[1]
// You can see that the D[n+8] and D[n+9] values overlap the two sets, using parts of both
// S[n..7] and S[n+8..n+15].
//
// Just one more transformation allows the code to maintain all working values in
// registers. I introduce the notation {0, S[n..n+7] * G[k]} to mean that the value where 0 is
// prepended to the array of values to form {0, S[n] * G[k], ..., S[n+7]*G[k]}.
//
//   D[n..n+7]  += S[n..n+7] * G[1]
//   D[n..n+8]  += {0, S[n..n+7] * G[0]}
//   D[n..n+9]  += {0, 0, S[n..n+7] * G[1]}
//
// Now we can encode D[n..n+7] in a single Sk8h register called d0, and D[n+8..n+15] in a
// register d8. In addition, S[0..n+7] becomes s0.
//
// The translation of the {0, S[n..n+7] * G[k]} is translated in the following way below.
//
// Sk8h v0 = s0*G[0]
// Sk8h v1 = s0*G[1]
// /* D[n..n+7]  += S[n..n+7] * G[1] */
// d0 += v1;
// /* D[n..n+8]  += {0, S[n..n+7] * G[0]} */
// d0 += {_____, v0[0], v0[1], v0[2], v0[3], v0[4], v0[5], v0[6]}
// d1 += {v0[7], _____, _____, _____, _____, _____, _____, _____}
// /* D[n..n+9]  += {0, 0, S[n..n+7] * G[1]} */
// d0 += {_____, _____, v1[0], v1[1], v1[2], v1[3], v1[4], v1[5]}
// d1 += {v1[6], v1[7], _____, _____, _____, _____, _____, _____}
// Where we rely on the compiler to generate efficient code for the {____, n, ....} notation.

static void blur_x_radius_1(
        const Sk8h& s0,
        const Sk8h& g0, const Sk8h& g1, const Sk8h&, const Sk8h&, const Sk8h&,
        Sk8h* d0, Sk8h* d8) {

    auto v1 = s0.mulHi(g1);
    auto v0 = s0.mulHi(g0);

    // D[n..n+7]  += S[n..n+7] * G[1]
    *d0 += v1;

    //D[n..n+8]  += {0, S[n..n+7] * G[0]}
    *d0 += Sk8h{_____, v0[0], v0[1], v0[2], v0[3], v0[4], v0[5], v0[6]};
    *d8 += Sk8h{v0[7], _____, _____, _____, _____, _____, _____, _____};

    // D[n..n+9]  += {0, 0, S[n..n+7] * G[1]}
    *d0 += Sk8h{_____, _____, v1[0], v1[1], v1[2], v1[3], v1[4], v1[5]};
    *d8 += Sk8h{v1[6], v1[7], _____, _____, _____, _____, _____, _____};

}

static void blur_x_radius_2(
        const Sk8h& s0,
        const Sk8h& g0, const Sk8h& g1, const Sk8h& g2, const Sk8h&, const Sk8h&,
        Sk8h* d0, Sk8h* d8) {
    auto v0 = s0.mulHi(g0);
    auto v1 = s0.mulHi(g1);
    auto v2 = s0.mulHi(g2);

    // D[n..n+7]  += S[n..n+7] * G[2]
    *d0 += v2;

    // D[n..n+8]  += {0, S[n..n+7] * G[1]}
    *d0 += Sk8h{_____, v1[0], v1[1], v1[2], v1[3], v1[4], v1[5], v1[6]};
    *d8 += Sk8h{v1[7], _____, _____, _____, _____, _____, _____, _____};

    // D[n..n+9]  += {0, 0, S[n..n+7] * G[0]}
    *d0 += Sk8h{_____, _____, v0[0], v0[1], v0[2], v0[3], v0[4], v0[5]};
    *d8 += Sk8h{v0[6], v0[7], _____, _____, _____, _____, _____, _____};

    // D[n..n+10]  += {0, 0, 0, S[n..n+7] * G[1]}
    *d0 += Sk8h{_____, _____, _____, v1[0], v1[1], v1[2], v1[3], v1[4]};
    *d8 += Sk8h{v1[5], v1[6], v1[7], _____, _____, _____, _____, _____};

