aboutsummaryrefslogtreecommitdiffhomepage
path: root/src/core/SkLinearBitmapPipeline.cpp
blob: 4c21180a163a32ed9664d7857e028b15e4482ee3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
/*
 * Copyright 2016 Google Inc.
 *
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */

#include "SkLinearBitmapPipeline.h"

#include "SkPM4f.h"
#include <algorithm>
#include <cmath>
#include <limits>
#include "SkColor.h"
#include "SkSize.h"
#include <tuple>
#include "SkLinearBitmapPipeline_core.h"
#include "SkLinearBitmapPipeline_matrix.h"
#include "SkLinearBitmapPipeline_tile.h"

class SkLinearBitmapPipeline::PointProcessorInterface {
public:
    virtual ~PointProcessorInterface() { }
    virtual void VECTORCALL pointListFew(int n, Sk4s xs, Sk4s ys) = 0;
    virtual void VECTORCALL pointList4(Sk4s xs, Sk4s ys) = 0;
    virtual void pointSpan(Span span) = 0;
};

class SkLinearBitmapPipeline::BilerpProcessorInterface
    : public SkLinearBitmapPipeline::PointProcessorInterface {
public:
    // The x's and y's are setup in the following order:
    // +--------+--------+
    // |        |        |
    // |  px00  |  px10  |
    // |    0   |    1   |
    // +--------+--------+
    // |        |        |
    // |  px01  |  px11  |
    // |    2   |    3   |
    // +--------+--------+
    // These pixels coordinates are arranged in the following order in xs and ys:
    // px00  px10  px01  px11
    virtual void VECTORCALL bilerpList(Sk4s xs, Sk4s ys) = 0;
    virtual void bilerpSpan(BilerpSpan span) = 0;
};

class SkLinearBitmapPipeline::PixelPlacerInterface {
public:
    virtual ~PixelPlacerInterface() { }
    virtual void setDestination(SkPM4f* dst) = 0;
    virtual void VECTORCALL placePixel(Sk4f pixel0) = 0;
    virtual void VECTORCALL place4Pixels(Sk4f p0, Sk4f p1, Sk4f p2, Sk4f p3) = 0;
};

namespace  {
// PointProcessor uses a strategy to help complete the work of the different stages. The strategy
// must implement the following methods:
// * processPoints(xs, ys) - must mutate the xs and ys for the stage.
// * maybeProcessSpan(span, next) - This represents a horizontal series of pixels
//   to work over.
//   span - encapsulation of span.
//   next - a pointer to the next stage.
//   maybeProcessSpan - returns false if it can not process the span and needs to fallback to
//                      point lists for processing.
template<typename Strategy, typename Next>
class PointProcessor final : public SkLinearBitmapPipeline::PointProcessorInterface {
public:
    template <typename... Args>
    PointProcessor(Next* next, Args&&... args)
        : fNext{next}
        , fStrategy{std::forward<Args>(args)...}{ }

    void VECTORCALL pointListFew(int n, Sk4s xs, Sk4s ys) override {
        fStrategy.processPoints(&xs, &ys);
        fNext->pointListFew(n, xs, ys);
    }

    void VECTORCALL pointList4(Sk4s xs, Sk4s ys) override {
        fStrategy.processPoints(&xs, &ys);
        fNext->pointList4(xs, ys);
    }

    // The span you pass must not be empty.
    void pointSpan(Span span) override {
        SkASSERT(!span.isEmpty());
        if (!fStrategy.maybeProcessSpan(span, fNext)) {
            span_fallback(span, this);
        }
    }

private:
    Next* const fNext;
    Strategy fStrategy;
};

