1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
|
/*
* Copyright 2006 The Android Open Source Project
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkGeometry.h"
#include "SkMatrix.h"
#include "SkNx.h"
#if 0
static Sk2s from_point(const SkPoint& point) {
return Sk2s::Load(&point.fX);
}
static SkPoint to_point(const Sk2s& x) {
SkPoint point;
x.store(&point.fX);
return point;
}
#endif
static SkVector to_vector(const Sk2s& x) {
SkVector vector;
x.store(&vector.fX);
return vector;
}
/** If defined, this makes eval_quad and eval_cubic do more setup (sometimes
involving integer multiplies by 2 or 3, but fewer calls to SkScalarMul.
May also introduce overflow of fixed when we compute our setup.
*/
// #define DIRECT_EVAL_OF_POLYNOMIALS
////////////////////////////////////////////////////////////////////////
static int is_not_monotonic(SkScalar a, SkScalar b, SkScalar c) {
SkScalar ab = a - b;
SkScalar bc = b - c;
if (ab < 0) {
bc = -bc;
}
return ab == 0 || bc < 0;
}
////////////////////////////////////////////////////////////////////////
static bool is_unit_interval(SkScalar x) {
return x > 0 && x < SK_Scalar1;
}
static int valid_unit_divide(SkScalar numer, SkScalar denom, SkScalar* ratio) {
SkASSERT(ratio);
if (numer < 0) {
numer = -numer;
denom = -denom;
}
if (denom == 0 || numer == 0 || numer >= denom) {
return 0;
}
SkScalar r = numer / denom;
if (SkScalarIsNaN(r)) {
return 0;
}
SkASSERTF(r >= 0 && r < SK_Scalar1, "numer %f, denom %f, r %f", numer, denom, r);
if (r == 0) { // catch underflow if numer <<<< denom
return 0;
}
*ratio = r;
return 1;
}
/** From Numerical Recipes in C.
Q = -1/2 (B + sign(B) sqrt[B*B - 4*A*C])
x1 = Q / A
x2 = C / Q
*/
int SkFindUnitQuadRoots(SkScalar A, SkScalar B, SkScalar C, SkScalar roots[2]) {
SkASSERT(roots);
if (A == 0) {
return valid_unit_divide(-C, B, roots);
}
SkScalar* r = roots;
SkScalar R = B*B - 4*A*C;
if (R < 0 || SkScalarIsNaN(R)) { // complex roots
return 0;
}
R = SkScalarSqrt(R);
SkScalar Q = (B < 0) ? -(B-R)/2 : -(B+R)/2;
r += valid_unit_divide(Q, A, r);
r += valid_unit_divide(C, Q, r);
if (r - roots == 2) {
if (roots[0] > roots[1])
SkTSwap<SkScalar>(roots[0], roots[1]);
else if (roots[0] == roots[1]) // nearly-equal?
r -= 1; // skip the double root
}
return (int)(r - roots);
}
///////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////
static Sk2s quad_poly_eval(const Sk2s& A, const Sk2s& B, const Sk2s& C, const Sk2s& t) {
return (A * t + B) * t + C;
}
static SkScalar eval_quad(const SkScalar src[], SkScalar t) {
SkASSERT(src);
SkASSERT(t >= 0 && t <= SK_Scalar1);
#ifdef DIRECT_EVAL_OF_POLYNOMIALS
SkScalar C = src[0];
SkScalar A = src[4] - 2 * src[2] + C;
SkScalar B = 2 * (src[2] - C);
return SkScalarMulAdd(SkScalarMulAdd(A, t, B), t, C);
#else
SkScalar ab = SkScalarInterp(src[0], src[2], t);
SkScalar bc = SkScalarInterp(src[2], src[4], t);
return SkScalarInterp(ab, bc, t);
#endif
}
static SkScalar eval_quad_derivative(const SkScalar src[], SkScalar t) {
SkScalar A = src[4] - 2 * src[2] + src[0];
SkScalar B = src[2] - src[0];
return 2 * SkScalarMulAdd(A, t, B);
}