    // D[n..n+11]  += {0, 0, 0, 0, S[n..n+7] * G[2]}
    *d0 += Sk8h{_____, _____, _____, _____, v2[0], v2[1], v2[2], v2[3]};
    *d8 += Sk8h{v2[4], v2[5], v2[6], v2[7], _____, _____, _____, _____};
}

static void blur_x_radius_3(
        const Sk8h& s0,
        const Sk8h& gauss0, const Sk8h& gauss1, const Sk8h& gauss2, const Sk8h& gauss3, const Sk8h&,
        Sk8h* d0, Sk8h* d8) {
    auto v0 = s0.mulHi(gauss0);
    auto v1 = s0.mulHi(gauss1);
    auto v2 = s0.mulHi(gauss2);
    auto v3 = s0.mulHi(gauss3);

    // D[n..n+7]  += S[n..n+7] * G[3]
    *d0 += v3;

    // D[n..n+8]  += {0, S[n..n+7] * G[2]}
    *d0 += Sk8h{_____, v2[0], v2[1], v2[2], v2[3], v2[4], v2[5], v2[6]};
    *d8 += Sk8h{v2[7], _____, _____, _____, _____, _____, _____, _____};

    // D[n..n+9]  += {0, 0, S[n..n+7] * G[1]}
    *d0 += Sk8h{_____, _____, v1[0], v1[1], v1[2], v1[3], v1[4], v1[5]};
    *d8 += Sk8h{v1[6], v1[7], _____, _____, _____, _____, _____, _____};

    // D[n..n+10]  += {0, 0, 0, S[n..n+7] * G[0]}
    *d0 += Sk8h{_____, _____, _____, v0[0], v0[1], v0[2], v0[3], v0[4]};
    *d8 += Sk8h{v0[5], v0[6], v0[7], _____, _____, _____, _____, _____};

    // D[n..n+11]  += {0, 0, 0, 0, S[n..n+7] * G[1]}
    *d0 += Sk8h{_____, _____, _____, _____, v1[0], v1[1], v1[2], v1[3]};
    *d8 += Sk8h{v1[4], v1[5], v1[6], v1[7], _____, _____, _____, _____};

    // D[n..n+12]  += {0, 0, 0, 0, 0, S[n..n+7] * G[2]}
    *d0 += Sk8h{_____, _____, _____, _____, _____, v2[0], v2[1], v2[2]};
    *d8 += Sk8h{v2[3], v2[4], v2[5], v2[6], v2[7], _____, _____, _____};

    // D[n..n+13]  += {0, 0, 0, 0, 0, 0, S[n..n+7] * G[3]}
    *d0 += Sk8h{_____, _____, _____, _____, _____, _____, v3[0], v3[1]};
    *d8 += Sk8h{v3[2], v3[3], v3[4], v3[5], v3[6], v3[7], _____, _____};
}

static void blur_x_radius_4(
        const Sk8h& s0,
        const Sk8h& gauss0,
        const Sk8h& gauss1,
        const Sk8h& gauss2,
        const Sk8h& gauss3,
        const Sk8h& gauss4,
        Sk8h* d0, Sk8h* d8) {
    auto v0 = s0.mulHi(gauss0);
    auto v1 = s0.mulHi(gauss1);
    auto v2 = s0.mulHi(gauss2);
    auto v3 = s0.mulHi(gauss3);
    auto v4 = s0.mulHi(gauss4);

    // D[n..n+7]  += S[n..n+7] * G[4]
    *d0 += v4;

    // D[n..n+8]  += {0, S[n..n+7] * G[3]}
    *d0 += Sk8h{_____, v3[0], v3[1], v3[2], v3[3], v3[4], v3[5], v3[6]};
    *d8 += Sk8h{v3[7], _____, _____, _____, _____, _____, _____, _____};

    // D[n..n+9]  += {0, 0, S[n..n+7] * G[2]}
    *d0 += Sk8h{_____, _____, v2[0], v2[1], v2[2], v2[3], v2[4], v2[5]};
    *d8 += Sk8h{v2[6], v2[7], _____, _____, _____, _____, _____, _____};

    // D[n..n+10]  += {0, 0, 0, S[n..n+7] * G[1]}
    *d0 += Sk8h{_____, _____, _____, v1[0], v1[1], v1[2], v1[3], v1[4]};
    *d8 += Sk8h{v1[5], v1[6], v1[7], _____, _____, _____, _____, _____};

    // D[n..n+11]  += {0, 0, 0, 0, S[n..n+7] * G[0]}
    *d0 += Sk8h{_____, _____, _____, _____, v0[0], v0[1], v0[2], v0[3]};
    *d8 += Sk8h{v0[4], v0[5], v0[6], v0[7], _____, _____, _____, _____};

