aboutsummaryrefslogtreecommitdiffhomepage
path: root/src/core/SkImageCacherator.cpp
blob: dcc5c676f672e546be136263c50d14b9efdaadf3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
/*
 * Copyright 2015 Google Inc.
 *
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */

#include "SkBitmap.h"
#include "SkBitmapCache.h"
#include "SkImageCacherator.h"
#include "SkMallocPixelRef.h"
#include "SkNextID.h"
#include "SkPixelRef.h"

#if SK_SUPPORT_GPU
#include "GrContext.h"
#include "GrGpuResourcePriv.h"
#include "GrResourceKey.h"
#include "GrTextureAccess.h"
#include "GrYUVProvider.h"
#include "SkGr.h"
#include "SkGrPriv.h"
#endif

SkImageCacherator* SkImageCacherator::NewFromGenerator(SkImageGenerator* gen,
                                                       const SkIRect* subset) {
    if (!gen) {
        return nullptr;
    }

    // We are required to take ownership of gen, regardless of if we return a cacherator or not
    SkAutoTDelete<SkImageGenerator> genHolder(gen);

    const SkImageInfo& info = gen->getInfo();
    if (info.isEmpty()) {
        return nullptr;
    }

    uint32_t uniqueID = gen->uniqueID();
    const SkIRect bounds = SkIRect::MakeWH(info.width(), info.height());
    if (subset) {
        if (!bounds.contains(*subset)) {
            return nullptr;
        }
        if (*subset != bounds) {
            // we need a different uniqueID since we really are a subset of the raw generator
            uniqueID = SkNextID::ImageID();
        }
    } else {
        subset = &bounds;
    }

    // Now that we know we can hand-off the generator (to be owned by the cacherator) we can
    // release our holder. (we DONT want to delete it here anymore)
    genHolder.detach();

    return new SkImageCacherator(gen, gen->getInfo().makeWH(subset->width(), subset->height()),
                                 SkIPoint::Make(subset->x(), subset->y()), uniqueID);
}

SkImageCacherator::SkImageCacherator(SkImageGenerator* gen, const SkImageInfo& info,
                                     const SkIPoint& origin, uint32_t uniqueID)
    : fNotThreadSafeGenerator(gen)
    , fInfo(info)
    , fOrigin(origin)
    , fUniqueID(uniqueID)
{}

SkData* SkImageCacherator::refEncoded() {
    ScopedGenerator generator(this);
    return generator->refEncodedData();
}

static bool check_output_bitmap(const SkBitmap& bitmap, uint32_t expectedID) {
    SkASSERT(bitmap.getGenerationID() == expectedID);
    SkASSERT(bitmap.isImmutable());
    SkASSERT(bitmap.getPixels());
    return true;
}

// Note, this returns a new, mutable, bitmap, with a new genID.
// If you want the immutable bitmap with the same ID as our cacherator, call tryLockAsBitmap()
//
bool SkImageCacherator::generateBitmap(SkBitmap* bitmap) {
    ScopedGenerator generator(this);
    const SkImageInfo& genInfo = generator->getInfo();
    if (fInfo.dimensions() == genInfo.dimensions()) {
        SkASSERT(fOrigin.x() == 0 && fOrigin.y() == 0);
        // fast-case, no copy needed
        return generator->tryGenerateBitmap(bitmap, fInfo);
    } else {
        // need to handle subsetting, so we first generate the full size version, and then
        // "read" from it to get our subset. See skbug.com/4213

        SkBitmap full;
        if (!generator->tryGenerateBitmap(&full, genInfo)) {
            return false;
        }
        if (!bitmap->tryAllocPixels(fInfo, nullptr, full.getColorTable())) {
            return false;
        }
        return full.readPixels(bitmap->info(), bitmap->getPixels(), bitmap->rowBytes(),
                               fOrigin.x(), fOrigin.y());
    }
}

//////////////////////////////////////////////////////////////////////////////////////////////////

bool SkImageCacherator::tryLockAsBitmap(SkBitmap* bitmap) {
    if (SkBitmapCache::Find(fUniqueID, bitmap)) {
        return check_output_bitmap(*bitmap, fUniqueID);
    }

    if (!this->generateBitmap(bitmap)) {
        return false;
    }

    bitmap->pixelRef()->setImmutableWithID(fUniqueID);
    SkBitmapCache::Add(fUniqueID, *bitmap);
    return true;
}

bool SkImageCacherator::lockAsBitmap(SkBitmap* bitmap) {
    if (this->tryLockAsBitmap(bitmap)) {
        return check_output_bitmap(*bitmap, fUniqueID);
    }

#if SK_SUPPORT_GPU
    // Try to get a texture and read it back to raster (and then cache that with our ID)
    SkAutoTUnref<GrTexture> tex;