// See PointProcessor for responsibilities of Strategy.
template<typename Strategy, typename Next>
class BilerpProcessor final : public SkLinearBitmapPipeline::BilerpProcessorInterface  {
public:
    template <typename... Args>
    BilerpProcessor(Next* next, Args&&... args)
        : fNext{next}
        , fStrategy{std::forward<Args>(args)...}{ }

    void VECTORCALL pointListFew(int n, Sk4s xs, Sk4s ys) override {
        fStrategy.processPoints(&xs, &ys);
        fNext->pointListFew(n, xs, ys);
    }

    void VECTORCALL pointList4(Sk4s xs, Sk4s ys) override {
        fStrategy.processPoints(&xs, &ys);
        fNext->pointList4(xs, ys);
    }

    void VECTORCALL bilerpList(Sk4s xs, Sk4s ys) override {
        fStrategy.processPoints(&xs, &ys);
        fNext->bilerpList(xs, ys);
    }

    void pointSpan(Span span) override {
        SkASSERT(!span.isEmpty());
        if (!fStrategy.maybeProcessSpan(span, fNext)) {
            span_fallback(span, this);
        }
    }

    void bilerpSpan(BilerpSpan bSpan) override {
        SkASSERT(!bSpan.isEmpty());
        if (!fStrategy.maybeProcessBilerpSpan(bSpan, fNext)) {
            bilerp_span_fallback(bSpan, this);
        }
    }

private:
    Next* const fNext;
    Strategy fStrategy;
};

////////////////////////////////////////////////////////////////////////////////////////////////////
// Matrix Stage
template <typename Next = SkLinearBitmapPipeline::PointProcessorInterface>
using TranslateMatrix = PointProcessor<TranslateMatrixStrategy, Next>;

template <typename Next = SkLinearBitmapPipeline::PointProcessorInterface>
using ScaleMatrix = PointProcessor<ScaleMatrixStrategy, Next>;

template <typename Next = SkLinearBitmapPipeline::PointProcessorInterface>
using AffineMatrix = PointProcessor<AffineMatrixStrategy, Next>;

static SkLinearBitmapPipeline::PointProcessorInterface* choose_matrix(
    SkLinearBitmapPipeline::PointProcessorInterface* next,
    const SkMatrix& inverse,
    SkLinearBitmapPipeline::MatrixStage* matrixProc) {
    if (inverse.hasPerspective()) {
        SkFAIL("Not implemented.");
    } else if (inverse.getSkewX() != 0.0f || inverse.getSkewY() != 0.0f) {
        matrixProc->Initialize<AffineMatrix<>>(
            next,
            SkVector{inverse.getTranslateX(), inverse.getTranslateY()},
            SkVector{inverse.getScaleX(), inverse.getScaleY()},
            SkVector{inverse.getSkewX(), inverse.getSkewY()});
    } else if (inverse.getScaleX() != 1.0f || inverse.getScaleY() != 1.0f) {
        matrixProc->Initialize<ScaleMatrix<>>(
            next,
            SkVector{inverse.getTranslateX(), inverse.getTranslateY()},
            SkVector{inverse.getScaleX(), inverse.getScaleY()});
    } else if (inverse.getTranslateX() != 0.0f || inverse.getTranslateY() != 0.0f) {
        matrixProc->Initialize<TranslateMatrix<>>(
            next,
            SkVector{inverse.getTranslateX(), inverse.getTranslateY()});
    } else {
        return next;
    }
    return matrixProc->get();
}

////////////////////////////////////////////////////////////////////////////////////////////////////
// Bilerp Expansion Stage
template <typename Next = SkLinearBitmapPipeline::BilerpProcessorInterface>
class ExpandBilerp final : public SkLinearBitmapPipeline::PointProcessorInterface {
public:
    ExpandBilerp(Next* next) : fNext{next} { }