    // D[n..n+12]  += {0, 0, 0, 0, 0, S[n..n+7] * G[1]}
    *d0 += Sk8h{_____, _____, _____, _____, _____, v1[0], v1[1], v1[2]};
    *d8 += Sk8h{v1[3], v1[4], v1[5], v1[6], v1[7], _____, _____, _____};

    // D[n..n+13]  += {0, 0, 0, 0, 0, 0, S[n..n+7] * G[2]}
    *d0 += Sk8h{_____, _____, _____, _____, _____, _____, v2[0], v2[1]};
    *d8 += Sk8h{v2[2], v2[3], v2[4], v2[5], v2[6], v2[7], _____, _____};

    // D[n..n+14]  += {0, 0, 0, 0, 0, 0, 0, S[n..n+7] * G[3]}
    *d0 += Sk8h{_____, _____, _____, _____, _____, _____, _____, v3[0]};
    *d8 += Sk8h{v3[1], v3[2], v3[3], v3[4], v3[5], v3[6], v3[7], _____};

    // D[n..n+15]  += {0, 0, 0, 0, 0, 0, 0, 0, S[n..n+7] * G[4]}
    *d8 += v4;
}

using BlurX = decltype(blur_x_radius_1);

// BlurX will only be one of the functions blur_x_radius_(1|2|3|4).
static void blur_row(
        BlurX blur,
        const Sk8h& g0, const Sk8h& g1, const Sk8h& g2, const Sk8h& g3, const Sk8h& g4,
        const uint8_t* src, int srcW,
              uint8_t* dst, int dstW) {
    // Clear the buffer to handle summing wider than source.
    Sk8h d0{kHalf}, d8{kHalf};

    // Go by multiples of 8 in src.
    int x = 0;
    for (; x <= srcW - 8; x += 8) {
        blur(load(src, 8, nullptr), g0, g1, g2, g3, g4, &d0, &d8);

        store(dst, d0, 8);

        d0 = d8;
        d8 = Sk8h{kHalf};

        src += 8;
        dst += 8;
    }

    // There are src values left, but the remainder of src values is not a multiple of 8.
    int srcTail = srcW - x;
    if (srcTail > 0) {

        blur(load(src, srcTail, nullptr), g0, g1, g2, g3, g4, &d0, &d8);

        int dstTail = std::min(8, dstW - x);
        store(dst, d0, dstTail);

        d0 = d8;
        dst += dstTail;
        x += dstTail;
    }

    // There are dst mask values to complete.
    int dstTail = dstW - x;
    if (dstTail > 0) {
        store(dst, d0, dstTail);
    }
}

// BlurX will only be one of the functions blur_x_radius_(1|2|3|4).
static void blur_x_rect(BlurX blur,
                        uint16_t* gauss,
                        const uint8_t* src, size_t srcStride, int srcW,
                        uint8_t* dst, size_t dstStride, int dstW, int dstH) {

    Sk8h g0{gauss[0]},
         g1{gauss[1]},
         g2{gauss[2]},
         g3{gauss[3]},
         g4{gauss[4]};

    // Blur *ALL* the rows.
    for (int y = 0; y < dstH; y++) {
        blur_row(blur, g0, g1, g2, g3, g4, src, srcW, dst, dstW);
        src += srcStride;
        dst += dstStride;
    }
}

static void direct_blur_x(int radius, uint16_t* gauss,
                          const uint8_t* src, size_t srcStride, int srcW,
                          uint8_t* dst, size_t dstStride, int dstW, int dstH) {

    switch (radius) {
        case 1:
            blur_x_rect(blur_x_radius_1, gauss, src, srcStride, srcW, dst, dstStride, dstW, dstH);
            break;

        case 2:
            blur_x_rect(blur_x_radius_2, gauss, src, srcStride, srcW, dst, dstStride, dstW, dstH);
            break;

        case 3:
            blur_x_rect(blur_x_radius_3, gauss, src, srcStride, srcW, dst, dstStride, dstW, dstH);
            break;

        case 4:
            blur_x_rect(blur_x_radius_4, gauss, src, srcStride, srcW, dst, dstStride, dstW, dstH);
            break;

        default:
            SkASSERTF(false, "The radius %d is not handled\n", radius);
    }
}

