aboutsummaryrefslogtreecommitdiffhomepage
path: root/src/core/SkLineClipper.cpp
blob: fc4e3d259285a0d725e64a2a9c6555f10b130776 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297

/*
 * Copyright 2011 Google Inc.
 *
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */
#include "SkLineClipper.h"

template <typename T> T pin_unsorted(T value, T limit0, T limit1) {
    if (limit1 < limit0) {
        SkTSwap(limit0, limit1);
    }
    // now the limits are sorted
    SkASSERT(limit0 <= limit1);

    if (value < limit0) {
        value = limit0;
    } else if (value > limit1) {
        value = limit1;
    }
    return value;
}

// return X coordinate of intersection with horizontal line at Y
static SkScalar sect_with_horizontal(const SkPoint src[2], SkScalar Y) {
    SkScalar dy = src[1].fY - src[0].fY;
    if (SkScalarNearlyZero(dy)) {
        return SkScalarAve(src[0].fX, src[1].fX);
    } else {
#ifdef SK_SCALAR_IS_FLOAT
        // need the extra precision so we don't compute a value that exceeds
        // our original limits
        double X0 = src[0].fX;
        double Y0 = src[0].fY;
        double X1 = src[1].fX;
        double Y1 = src[1].fY;
        double result = X0 + ((double)Y - Y0) * (X1 - X0) / (Y1 - Y0);

        // The computed X value might still exceed [X0..X1] due to quantum flux
        // when the doubles were added and subtracted, so we have to pin the
        // answer :(
        return (float)pin_unsorted(result, X0, X1);
#else
        return src[0].fX + SkScalarMulDiv(Y - src[0].fY, src[1].fX - src[0].fX,
                                          dy);
#endif
    }
}

// return Y coordinate of intersection with vertical line at X
static SkScalar sect_with_vertical(const SkPoint src[2], SkScalar X) {
    SkScalar dx = src[1].fX - src[0].fX;
    if (SkScalarNearlyZero(dx)) {
        return SkScalarAve(src[0].fY, src[1].fY);
    } else {
#ifdef SK_SCALAR_IS_FLOAT
        // need the extra precision so we don't compute a value that exceeds
        // our original limits
        double X0 = src[0].fX;
        double Y0 = src[0].fY;
        double X1 = src[1].fX;
        double Y1 = src[1].fY;
        double result = Y0 + ((double)X - X0) * (Y1 - Y0) / (X1 - X0);
        return (float)result;
#else
        return src[0].fY + SkScalarMulDiv(X - src[0].fX, src[1].fY - src[0].fY,
                                          dx);
#endif
    }
}

///////////////////////////////////////////////////////////////////////////////

static inline bool nestedLT(SkScalar a, SkScalar b, SkScalar dim) {
    return a <= b && (a < b || dim > 0);
}

// returns true if outer contains inner, even if inner is empty.
// note: outer.contains(inner) always returns false if inner is empty.
static inline bool containsNoEmptyCheck(const SkRect& outer,
                                        const SkRect& inner) {
    return  outer.fLeft <= inner.fLeft && outer.fTop <= inner.fTop &&
            outer.fRight >= inner.fRight && outer.fBottom >= inner.fBottom;
}

bool SkLineClipper::IntersectLine(const SkPoint src[2], const SkRect& clip,
                                  SkPoint dst[2]) {
    SkRect bounds;

    bounds.set(src, 2);
    if (containsNoEmptyCheck(clip, bounds)) {
        if (src != dst) {
            memcpy(dst, src, 2 * sizeof(SkPoint));
        }
        return true;
    }
    // check for no overlap, and only permit coincident edges if the line
    // and the edge are colinear
    if (nestedLT(bounds.fRight, clip.fLeft, bounds.width()) ||
        nestedLT(clip.fRight, bounds.fLeft, bounds.width()) ||
        nestedLT(bounds.fBottom, clip.fTop, bounds.height()) ||
        nestedLT(clip.fBottom, bounds.fTop, bounds.height())) {
        return false;
    }

    int index0, index1;

    if (src[0].fY < src[1].fY) {
        index0 = 0;
        index1 = 1;
    } else {
        index0 = 1;
        index1 = 0;
    }

    SkPoint tmp[2];
    memcpy(tmp, src, sizeof(tmp));

    // now compute Y intersections
    if (tmp[index0].fY < clip.fTop) {
        tmp[index0].set(sect_with_horizontal(src, clip.fTop), clip.fTop);
    }
    if (tmp[index1].fY > clip.fBottom) {
        tmp[index1].set(sect_with_horizontal(src, clip.fBottom), clip.fBottom);
    }

    if (tmp[0].fX < tmp[1].fX) {
        index0 = 0;
        index1 = 1;
    } else {
        index0 = 1;
        index1 = 0;
    }