    void VECTORCALL pointListFew(int n, Sk4s xs, Sk4s ys) override {
        SkASSERT(0 < n && n < 4);
        //                    px00   px10   px01  px11
        const Sk4s kXOffsets{-0.5f,  0.5f, -0.5f, 0.5f},
                   kYOffsets{-0.5f, -0.5f,  0.5f, 0.5f};
        if (n >= 1) fNext->bilerpList(Sk4s{xs[0]} + kXOffsets, Sk4s{ys[0]} + kYOffsets);
        if (n >= 2) fNext->bilerpList(Sk4s{xs[1]} + kXOffsets, Sk4s{ys[1]} + kYOffsets);
        if (n >= 3) fNext->bilerpList(Sk4s{xs[2]} + kXOffsets, Sk4s{ys[2]} + kYOffsets);
    }

    void VECTORCALL pointList4(Sk4f xs, Sk4f ys) override {
        //                    px00   px10   px01  px11
        const Sk4f kXOffsets{-0.5f,  0.5f, -0.5f, 0.5f},
                   kYOffsets{-0.5f, -0.5f,  0.5f, 0.5f};
        fNext->bilerpList(Sk4s{xs[0]} + kXOffsets, Sk4s{ys[0]} + kYOffsets);
        fNext->bilerpList(Sk4s{xs[1]} + kXOffsets, Sk4s{ys[1]} + kYOffsets);
        fNext->bilerpList(Sk4s{xs[2]} + kXOffsets, Sk4s{ys[2]} + kYOffsets);
        fNext->bilerpList(Sk4s{xs[3]} + kXOffsets, Sk4s{ys[3]} + kYOffsets);
    }

    void pointSpan(Span span) override {
        SkASSERT(!span.isEmpty());
        SkPoint start; SkScalar length; int count;
        std::tie(start, length, count) = span;
        // Adjust the span so that it is in the correct phase with the pixel.
        BilerpSpan bSpan{X(start) - 0.5f, Y(start) - 0.5f, Y(start) + 0.5f, length, count};
        fNext->bilerpSpan(bSpan);
    }

private:
    Next* const fNext;
};

static SkLinearBitmapPipeline::PointProcessorInterface* choose_filter(
    SkLinearBitmapPipeline::BilerpProcessorInterface* next,
    SkFilterQuality filterQuailty,
    SkLinearBitmapPipeline::FilterStage* filterProc) {
    if (SkFilterQuality::kNone_SkFilterQuality == filterQuailty) {
        return next;
    } else {
        filterProc->Initialize<ExpandBilerp<>>(next);
        return filterProc->get();
    }
}

////////////////////////////////////////////////////////////////////////////////////////////////////
// Tile Stage
template <typename Next = SkLinearBitmapPipeline::BilerpProcessorInterface>
using Clamp = BilerpProcessor<ClampStrategy, Next>;

template <typename Next = SkLinearBitmapPipeline::BilerpProcessorInterface>
using Repeat = BilerpProcessor<RepeatStrategy, Next>;

static SkLinearBitmapPipeline::BilerpProcessorInterface* choose_tiler(
    SkLinearBitmapPipeline::BilerpProcessorInterface* next,
    SkSize dimensions,
    SkShader::TileMode xMode,
    SkShader::TileMode yMode,
    SkLinearBitmapPipeline::TileStage* tileProcXOrBoth,
    SkLinearBitmapPipeline::TileStage* tileProcY) {
    if (xMode == yMode) {
        switch (xMode) {
            case SkShader::kClamp_TileMode:
                tileProcXOrBoth->Initialize<Clamp<>>(next, dimensions);
                break;
            case SkShader::kRepeat_TileMode:
                tileProcXOrBoth->Initialize<Repeat<>>(next, dimensions);
                break;
            case SkShader::kMirror_TileMode:
                SkFAIL("Not implemented.");
                break;
        }
    } else {
        switch (yMode) {
            case SkShader::kClamp_TileMode:
                tileProcY->Initialize<Clamp<>>(next, Y(dimensions));
                break;
            case SkShader::kRepeat_TileMode:
                tileProcY->Initialize<Repeat<>>(next, Y(dimensions));
                break;
            case SkShader::kMirror_TileMode:
                SkFAIL("Not implemented.");
                break;
        }
        switch (xMode) {
            case SkShader::kClamp_TileMode:
                tileProcXOrBoth->Initialize<Clamp<>>(tileProcY->get(), X(dimensions));
                break;
            case SkShader::kRepeat_TileMode:
                tileProcXOrBoth->Initialize<Repeat<>>(tileProcY->get(), X(dimensions));
                break;
            case SkShader::kMirror_TileMode:
                SkFAIL("Not implemented.");
                break;
        }
    }
    return tileProcXOrBoth->get();
}