// The operations of the blur_y_radius_N functions work on a theme similar to the blur_x_radius_N
// functions, but end up being simpler because there is no complicated shift of registers. We
// start with the non-traditional form of the gaussian filter. In the following r is the value
// when added generates the next value in the column.
//
//   D[n+0r] = S[n+0r]*G[1]
//           + S[n+1r]*G[0]
//           + S[n+2r]*G[1]
//
// Expanding out in a way similar to blur_x_radius_N for specific values of n.
//
//   D[n+0r] = S[n-2r]*G[1] + S[n-1r]*G[0] + S[n+0r]*G[1]
//   D[n+1r] = S[n-1r]*G[1] + S[n+0r]*G[0] + S[n+1r]*G[1]
//   D[n+2r] = S[n+0r]*G[1] + S[n+1r]*G[0] + S[n+2r]*G[1]
//
// We can see that S[n+0r] is in all three D[] equations, but is only multiplied twice. Now we
// can look at the calculation form the point of view of a source value.
//
//   Given S[n+0r]:
//   D[n+0r] += S[n+0r]*G[1];
//   /* D[n+0r] is done and can be stored now. */
//   D[n+1r] += S[n+0r]*G[0];
//   D[n+2r]  = S[n+0r]*G[1];
//
// Remember, by induction, that D[n+0r] == S[n-2r]*G[1] + S[n-1r]*G[0] before adding in
// S[n+0r]*G[1]. So, after the addition D[n+0r] has finished calculation and can be stored. Also,
// notice that D[n+2r] is receiving its first value from S[n+0r]*G[1] and is not added in. Notice
// how values flow in the following two iterations in source.
//
//   D[n+0r] += S[n+0r]*G[1]
//   D[n+1r] += S[n+0r]*G[0]
//   D[n+2r]  = S[n+0r]*G[1]
//   /* ------- */
//   D[n+1r] += S[n+1r]*G[1]
//   D[n+2r] += S[n+1r]*G[0]
//   D[n+3r]  = S[n+1r]*G[1]
//
// Instead of using memory we can introduce temporaries d01 and d12. The update step changes
// to the following.
//
//   answer = d01 + S[n+0r]*G[1]
//   d01    = d12 + S[n+0r]*G[0]
//   d12    =       S[n+0r]*G[1]
//   return answer
//
// Finally, this can be ganged into SIMD style.
//   answer[0..7] = d01[0..7] + S[n+0r..n+0r+7]*G[1]
//   d01[0..7]    = d12[0..7] + S[n+0r..n+0r+7]*G[0]
//   d12[0..7]    =             S[n+0r..n+0r+7]*G[1]
//   return answer[0..7]
static Sk8h blur_y_radius_1(
        const Sk8h& s0,
        const Sk8h& g0, const Sk8h& g1, const Sk8h&, const Sk8h&, const Sk8h&,
        Sk8h* d01, Sk8h* d12, Sk8h*, Sk8h*, Sk8h*, Sk8h*, Sk8h*, Sk8h*) {
    auto v0 = s0.mulHi(g0);
    auto v1 = s0.mulHi(g1);

    Sk8h answer = *d01 + v1;
           *d01 = *d12 + v0;
           *d12 =        v1 + kHalf;

    return answer;
}

static Sk8h blur_y_radius_2(
        const Sk8h& s0,
        const Sk8h& g0, const Sk8h& g1, const Sk8h& g2, const Sk8h&, const Sk8h&,
        Sk8h* d01, Sk8h* d12, Sk8h* d23, Sk8h* d34, Sk8h*, Sk8h*, Sk8h*, Sk8h*) {
    auto v0 = s0.mulHi(g0);
    auto v1 = s0.mulHi(g1);
    auto v2 = s0.mulHi(g2);

    Sk8h answer = *d01 + v2;
           *d01 = *d12 + v1;
           *d12 = *d23 + v0;
           *d23 = *d34 + v1;
           *d34 =        v2 + kHalf;

    return answer;
}

static Sk8h blur_y_radius_3(
        const Sk8h& s0,
        const Sk8h& g0, const Sk8h& g1, const Sk8h& g2, const Sk8h& g3, const Sk8h&,
        Sk8h* d01, Sk8h* d12, Sk8h* d23, Sk8h* d34, Sk8h* d45, Sk8h* d56, Sk8h*, Sk8h*) {
    auto v0 = s0.mulHi(g0);
    auto v1 = s0.mulHi(g1);
    auto v2 = s0.mulHi(g2);
    auto v3 = s0.mulHi(g3);