    // check for quick-reject in X again, now that we may have been chopped
    if ((tmp[index1].fX <= clip.fLeft || tmp[index0].fX >= clip.fRight) &&
        tmp[index0].fX < tmp[index1].fX) {
        // only reject if we have a non-zero width
        return false;
    }

    if (tmp[index0].fX < clip.fLeft) {
        tmp[index0].set(clip.fLeft, sect_with_vertical(src, clip.fLeft));
    }
    if (tmp[index1].fX > clip.fRight) {
        tmp[index1].set(clip.fRight, sect_with_vertical(src, clip.fRight));
    }
#ifdef SK_DEBUG
    bounds.set(tmp, 2);
    SkASSERT(containsNoEmptyCheck(clip, bounds));
#endif
    memcpy(dst, tmp, sizeof(tmp));
    return true;
}

#ifdef SK_DEBUG
// return value between the two limits, where the limits are either ascending
// or descending.
static bool is_between_unsorted(SkScalar value,
                                SkScalar limit0, SkScalar limit1) {
    if (limit0 < limit1) {
        return limit0 <= value && value <= limit1;
    } else {
        return limit1 <= value && value <= limit0;
    }
}
#endif

#ifdef SK_SCALAR_IS_FLOAT
#ifdef SK_DEBUG
// This is an example of why we need to pin the result computed in
// sect_with_horizontal. If we didn't explicitly pin, is_between_unsorted would
// fail.
//
static void sect_with_horizontal_test_for_pin_results() {
    const SkPoint pts[] = {
        { -540000,    -720000 },
        { SkFloatToScalar(-9.10000017e-05f), SkFloatToScalar(9.99999996e-13f) }
    };
    float x = sect_with_horizontal(pts, 0);
    SkASSERT(is_between_unsorted(x, pts[0].fX, pts[1].fX));
}
#endif
#endif

int SkLineClipper::ClipLine(const SkPoint pts[], const SkRect& clip,
                            SkPoint lines[]) {
#ifdef SK_SCALAR_IS_FLOAT
#ifdef SK_DEBUG
    {
        static bool gOnce;
        if (!gOnce) {
            sect_with_horizontal_test_for_pin_results();
            gOnce = true;
        }
    }
#endif
#endif

    int index0, index1;

    if (pts[0].fY < pts[1].fY) {
        index0 = 0;
        index1 = 1;
    } else {
        index0 = 1;
        index1 = 0;
    }

    // Check if we're completely clipped out in Y (above or below

    if (pts[index1].fY <= clip.fTop) {  // we're above the clip
        return 0;
    }
    if (pts[index0].fY >= clip.fBottom) {  // we're below the clip
        return 0;
    }

    // Chop in Y to produce a single segment, stored in tmp[0..1]

    SkPoint tmp[2];
    memcpy(tmp, pts, sizeof(tmp));

    // now compute intersections
    if (pts[index0].fY < clip.fTop) {
        tmp[index0].set(sect_with_horizontal(pts, clip.fTop), clip.fTop);
        SkASSERT(is_between_unsorted(tmp[index0].fX, pts[0].fX, pts[1].fX));
    }
    if (tmp[index1].fY > clip.fBottom) {
        tmp[index1].set(sect_with_horizontal(pts, clip.fBottom), clip.fBottom);
        SkASSERT(is_between_unsorted(tmp[index1].fX, pts[0].fX, pts[1].fX));
    }

    // Chop it into 1..3 segments that are wholly within the clip in X.

    // temp storage for up to 3 segments
    SkPoint resultStorage[kMaxPoints];
    SkPoint* result;    // points to our results, either tmp or resultStorage
    int lineCount = 1;
    bool reverse;

    if (pts[0].fX < pts[1].fX) {
        index0 = 0;
        index1 = 1;
        reverse = false;
    } else {
        index0 = 1;
        index1 = 0;
        reverse = true;
    }

    if (tmp[index1].fX <= clip.fLeft) {  // wholly to the left
        tmp[0].fX = tmp[1].fX = clip.fLeft;
        result = tmp;
        reverse = false;
    } else if (tmp[index0].fX >= clip.fRight) {    // wholly to the right
        tmp[0].fX = tmp[1].fX = clip.fRight;
        result = tmp;
        reverse = false;
    } else {
        result = resultStorage;
        SkPoint* r = result;

        if (tmp[index0].fX < clip.fLeft) {
            r->set(clip.fLeft, tmp[index0].fY);
            r += 1;
            r->set(clip.fLeft, sect_with_vertical(tmp, clip.fLeft));
            SkASSERT(is_between_unsorted(r->fY, tmp[0].fY, tmp[1].fY));
        } else {
            *r = tmp[index0];
        }
        r += 1;

        if (tmp[index1].fX > clip.fRight) {
            r->set(clip.fRight, sect_with_vertical(tmp, clip.fRight));
            SkASSERT(is_between_unsorted(r->fY, tmp[0].fY, tmp[1].fY));
            r += 1;
            r->set(clip.fRight, tmp[index1].fY);
        } else {
            *r = tmp[index1];
        }

        lineCount = r - result;
    }

    // Now copy the results into the caller's lines[] parameter
    if (reverse) {
        // copy the pts in reverse order to maintain winding order
        for (int i = 0; i <= lineCount; i++) {
            lines[lineCount - i] = result[i];
        }
    } else {
        memcpy(lines, result, (lineCount + 1) * sizeof(SkPoint));
    }
    return lineCount;
}