////////////////////////////////////////////////////////////////////////////////////////////////////
// Source Sampling Stage
class sRGBFast {
public:
    static Sk4s VECTORCALL sRGBToLinear(Sk4s pixel) {
        Sk4s l = pixel * pixel;
        return Sk4s{l[0], l[1], l[2], pixel[3]};
    }
};

enum class ColorOrder {
    kRGBA = false,
    kBGRA = true,
};
template <SkColorProfileType colorProfile, ColorOrder colorOrder>
class Pixel8888 {
public:
    Pixel8888(int width, const uint32_t* src) : fSrc{src}, fWidth{width}{ }
    Pixel8888(const SkPixmap& srcPixmap)
        : fSrc{srcPixmap.addr32()}
        , fWidth{static_cast<int>(srcPixmap.rowBytes() / 4)} { }

    void VECTORCALL getFewPixels(int n, Sk4s xs, Sk4s ys, Sk4f* px0, Sk4f* px1, Sk4f* px2) {
        Sk4i XIs = SkNx_cast<int, SkScalar>(xs);
        Sk4i YIs = SkNx_cast<int, SkScalar>(ys);
        Sk4i bufferLoc = YIs * fWidth + XIs;
        switch (n) {
            case 3:
                *px2 = this->getPixel(fSrc, bufferLoc[2]);
            case 2:
                *px1 = this->getPixel(fSrc, bufferLoc[1]);
            case 1:
                *px0 = this->getPixel(fSrc, bufferLoc[0]);
            default:
                break;
        }
    }

    void VECTORCALL get4Pixels(Sk4s xs, Sk4s ys, Sk4f* px0, Sk4f* px1, Sk4f* px2, Sk4f* px3) {
        Sk4i XIs = SkNx_cast<int, SkScalar>(xs);
        Sk4i YIs = SkNx_cast<int, SkScalar>(ys);
        Sk4i bufferLoc = YIs * fWidth + XIs;
        *px0 = this->getPixel(fSrc, bufferLoc[0]);
        *px1 = this->getPixel(fSrc, bufferLoc[1]);
        *px2 = this->getPixel(fSrc, bufferLoc[2]);
        *px3 = this->getPixel(fSrc, bufferLoc[3]);
    }

    void get4Pixels(const void* vsrc, int index, Sk4f* px0, Sk4f* px1, Sk4f* px2, Sk4f* px3) {
        const uint32_t* src = static_cast<const uint32_t*>(vsrc);
        *px0 = this->getPixel(src, index + 0);
        *px1 = this->getPixel(src, index + 1);
        *px2 = this->getPixel(src, index + 2);
        *px3 = this->getPixel(src, index + 3);
    }

    Sk4f getPixel(const void* vsrc, int index) {
        const uint32_t* src = static_cast<const uint32_t*>(vsrc);
        Sk4b bytePixel = Sk4b::Load((uint8_t *)(&src[index]));
        Sk4f pixel = SkNx_cast<float, uint8_t>(bytePixel);
        if (colorOrder == ColorOrder::kBGRA) {
            pixel = SkNx_shuffle<2, 1, 0, 3>(pixel);
        }
        pixel = pixel * Sk4f{1.0f/255.0f};
        if (colorProfile == kSRGB_SkColorProfileType) {
            pixel = sRGBFast::sRGBToLinear(pixel);
        }
        return pixel;
    }

    const uint32_t* row(int y) { return fSrc + y * fWidth[0]; }

private:
    const uint32_t* const fSrc;
    const Sk4i fWidth;
};

