1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
|
/*
* Copyright 2016 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#ifndef SkLinearBitmapPipeline_core_DEFINED
#define SkLinearBitmapPipeline_core_DEFINED
#include <algorithm>
#include <cmath>
#include "SkNx.h"
// New bilerp strategy:
// Pass through on bilerpList4 and bilerpListFew (analogs to pointList), introduce bilerpEdge
// which takes 4 points. If the sample spans an edge, then break it into a bilerpEdge. Bilerp
// span then becomes a normal span except in special cases where an extra Y is given. The bilerp
// need to stay single point calculations until the tile layer.
// TODO:
// - edge span predicate.
// - introduce new point API
// - Add tile for new api.
namespace {
struct X {
explicit X(SkScalar val) : fVal{val} { }
explicit X(SkPoint pt) : fVal{pt.fX} { }
explicit X(SkSize s) : fVal{s.fWidth} { }
explicit X(SkISize s) : fVal((SkScalar)s.fWidth) { }
operator SkScalar () const {return fVal;}
private:
SkScalar fVal;
};
struct Y {
explicit Y(SkScalar val) : fVal{val} { }
explicit Y(SkPoint pt) : fVal{pt.fY} { }
explicit Y(SkSize s) : fVal{s.fHeight} { }
explicit Y(SkISize s) : fVal((SkScalar)s.fHeight) { }
operator SkScalar () const {return fVal;}
private:
SkScalar fVal;
};
// The Span class enables efficient processing horizontal spans of pixels.
// * start - the point where to start the span.
// * length - the number of pixels to traverse in source space.
// * count - the number of pixels to produce in destination space.
// Both start and length are mapped through the inversion matrix to produce values in source
// space. After the matrix operation, the tilers may break the spans up into smaller spans.
// The tilers can produce spans that seem nonsensical.
// * The clamp tiler can create spans with length of 0. This indicates to copy an edge pixel out
// to the edge of the destination scan.
// * The mirror tiler can produce spans with negative length. This indicates that the source
// should be traversed in the opposite direction to the destination pixels.
class Span {
public:
Span(SkPoint start, SkScalar length, int count)
: fStart(start)
, fLength(length)
, fCount{count} {
SkASSERT(std::isfinite(length));
}
operator std::tuple<SkPoint&, SkScalar&, int&>() {
return std::tie(fStart, fLength, fCount);
}
bool isEmpty() const { return 0 == fCount; }
void clear() { fCount = 0; }
int count() const { return fCount; }
SkScalar length() const { return fLength; }
SkScalar startX() const { return X(fStart); }
SkScalar endX() const { return this->startX() + this->length(); }
SkScalar startY() const { return Y(fStart); }
Span emptySpan() { return Span{{0.0, 0.0}, 0.0f, 0}; }
bool completelyWithin(SkScalar xMin, SkScalar xMax) const {
SkScalar sMin, sMax;
std::tie(sMin, sMax) = std::minmax(startX(), endX());
return xMin <= sMin && sMax < xMax;
}
void offset(SkScalar offsetX) {
fStart.offset(offsetX, 0.0f);
}
Span breakAt(SkScalar breakX, SkScalar dx) {
SkASSERT(std::isfinite(breakX));
SkASSERT(std::isfinite(dx));
SkASSERT(dx != 0.0f);
if (this->isEmpty()) {
return this->emptySpan();
}
int dxSteps = SkScalarFloorToInt((breakX - this->startX()) / dx);
if (dxSteps < 0) {
// The span is wholly after breakX.
return this->emptySpan();
} else if (dxSteps >= fCount) {
// The span is wholly before breakX.
Span answer = *this;
this->clear();
return answer;
}
// Calculate the values for the span to cleave off.
SkScalar newLength = dxSteps * dx;
// If the last (or first if count = 1) sample lands directly on the boundary. Include it
// when dx < 0 and exclude it when dx > 0.
// Reasoning:
// dx > 0: The sample point on the boundary is part of the next span because the entire
// pixel is after the boundary.
// dx < 0: The sample point on the boundary is part of the current span because the
// entire pixel is before the boundary.
if (this->startX() + newLength == breakX && dx > 0) {
if (dxSteps > 0) {
dxSteps -= 1;
newLength -= dx;
} else {
return this->emptySpan();
}
}
// Calculate new span parameters
SkPoint newStart = fStart;
int newCount = dxSteps + 1;
SkASSERT(newCount > 0);
// Update this span to reflect the break.