    {
        ScopedGenerator generator(this);
        SkIRect subset = SkIRect::MakeXYWH(fOrigin.x(), fOrigin.y(), fInfo.width(), fInfo.height());
        tex.reset(generator->generateTexture(nullptr, kUntiled_SkImageUsageType, &subset));
    }
    if (!tex) {
        bitmap->reset();
        return false;
    }

    if (!bitmap->tryAllocPixels(fInfo)) {
        bitmap->reset();
        return false;
    }

    const uint32_t pixelOpsFlags = 0;
    if (!tex->readPixels(0, 0, bitmap->width(), bitmap->height(), SkImageInfo2GrPixelConfig(fInfo),
                         bitmap->getPixels(), bitmap->rowBytes(), pixelOpsFlags)) {
        bitmap->reset();
        return false;
    }

    bitmap->pixelRef()->setImmutableWithID(fUniqueID);
    SkBitmapCache::Add(fUniqueID, *bitmap);
    return check_output_bitmap(*bitmap, fUniqueID);
#else
    return false;
#endif
}

//////////////////////////////////////////////////////////////////////////////////////////////////

#if SK_SUPPORT_GPU
static void make_texture_desc(const SkImageInfo& info, GrSurfaceDesc* desc) {
    desc->fFlags = kNone_GrSurfaceFlags;
    desc->fWidth = info.width();
    desc->fHeight = info.height();
    desc->fConfig = SkImageInfo2GrPixelConfig(info);
    desc->fSampleCnt = 0;
}

static GrTexture* load_compressed_into_texture(GrContext* ctx, SkData* data, GrSurfaceDesc desc) {
    const void* rawStart;
    GrPixelConfig config = GrIsCompressedTextureDataSupported(ctx, data, desc.fWidth, desc.fHeight,
                                                              &rawStart);
    if (kUnknown_GrPixelConfig == config) {
        return nullptr;
    }

    desc.fConfig = config;
    return ctx->textureProvider()->createTexture(desc, true, rawStart, 0);
}

class Generator_GrYUVProvider : public GrYUVProvider {
    SkImageGenerator* fGen;

public:
    Generator_GrYUVProvider(SkImageGenerator* gen) : fGen(gen) {}

    uint32_t onGetID() override { return fGen->uniqueID(); }
    bool onGetYUVSizes(SkISize sizes[3]) override {
        return fGen->getYUV8Planes(sizes, nullptr, nullptr, nullptr);
    }
    bool onGetYUVPlanes(SkISize sizes[3], void* planes[3], size_t rowBytes[3],
                        SkYUVColorSpace* space) override {
        return fGen->getYUV8Planes(sizes, planes, rowBytes, space);
    }
};

static GrTexture* set_key_and_return(GrTexture* tex, const GrUniqueKey& key) {
    tex->resourcePriv().setUniqueKey(key);
    return tex;
}
#endif

/*
 *  We have a 5 ways to try to return a texture (in sorted order)
 *
 *  1. Check the cache for a pre-existing one
 *  2. Ask the genreator to natively create one
 *  3. Ask the generator to return a compressed form that the GPU might support
 *  4. Ask the generator to return YUV planes, which the GPU can convert
 *  5. Ask the generator to return RGB(A) data, which the GPU can convert
 */
GrTexture* SkImageCacherator::lockAsTexture(GrContext* ctx, SkImageUsageType usage) {
#if SK_SUPPORT_GPU
    if (!ctx) {
        return nullptr;
    }

    // textures (at least the texture-key) only support 16bit dimensions, so abort early
    // if we're too big.
    if (fInfo.width() > 0xFFFF || fInfo.height() > 0xFFFF) {
        return nullptr;
    }

    GrUniqueKey key;
    GrMakeKeyFromImageID(&key, fUniqueID, SkIRect::MakeWH(fInfo.width(), fInfo.height()),
                         *ctx->caps(), usage);

    GrSurfaceDesc desc;
    make_texture_desc(fInfo, &desc);

    // 1. Check the cache for a pre-existing one
    if (GrTexture* tex = ctx->textureProvider()->findAndRefTextureByUniqueKey(key)) {
        return tex;
    }

    // 2. Ask the genreator to natively create one
    {
        ScopedGenerator generator(this);
        SkIRect subset = SkIRect::MakeXYWH(fOrigin.x(), fOrigin.y(), fInfo.width(), fInfo.height());
        if (GrTexture* tex = generator->generateTexture(ctx, usage, &subset)) {
            return set_key_and_return(tex, key);
        }
    }

    // 3. Ask the generator to return a compressed form that the GPU might support
    SkAutoTUnref<SkData> data(this->refEncoded());
    if (data) {
        GrTexture* tex = load_compressed_into_texture(ctx, data, desc);
        if (tex) {
            return set_key_and_return(tex, key);
        }
    }

    // 4. Ask the generator to return YUV planes, which the GPU can convert
    {
        ScopedGenerator generator(this);
        Generator_GrYUVProvider provider(generator);
        GrTexture* tex = provider.refAsTexture(ctx, desc, true);
        if (tex) {
            return set_key_and_return(tex, key);
        }
    }

    // 5. Ask the generator to return RGB(A) data, which the GPU can convert
    SkBitmap bitmap;
    if (this->tryLockAsBitmap(&bitmap)) {
        return GrRefCachedBitmapTexture(ctx, bitmap, usage);
    }
#endif

    return nullptr;
}