// Explaination of the math:
//              1 - x      x
//           +--------+--------+
//           |        |        |
//  1 - y    |  px00  |  px10  |
//           |        |        |
//           +--------+--------+
//           |        |        |
//    y      |  px01  |  px11  |
//           |        |        |
//           +--------+--------+
//
//
// Given a pixelxy each is multiplied by a different factor derived from the fractional part of x
// and y:
// * px00 -> (1 - x)(1 - y) = 1 - x - y + xy
// * px10 -> x(1 - y) = x - xy
// * px01 -> (1 - x)y = y - xy
// * px11 -> xy
// So x * y is calculated first and then used to calculate all the other factors.
static Sk4s VECTORCALL bilerp4(Sk4s xs, Sk4s ys, Sk4f px00, Sk4f px10,
                                                 Sk4f px01, Sk4f px11) {
    // Calculate fractional xs and ys.
    Sk4s fxs = xs - xs.floor();
    Sk4s fys = ys - ys.floor();
    Sk4s fxys{fxs * fys};
    Sk4f sum =  px11 * fxys;
    sum = sum + px01 * (fys - fxys);
    sum = sum + px10 * (fxs - fxys);
    sum = sum + px00 * (Sk4f{1.0f} - fxs - fys + fxys);
    return sum;
}

template <typename SourceStrategy>
class Sampler final : public SkLinearBitmapPipeline::BilerpProcessorInterface {
public:
    template <typename... Args>
    Sampler(SkLinearBitmapPipeline::PixelPlacerInterface* next, Args&&... args)
        : fNext{next}
        , fStrategy{std::forward<Args>(args)...} { }

    void VECTORCALL pointListFew(int n, Sk4s xs, Sk4s ys) override {
        SkASSERT(0 < n && n < 4);
        Sk4f px0, px1, px2;
        fStrategy.getFewPixels(n, xs, ys, &px0, &px1, &px2);
        if (n >= 1) fNext->placePixel(px0);
        if (n >= 2) fNext->placePixel(px1);
        if (n >= 3) fNext->placePixel(px2);
    }

    void VECTORCALL pointList4(Sk4s xs, Sk4s ys) override {
        Sk4f px0, px1, px2, px3;
        fStrategy.get4Pixels(xs, ys, &px0, &px1, &px2, &px3);
        fNext->place4Pixels(px0, px1, px2, px3);
    }

    void VECTORCALL bilerpList(Sk4s xs, Sk4s ys) override {
        Sk4f px00, px10, px01, px11;
        fStrategy.get4Pixels(xs, ys, &px00, &px10, &px01, &px11);
        Sk4f pixel = bilerp4(xs, ys, px00, px10, px01, px11);
        fNext->placePixel(pixel);
    }

    void pointSpan(Span span) override {
        SkASSERT(!span.isEmpty());
        SkPoint start; SkScalar length; int count;
        std::tie(start, length, count) = span;
        if (length < (count - 1)) {
            this->pointSpanSlowRate(span);
        } else if (length == (count - 1)) {
            this->pointSpanUnitRate(span);
        } else {
            this->pointSpanFastRate(span);
        }
    }

private:
    // When moving through source space more slowly than dst space (zoomed in),
    // we'll be sampling from the same source pixel more than once.
    void pointSpanSlowRate(Span span) {
        SkPoint start; SkScalar length; int count;
        std::tie(start, length, count) = span;
        SkScalar x = X(start);
        SkFixed fx = SkScalarToFixed(x);
        SkScalar dx = length / (count - 1);
        SkFixed fdx = SkScalarToFixed(dx);

        const void* row = fStrategy.row((int)std::floor(Y(start)));
        SkLinearBitmapPipeline::PixelPlacerInterface* next = fNext;

        int ix = SkFixedFloorToInt(fx);
        int prevIX = ix;
        Sk4f fpixel = fStrategy.getPixel(row, ix);