void SkQuadToCoeff(const SkPoint pts[3], SkPoint coeff[3]) {
Sk2s p0 = from_point(pts[0]);
Sk2s p1 = from_point(pts[1]);
Sk2s p2 = from_point(pts[2]);
Sk2s p1minus2 = p1 - p0;
coeff[0] = to_point(p2 - p1 - p1 + p0); // A * t^2
coeff[1] = to_point(p1minus2 + p1minus2); // B * t
coeff[2] = pts[0]; // C
}
void SkEvalQuadAt(const SkPoint src[3], SkScalar t, SkPoint* pt, SkVector* tangent) {
SkASSERT(src);
SkASSERT(t >= 0 && t <= SK_Scalar1);
if (pt) {
pt->set(eval_quad(&src[0].fX, t), eval_quad(&src[0].fY, t));
}
if (tangent) {
tangent->set(eval_quad_derivative(&src[0].fX, t),
eval_quad_derivative(&src[0].fY, t));
}
}
SkPoint SkEvalQuadAt(const SkPoint src[3], SkScalar t) {
SkASSERT(src);
SkASSERT(t >= 0 && t <= SK_Scalar1);
const Sk2s t2(t);
Sk2s P0 = from_point(src[0]);
Sk2s P1 = from_point(src[1]);
Sk2s P2 = from_point(src[2]);
Sk2s B = P1 - P0;
Sk2s A = P2 - P1 - B;
return to_point((A * t2 + B+B) * t2 + P0);
}
SkVector SkEvalQuadTangentAt(const SkPoint src[3], SkScalar t) {
SkASSERT(src);
SkASSERT(t >= 0 && t <= SK_Scalar1);
Sk2s P0 = from_point(src[0]);
Sk2s P1 = from_point(src[1]);
Sk2s P2 = from_point(src[2]);
Sk2s B = P1 - P0;
Sk2s A = P2 - P1 - B;
Sk2s T = A * Sk2s(t) + B;
return to_vector(T + T);
}
static inline Sk2s interp(const Sk2s& v0, const Sk2s& v1, const Sk2s& t) {
return v0 + (v1 - v0) * t;
}
void SkChopQuadAt(const SkPoint src[3], SkPoint dst[5], SkScalar t) {
SkASSERT(t > 0 && t < SK_Scalar1);
Sk2s p0 = from_point(src[0]);
Sk2s p1 = from_point(src[1]);
Sk2s p2 = from_point(src[2]);
Sk2s tt(t);
Sk2s p01 = interp(p0, p1, tt);
Sk2s p12 = interp(p1, p2, tt);
dst[0] = to_point(p0);
dst[1] = to_point(p01);
dst[2] = to_point(interp(p01, p12, tt));
dst[3] = to_point(p12);
dst[4] = to_point(p2);
}
void SkChopQuadAtHalf(const SkPoint src[3], SkPoint dst[5]) {
SkChopQuadAt(src, dst, 0.5f); return;
}
/** Quad'(t) = At + B, where
A = 2(a - 2b + c)
B = 2(b - a)
Solve for t, only if it fits between 0 < t < 1
*/
int SkFindQuadExtrema(SkScalar a, SkScalar b, SkScalar c, SkScalar tValue[1]) {
/* At + B == 0
t = -B / A
*/
return valid_unit_divide(a - b, a - b - b + c, tValue);
}
static inline void flatten_double_quad_extrema(SkScalar coords[14]) {
coords[2] = coords[6] = coords[4];
}
/* Returns 0 for 1 quad, and 1 for two quads, either way the answer is
stored in dst[]. Guarantees that the 1/2 quads will be monotonic.
*/
int SkChopQuadAtYExtrema(const SkPoint src[3], SkPoint dst[5]) {
SkASSERT(src);
SkASSERT(dst);
SkScalar a = src[0].fY;
SkScalar b = src[1].fY;
SkScalar c = src[2].fY;
if (is_not_monotonic(a, b, c)) {
SkScalar tValue;
if (valid_unit_divide(a - b, a - b - b + c, &tValue)) {
SkChopQuadAt(src, dst, tValue);
flatten_double_quad_extrema(&dst[0].fY);
return 1;
}
// if we get here, we need to force dst to be monotonic, even though
// we couldn't compute a unit_divide value (probably underflow).
b = SkScalarAbs(a - b) < SkScalarAbs(b - c) ? a : c;
}
dst[0].set(src[0].fX, a);
dst[1].set(src[1].fX, b);
dst[2].set(src[2].fX, c);
return 0;
}
/* Returns 0 for 1 quad, and 1 for two quads, either way the answer is
stored in dst[]. Guarantees that the 1/2 quads will be monotonic.