    Sk8h answer = *d01 + v3;
           *d01 = *d12 + v2;
           *d12 = *d23 + v1;
           *d23 = *d34 + v0;
           *d34 = *d45 + v1;
           *d45 = *d56 + v2;
           *d56 =        v3 + kHalf;

    return answer;
}

static Sk8h blur_y_radius_4(
    const Sk8h& s0,
    const Sk8h& g0, const Sk8h& g1, const Sk8h& g2, const Sk8h& g3, const Sk8h& g4,
    Sk8h* d01, Sk8h* d12, Sk8h* d23, Sk8h* d34, Sk8h* d45, Sk8h* d56, Sk8h* d67, Sk8h* d78) {
    auto v0 = s0.mulHi(g0);
    auto v1 = s0.mulHi(g1);
    auto v2 = s0.mulHi(g2);
    auto v3 = s0.mulHi(g3);
    auto v4 = s0.mulHi(g4);

    Sk8h answer = *d01 + v4;
           *d01 = *d12 + v3;
           *d12 = *d23 + v2;
           *d23 = *d34 + v1;
           *d34 = *d45 + v0;
           *d45 = *d56 + v1;
           *d56 = *d67 + v2;
           *d67 = *d78 + v3;
           *d78 =        v4 + kHalf;

    return answer;
}

using BlurY = decltype(blur_y_radius_1);

// BlurY will be one of blur_y_radius_(1|2|3|4).
static void blur_column(
        ToA8 toA8,
        BlurY blur, int radius, int width,
        const Sk8h& g0, const Sk8h& g1, const Sk8h& g2, const Sk8h& g3, const Sk8h& g4,
        const uint8_t* src, size_t srcRB, int srcH,
        uint8_t* dst, size_t dstRB) {
    Sk8h d01{kHalf}, d12{kHalf}, d23{kHalf}, d34{kHalf},
         d45{kHalf}, d56{kHalf}, d67{kHalf}, d78{kHalf};

    auto flush = [&](uint8_t* to, const Sk8h& v0, const Sk8h& v1) {
        store(to, v0, width);
        to += dstRB;
        store(to, v1, width);
        return to + dstRB;
    };

    for (int y = 0; y < srcH; y += 1) {
        auto s = load(src, width, toA8);
        auto b = blur(s,
                      g0, g1, g2, g3, g4,
                      &d01, &d12, &d23, &d34, &d45, &d56, &d67, &d78);
        store(dst, b, width);
        src += srcRB;
        dst += dstRB;
    }

    if (radius >= 1) {
        dst = flush(dst, d01, d12);
    }
    if (radius >= 2) {
        dst = flush(dst, d23, d34);
    }
    if (radius >= 3) {
        dst = flush(dst, d45, d56);
    }
    if (radius >= 4) {
              flush(dst, d67, d78);
    }
}

// BlurY will be one of blur_y_radius_(1|2|3|4).
static void blur_y_rect(ToA8 toA8, const int strideOf8,
                        BlurY blur, int radius, uint16_t *gauss,
                        const uint8_t *src, size_t srcRB, int srcW, int srcH,
                        uint8_t *dst, size_t dstRB) {

    Sk8h g0{gauss[0]},
         g1{gauss[1]},
         g2{gauss[2]},
         g3{gauss[3]},
         g4{gauss[4]};

    int x = 0;
    for (; x <= srcW - 8; x += 8) {
        blur_column(toA8, blur, radius, 8,
                    g0, g1, g2, g3, g4,
                    src, srcRB, srcH,
                    dst, dstRB);
        src += strideOf8;
        dst += 8;
    }

    int xTail = srcW - x;
    if (xTail > 0) {
        blur_column(toA8, blur, radius, xTail,
                    g0, g1, g2, g3, g4,
                    src, srcRB, srcH,
                    dst, dstRB);
    }
}

static void direct_blur_y(ToA8 toA8, const int strideOf8,
                          int radius, uint16_t* gauss,
                          const uint8_t* src, size_t srcRB, int srcW, int srcH,
                          uint8_t* dst, size_t dstRB) {

    switch (radius) {
        case 1:
            blur_y_rect(toA8, strideOf8, blur_y_radius_1, 1, gauss,
                        src, srcRB, srcW, srcH,
                        dst, dstRB);
            break;