        // When dx is less than one, each pixel is used more than once. Using the fixed point fx
        // allows the code to quickly check that the same pixel is being used. The code uses this
        // same pixel check to do the sRGB and normalization only once.
        auto getNextPixel = [&]() {
            if (ix != prevIX) {
                fpixel = fStrategy.getPixel(row, ix);
                prevIX = ix;
            }
            fx += fdx;
            ix = SkFixedFloorToInt(fx);
            return fpixel;
        };

        while (count >= 4) {
            Sk4f px0 = getNextPixel();
            Sk4f px1 = getNextPixel();
            Sk4f px2 = getNextPixel();
            Sk4f px3 = getNextPixel();
            next->place4Pixels(px0, px1, px2, px3);
            count -= 4;
        }
        while (count > 0) {
            next->placePixel(getNextPixel());
            count -= 1;
        }
    }

    // We're moving through source space at a rate of 1 source pixel per 1 dst pixel.
    // We'll never re-use pixels, but we can at least load contiguous pixels.
    void pointSpanUnitRate(Span span) {
        SkPoint start; SkScalar length; int count;
        std::tie(start, length, count) = span;
        int ix = SkScalarFloorToInt(X(start));
        const void* row = fStrategy.row((int)std::floor(Y(start)));
        SkLinearBitmapPipeline::PixelPlacerInterface* next = fNext;
        while (count >= 4) {
            Sk4f px0, px1, px2, px3;
            fStrategy.get4Pixels(row, ix, &px0, &px1, &px2, &px3);
            next->place4Pixels(px0, px1, px2, px3);
            ix += 4;
            count -= 4;
        }

        while (count > 0) {
            next->placePixel(fStrategy.getPixel(row, ix));
            ix += 1;
            count -= 1;
        }
    }

    // We're moving through source space faster than dst (zoomed out),
    // so we'll never reuse a source pixel or be able to do contiguous loads.
    void pointSpanFastRate(Span span) {
        span_fallback(span, this);
    }

    void bilerpSpan(BilerpSpan span) override {
        bilerp_span_fallback(span, this);
    }

private:
    SkLinearBitmapPipeline::PixelPlacerInterface* const fNext;
    SourceStrategy fStrategy;
};

using Pixel8888SRGB = Pixel8888<kSRGB_SkColorProfileType, ColorOrder::kRGBA>;
using Pixel8888LRGB = Pixel8888<kLinear_SkColorProfileType, ColorOrder::kRGBA>;
using Pixel8888SBGR = Pixel8888<kSRGB_SkColorProfileType, ColorOrder::kBGRA>;
using Pixel8888LBGR = Pixel8888<kLinear_SkColorProfileType, ColorOrder::kBGRA>;

static SkLinearBitmapPipeline::BilerpProcessorInterface* choose_pixel_sampler(
    SkLinearBitmapPipeline::PixelPlacerInterface* next,
    const SkPixmap& srcPixmap,
    SkLinearBitmapPipeline::SampleStage* sampleStage) {
    const SkImageInfo& imageInfo = srcPixmap.info();
    switch (imageInfo.colorType()) {
        case kRGBA_8888_SkColorType:
            if (imageInfo.profileType() == kSRGB_SkColorProfileType) {
                sampleStage->Initialize<Sampler<Pixel8888SRGB>>(next, srcPixmap);
            } else {
                sampleStage->Initialize<Sampler<Pixel8888LRGB>>(next, srcPixmap);
            }
            break;
        case kBGRA_8888_SkColorType:
            if (imageInfo.profileType() == kSRGB_SkColorProfileType) {
                sampleStage->Initialize<Sampler<Pixel8888SBGR>>(next, srcPixmap);
            } else {
                sampleStage->Initialize<Sampler<Pixel8888LBGR>>(next, srcPixmap);
            }
            break;
        default:
            SkFAIL("Not implemented. Unsupported src");
            break;
    }
    return sampleStage->get();
}