*/
int SkChopQuadAtXExtrema(const SkPoint src[3], SkPoint dst[5]) {
SkASSERT(src);
SkASSERT(dst);
SkScalar a = src[0].fX;
SkScalar b = src[1].fX;
SkScalar c = src[2].fX;
if (is_not_monotonic(a, b, c)) {
SkScalar tValue;
if (valid_unit_divide(a - b, a - b - b + c, &tValue)) {
SkChopQuadAt(src, dst, tValue);
flatten_double_quad_extrema(&dst[0].fX);
return 1;
}
// if we get here, we need to force dst to be monotonic, even though
// we couldn't compute a unit_divide value (probably underflow).
b = SkScalarAbs(a - b) < SkScalarAbs(b - c) ? a : c;
}
dst[0].set(a, src[0].fY);
dst[1].set(b, src[1].fY);
dst[2].set(c, src[2].fY);
return 0;
}
// F(t) = a (1 - t) ^ 2 + 2 b t (1 - t) + c t ^ 2
// F'(t) = 2 (b - a) + 2 (a - 2b + c) t
// F''(t) = 2 (a - 2b + c)
//
// A = 2 (b - a)
// B = 2 (a - 2b + c)
//
// Maximum curvature for a quadratic means solving
// Fx' Fx'' + Fy' Fy'' = 0
//
// t = - (Ax Bx + Ay By) / (Bx ^ 2 + By ^ 2)
//
SkScalar SkFindQuadMaxCurvature(const SkPoint src[3]) {
SkScalar Ax = src[1].fX - src[0].fX;
SkScalar Ay = src[1].fY - src[0].fY;
SkScalar Bx = src[0].fX - src[1].fX - src[1].fX + src[2].fX;
SkScalar By = src[0].fY - src[1].fY - src[1].fY + src[2].fY;
SkScalar t = 0; // 0 means don't chop
(void)valid_unit_divide(-(Ax * Bx + Ay * By), Bx * Bx + By * By, &t);
return t;
}
int SkChopQuadAtMaxCurvature(const SkPoint src[3], SkPoint dst[5]) {
SkScalar t = SkFindQuadMaxCurvature(src);
if (t == 0) {
memcpy(dst, src, 3 * sizeof(SkPoint));
return 1;
} else {
SkChopQuadAt(src, dst, t);
return 2;
}
}
void SkConvertQuadToCubic(const SkPoint src[3], SkPoint dst[4]) {
Sk2s scale(SkDoubleToScalar(2.0 / 3.0));
Sk2s s0 = from_point(src[0]);
Sk2s s1 = from_point(src[1]);
Sk2s s2 = from_point(src[2]);
dst[0] = src[0];
dst[1] = to_point(s0 + (s1 - s0) * scale);
dst[2] = to_point(s2 + (s1 - s2) * scale);
dst[3] = src[2];
}
//////////////////////////////////////////////////////////////////////////////
///// CUBICS // CUBICS // CUBICS // CUBICS // CUBICS // CUBICS // CUBICS /////
//////////////////////////////////////////////////////////////////////////////
static SkScalar eval_cubic(const SkScalar src[], SkScalar t) {
SkASSERT(src);
SkASSERT(t >= 0 && t <= SK_Scalar1);
if (t == 0) {
return src[0];
}
#ifdef DIRECT_EVAL_OF_POLYNOMIALS
SkScalar D = src[0];
SkScalar A = src[6] + 3*(src[2] - src[4]) - D;
SkScalar B = 3*(src[4] - src[2] - src[2] + D);
SkScalar C = 3*(src[2] - D);
return SkScalarMulAdd(SkScalarMulAdd(SkScalarMulAdd(A, t, B), t, C), t, D);
#else
SkScalar ab = SkScalarInterp(src[0], src[2], t);
SkScalar bc = SkScalarInterp(src[2], src[4], t);
SkScalar cd = SkScalarInterp(src[4], src[6], t);
SkScalar abc = SkScalarInterp(ab, bc, t);
SkScalar bcd = SkScalarInterp(bc, cd, t);
return SkScalarInterp(abc, bcd, t);
#endif
}
/** return At^2 + Bt + C
*/
static SkScalar eval_quadratic(SkScalar A, SkScalar B, SkScalar C, SkScalar t) {
SkASSERT(t >= 0 && t <= SK_Scalar1);
return SkScalarMulAdd(SkScalarMulAdd(A, t, B), t, C);
}
static SkScalar eval_cubic_derivative(const SkScalar src[], SkScalar t) {