SkScalar lengthToStart = newLength + dx;
fLength -= lengthToStart;
fCount -= newCount;
fStart = {this->startX() + lengthToStart, Y(fStart)};
return Span{newStart, newLength, newCount};
}
void clampToSinglePixel(SkPoint pixel) {
fStart = pixel;
fLength = 0.0f;
}
private:
SkPoint fStart;
SkScalar fLength;
int fCount;
};
template<typename Stage>
void span_fallback(Span span, Stage* stage) {
SkPoint start;
SkScalar length;
int count;
std::tie(start, length, count) = span;
Sk4f startXs{X(start)};
Sk4f ys{Y(start)};
Sk4f mults = {0.0f, 1.0f, 2.0f, 3.0f};
// Initializing this is not needed, but some compilers can't figure this out.
Sk4s dXs{0.0f};
if (count > 1) {
SkScalar dx = length / (count - 1);
dXs = Sk4f{dx};
}
// Instead of using xs = xs + dx every round, this uses xs = i * dx + X(start). This
// eliminates the rounding error for the sum.
Sk4f xs = startXs + mults * dXs;
while (count >= 4) {
stage->pointList4(xs, ys);
mults += Sk4f{4.0f};
xs = mults * dXs + startXs;
count -= 4;
}
if (count > 0) {
stage->pointListFew(count, xs, ys);
}
}
inline Sk4f SK_VECTORCALL check_pixel(const Sk4f& pixel) {
SkASSERTF(0.0f <= pixel[0] && pixel[0] <= 1.0f, "pixel[0]: %f", pixel[0]);
SkASSERTF(0.0f <= pixel[1] && pixel[1] <= 1.0f, "pixel[1]: %f", pixel[1]);
SkASSERTF(0.0f <= pixel[2] && pixel[2] <= 1.0f, "pixel[2]: %f", pixel[2]);
SkASSERTF(0.0f <= pixel[3] && pixel[3] <= 1.0f, "pixel[3]: %f", pixel[3]);
return pixel;
}
} // namespace
class SkLinearBitmapPipeline::PointProcessorInterface {
public:
virtual ~PointProcessorInterface() { }
// Take the first n (where 0 < n && n < 4) items from xs and ys and sample those points. For
// nearest neighbor, that means just taking the floor xs and ys. For bilerp, this means
// to expand the bilerp filter around the point and sample using that filter.
virtual void SK_VECTORCALL pointListFew(int n, Sk4s xs, Sk4s ys) = 0;
// Same as pointListFew, but n = 4.
virtual void SK_VECTORCALL pointList4(Sk4s xs, Sk4s ys) = 0;
// A span is a compact form of sample points that are obtained by mapping points from
// destination space to source space. This is used for horizontal lines only, and is mainly
// used to take advantage of memory coherence for horizontal spans.
virtual void pointSpan(Span span) = 0;
};
class SkLinearBitmapPipeline::SampleProcessorInterface
: public SkLinearBitmapPipeline::PointProcessorInterface {
public:
// Used for nearest neighbor when scale factor is 1.0. The span can just be repeated with no
// edge pixel alignment problems. This is for handling a very common case.
virtual void repeatSpan(Span span, int32_t repeatCount) = 0;
};
class SkLinearBitmapPipeline::DestinationInterface {
public:
virtual ~DestinationInterface() { }
// Count is normally not needed, but in these early stages of development it is useful to
// check bounds.
// TODO(herb): 4/6/2016 - remove count when code is stable.
virtual void setDestination(void* dst, int count) = 0;
};
class SkLinearBitmapPipeline::BlendProcessorInterface
: public SkLinearBitmapPipeline::DestinationInterface {
public:
virtual void SK_VECTORCALL blendPixel(Sk4f pixel0) = 0;
virtual void SK_VECTORCALL blend4Pixels(Sk4f p0, Sk4f p1, Sk4f p2, Sk4f p3) = 0;
};
class SkLinearBitmapPipeline::PixelAccessorInterface {
public:
virtual ~PixelAccessorInterface() { }
virtual void SK_VECTORCALL getFewPixels(
int n, Sk4i xs, Sk4i ys, Sk4f* px0, Sk4f* px1, Sk4f* px2) const = 0;
virtual void SK_VECTORCALL get4Pixels(
Sk4i xs, Sk4i ys, Sk4f* px0, Sk4f* px1, Sk4f* px2, Sk4f* px3) const = 0;
virtual void get4Pixels(
const void* src, int index, Sk4f* px0, Sk4f* px1, Sk4f* px2, Sk4f* px3) const = 0;
virtual Sk4f getPixelFromRow(const void* row, int index) const = 0;
virtual Sk4f getPixelAt(int index) const = 0;
virtual const void* row(int y) const = 0;
};
#endif // SkLinearBitmapPipeline_core_DEFINED
|