////////////////////////////////////////////////////////////////////////////////////////////////////
// Pixel Placement Stage
template <SkAlphaType alphaType>
class PlaceFPPixel final : public SkLinearBitmapPipeline::PixelPlacerInterface {
public:
    void VECTORCALL placePixel(Sk4f pixel) override {
        PlacePixel(fDst, pixel, 0);
        fDst += 1;
    }

    void VECTORCALL place4Pixels(Sk4f p0, Sk4f p1, Sk4f p2, Sk4f p3) override {
        SkPM4f* dst = fDst;
        PlacePixel(dst, p0, 0);
        PlacePixel(dst, p1, 1);
        PlacePixel(dst, p2, 2);
        PlacePixel(dst, p3, 3);
        fDst += 4;
    }

    void setDestination(SkPM4f* dst) override {
        fDst = dst;
    }

private:
    static void VECTORCALL PlacePixel(SkPM4f* dst, Sk4f pixel, int index) {
        Sk4f newPixel = pixel;
        if (alphaType == kUnpremul_SkAlphaType) {
            newPixel = Premultiply(pixel);
        }
        newPixel.store(dst + index);
    }
    static Sk4f VECTORCALL Premultiply(Sk4f pixel) {
        float alpha = pixel[3];
        return pixel * Sk4f{alpha, alpha, alpha, 1.0f};
    }

    SkPM4f* fDst;
};

static SkLinearBitmapPipeline::PixelPlacerInterface* choose_pixel_placer(
    SkAlphaType alphaType,
    SkLinearBitmapPipeline::PixelStage* placerStage) {
    if (alphaType == kUnpremul_SkAlphaType) {
        placerStage->Initialize<PlaceFPPixel<kUnpremul_SkAlphaType>>();
    } else {
        // kOpaque_SkAlphaType is treated the same as kPremul_SkAlphaType
        placerStage->Initialize<PlaceFPPixel<kPremul_SkAlphaType>>();
    }
    return placerStage->get();
}
}  // namespace

////////////////////////////////////////////////////////////////////////////////////////////////////
SkLinearBitmapPipeline::~SkLinearBitmapPipeline() {}

SkLinearBitmapPipeline::SkLinearBitmapPipeline(
    const SkMatrix& inverse,
    SkFilterQuality filterQuality,
    SkShader::TileMode xTile, SkShader::TileMode yTile,
    const SkPixmap& srcPixmap) {
    SkSize size = SkSize::Make(srcPixmap.width(), srcPixmap.height());
    const SkImageInfo& srcImageInfo = srcPixmap.info();

    // As the stages are built, the chooser function may skip a stage. For example, with the
    // identity matrix, the matrix stage is skipped, and the tilerStage is the first stage.
    auto placementStage = choose_pixel_placer(srcImageInfo.alphaType(), &fPixelStage);
    auto samplerStage   = choose_pixel_sampler(placementStage, srcPixmap, &fSampleStage);
    auto tilerStage     = choose_tiler(samplerStage, size, xTile, yTile, &fTileXOrBothStage,
                                       &fTileYStage);
    auto filterStage    = choose_filter(tilerStage, filterQuality, &fFilterStage);
    fFirstStage         = choose_matrix(filterStage, inverse, &fMatrixStage);
}

void SkLinearBitmapPipeline::shadeSpan4f(int x, int y, SkPM4f* dst, int count) {
    SkASSERT(count > 0);
    fPixelStage->setDestination(dst);
    // The count and length arguments start out in a precise relation in order to keep the
    // math correct through the different stages. Count is the number of pixel to produce.
    // Since the code samples at pixel centers, length is the distance from the center of the
    // first pixel to the center of the last pixel. This implies that length is count-1.
    fFirstStage->pointSpan(Span{SkPoint{x + 0.5f, y + 0.5f}, count - 1.0f, count});
}