        case 2:
            blur_y_rect(toA8, strideOf8, blur_y_radius_2, 2, gauss,
                        src, srcRB, srcW, srcH,
                        dst, dstRB);
            break;

        case 3:
            blur_y_rect(toA8, strideOf8, blur_y_radius_3, 3, gauss,
                        src, srcRB, srcW, srcH,
                        dst, dstRB);
            break;

        case 4:
            blur_y_rect(toA8, strideOf8, blur_y_radius_4, 4, gauss,
                        src, srcRB, srcW, srcH,
                        dst, dstRB);
            break;

        default:
            SkASSERTF(false, "The radius %d is not handled\n", radius);
    }
}

static SkIPoint small_blur(double sigmaX, double sigmaY, const SkMask& src, SkMask* dst) {
    SkASSERT(sigmaX == sigmaY); // TODO
    SkASSERT(0.01 <= sigmaX && sigmaX < 2);
    SkASSERT(0.01 <= sigmaY && sigmaY < 2);

    SkGaussFilter filterX{sigmaX, SkGaussFilter::Type::Bessel},
                  filterY{sigmaY, SkGaussFilter::Type::Bessel};

    int radiusX = filterX.radius(),
        radiusY = filterY.radius();

    SkASSERT(radiusX <= 4 && radiusY <= 4);

    auto prepareGauss = [](const SkGaussFilter& filter, uint16_t* factors) {
        int i = 0;
        for (double d : filter) {
            factors[i++] = static_cast<uint16_t>(round(d * (1 << 16)));
        }
    };

    uint16_t gaussFactorsX[SkGaussFilter::kGaussArrayMax],
             gaussFactorsY[SkGaussFilter::kGaussArrayMax];

    prepareGauss(filterX, gaussFactorsX);
    prepareGauss(filterY, gaussFactorsY);

    *dst = SkMask::PrepareDestination(radiusX, radiusY, src);
    if (src.fImage == nullptr) {
        return {SkTo<int32_t>(radiusX), SkTo<int32_t>(radiusY)};
    }
    if (dst->fImage == nullptr) {
        dst->fBounds.setEmpty();
        return {0, 0};
    }

    int srcW = src.fBounds.width(),
        srcH = src.fBounds.height();

    int dstW = dst->fBounds.width(),
        dstH = dst->fBounds.height();

    size_t srcRB = src.fRowBytes,
           dstRB = dst->fRowBytes;

    //TODO: handle bluring in only one direction.

    // Blur vertically and copy to destination.
    switch (src.fFormat) {
        case SkMask::kBW_Format:
            direct_blur_y(bw_to_a8, 1,
                          radiusY, gaussFactorsY,
                          src.fImage, srcRB, srcW, srcH,
                          dst->fImage + radiusX, dstRB);
            break;
        case SkMask::kA8_Format:
            direct_blur_y(nullptr, 8,
                          radiusY, gaussFactorsY,
                          src.fImage, srcRB, srcW, srcH,
                          dst->fImage + radiusX, dstRB);
            break;
        case SkMask::kARGB32_Format:
            direct_blur_y(argb32_to_a8, 32,
                          radiusY, gaussFactorsY,
                          src.fImage, srcRB, srcW, srcH,
                          dst->fImage + radiusX, dstRB);
            break;
        case SkMask::kLCD16_Format:
            direct_blur_y(lcd_to_a8, 16, radiusY, gaussFactorsY,
                          src.fImage, srcRB, srcW, srcH,
                          dst->fImage + radiusX, dstRB);
            break;
        default:
            SK_ABORT("Unhandled format.");
    }

    // Blur horizontally in place.
    direct_blur_x(radiusX, gaussFactorsX,
                  dst->fImage + radiusX,  dstRB, srcW,
                  dst->fImage,            dstRB, dstW, dstH);

    return {radiusX, radiusY};
}

// TODO: assuming sigmaW = sigmaH. Allow different sigmas. Right now the
// API forces the sigmas to be the same.
SkIPoint SkMaskBlurFilter::blur(const SkMask& src, SkMask* dst) const {

    if (fSigmaW < 2.0 && fSigmaH < 2.0) {
        return small_blur(fSigmaW, fSigmaH, src, dst);
    }

    // 1024 is a place holder guess until more analysis can be done.
    SkSTArenaAlloc<1024> alloc;

    PlanGauss planW(fSigmaW);
    PlanGauss planH(fSigmaH);

    int borderW = planW.border(),
        borderH = planH.border();
    SkASSERT(borderH >= 0 && borderW >= 0);

    *dst = SkMask::PrepareDestination(borderW, borderH, src);
    if (src.fImage == nullptr) {
        return {SkTo<int32_t>(borderW), SkTo<int32_t>(borderH)};
    }
    if (dst->fImage == nullptr) {
        dst->fBounds.setEmpty();
        return {0, 0};
    }

    int srcW = src.fBounds.width(),
        srcH = src.fBounds.height(),
        dstW = dst->fBounds.width(),
        dstH = dst->fBounds.height();
    SkASSERT(srcW >= 0 && srcH >= 0 && dstW >= 0 && dstH >= 0);

    auto bufferSize = std::max(planW.bufferSize(), planH.bufferSize());
    auto buffer = alloc.makeArrayDefault<uint32_t>(bufferSize);

    // Blur both directions.
    int tmpW = srcH,
        tmpH = dstW;

    auto tmp = alloc.makeArrayDefault<uint8_t>(tmpW * tmpH);

    // Blur horizontally, and transpose.
    const PlanGauss::Scan& scanW = planW.makeBlurScan(srcW, buffer);
    switch (src.fFormat) {
        case SkMask::kBW_Format: {
            const uint8_t* bwStart = src.fImage;
            auto start = SkMask::AlphaIter<SkMask::kBW_Format>(bwStart, 0);
            auto end = SkMask::AlphaIter<SkMask::kBW_Format>(bwStart + (srcW / 8), srcW % 8);
            for (int y = 0; y < srcH; ++y, start >>= src.fRowBytes, end >>= src.fRowBytes) {
                auto tmpStart = &tmp[y];
                scanW.blur(start, end, tmpStart, tmpW, tmpStart + tmpW * tmpH);
            }
        } break;
        case SkMask::kA8_Format: {
            const uint8_t* a8Start = src.fImage;
            auto start = SkMask::AlphaIter<SkMask::kA8_Format>(a8Start);
            auto end = SkMask::AlphaIter<SkMask::kA8_Format>(a8Start + srcW);
            for (int y = 0; y < srcH; ++y, start >>= src.fRowBytes, end >>= src.fRowBytes) {
                auto tmpStart = &tmp[y];
                scanW.blur(start, end, tmpStart, tmpW, tmpStart + tmpW * tmpH);
            }
        } break;
        case SkMask::kARGB32_Format: {
            const uint32_t* argbStart = reinterpret_cast<const uint32_t*>(src.fImage);
            auto start = SkMask::AlphaIter<SkMask::kARGB32_Format>(argbStart);
            auto end = SkMask::AlphaIter<SkMask::kARGB32_Format>(argbStart + srcW);
            for (int y = 0; y < srcH; ++y, start >>= src.fRowBytes, end >>= src.fRowBytes) {
                auto tmpStart = &tmp[y];
                scanW.blur(start, end, tmpStart, tmpW, tmpStart + tmpW * tmpH);
            }
        } break;
        case SkMask::kLCD16_Format: {
            const uint16_t* lcdStart = reinterpret_cast<const uint16_t*>(src.fImage);
            auto start = SkMask::AlphaIter<SkMask::kLCD16_Format>(lcdStart);
            auto end = SkMask::AlphaIter<SkMask::kLCD16_Format>(lcdStart + srcW);
            for (int y = 0; y < srcH; ++y, start >>= src.fRowBytes, end >>= src.fRowBytes) {
                auto tmpStart = &tmp[y];
                scanW.blur(start, end, tmpStart, tmpW, tmpStart + tmpW * tmpH);
            }
        } break;
        default:
            SK_ABORT("Unhandled format.");
    }

    // Blur vertically (scan in memory order because of the transposition),
    // and transpose back to the original orientation.
    const PlanGauss::Scan& scanH = planH.makeBlurScan(tmpW, buffer);
    for (int y = 0; y < tmpH; y++) {
        auto tmpStart = &tmp[y * tmpW];
        auto dstStart = &dst->fImage[y];

        scanH.blur(tmpStart, tmpStart + tmpW,
                   dstStart, dst->fRowBytes, dstStart + dst->fRowBytes * dstH);
    }

    return {SkTo<int32_t>(borderW), SkTo<int32_t>(borderH)};
}