SkScalar A = src[6] + 3*(src[2] - src[4]) - src[0];
SkScalar B = 2*(src[4] - 2 * src[2] + src[0]);
SkScalar C = src[2] - src[0];
return eval_quadratic(A, B, C, t);
}
static SkScalar eval_cubic_2ndDerivative(const SkScalar src[], SkScalar t) {
SkScalar A = src[6] + 3*(src[2] - src[4]) - src[0];
SkScalar B = src[4] - 2 * src[2] + src[0];
return SkScalarMulAdd(A, t, B);
}
void SkEvalCubicAt(const SkPoint src[4], SkScalar t, SkPoint* loc,
SkVector* tangent, SkVector* curvature) {
SkASSERT(src);
SkASSERT(t >= 0 && t <= SK_Scalar1);
if (loc) {
loc->set(eval_cubic(&src[0].fX, t), eval_cubic(&src[0].fY, t));
}
if (tangent) {
tangent->set(eval_cubic_derivative(&src[0].fX, t),
eval_cubic_derivative(&src[0].fY, t));
}
if (curvature) {
curvature->set(eval_cubic_2ndDerivative(&src[0].fX, t),
eval_cubic_2ndDerivative(&src[0].fY, t));
}
}
/** Cubic'(t) = At^2 + Bt + C, where
A = 3(-a + 3(b - c) + d)
B = 6(a - 2b + c)
C = 3(b - a)
Solve for t, keeping only those that fit betwee 0 < t < 1
*/
int SkFindCubicExtrema(SkScalar a, SkScalar b, SkScalar c, SkScalar d,
SkScalar tValues[2]) {
// we divide A,B,C by 3 to simplify
SkScalar A = d - a + 3*(b - c);
SkScalar B = 2*(a - b - b + c);
SkScalar C = b - a;
return SkFindUnitQuadRoots(A, B, C, tValues);
}
void SkChopCubicAt(const SkPoint src[4], SkPoint dst[7], SkScalar t) {
SkASSERT(t > 0 && t < SK_Scalar1);
Sk2s p0 = from_point(src[0]);
Sk2s p1 = from_point(src[1]);
Sk2s p2 = from_point(src[2]);
Sk2s p3 = from_point(src[3]);
Sk2s tt(t);
Sk2s ab = interp(p0, p1, tt);
Sk2s bc = interp(p1, p2, tt);
Sk2s cd = interp(p2, p3, tt);
Sk2s abc = interp(ab, bc, tt);
Sk2s bcd = interp(bc, cd, tt);
Sk2s abcd = interp(abc, bcd, tt);
dst[0] = src[0];
dst[1] = to_point(ab);
dst[2] = to_point(abc);
dst[3] = to_point(abcd);
dst[4] = to_point(bcd);
dst[5] = to_point(cd);
dst[6] = src[3];
}
void SkCubicToCoeff(const SkPoint pts[4], SkPoint coeff[4]) {
Sk2s p0 = from_point(pts[0]);
Sk2s p1 = from_point(pts[1]);
Sk2s p2 = from_point(pts[2]);
Sk2s p3 = from_point(pts[3]);
const Sk2s three(3);
Sk2s p1minusp2 = p1 - p2;
Sk2s D = p0;
Sk2s A = p3 + three * p1minusp2 - D;
Sk2s B = three * (D - p1minusp2 - p1);
Sk2s C = three * (p1 - D);
coeff[0] = to_point(A);
coeff[1] = to_point(B);
coeff[2] = to_point(C);
coeff[3] = to_point(D);
}
/* http://code.google.com/p/skia/issues/detail?id=32
This test code would fail when we didn't check the return result of
valid_unit_divide in SkChopCubicAt(... tValues[], int roots). The reason is
that after the first chop, the parameters to valid_unit_divide are equal
(thanks to finite float precision and rounding in the subtracts). Thus
even though the 2nd tValue looks < 1.0, after we renormalize it, we end
up with 1.0, hence the need to check and just return the last cubic as
a degenerate clump of 4 points in the sampe place.
static void test_cubic() {
SkPoint src[4] = {
{ 556.25000, 523.03003 },
{ 556.23999, 522.96002 },
{ 556.21997, 522.89001 },
{ 556.21997, 522.82001 }
};
SkPoint dst[10];
SkScalar tval[] = { 0.33333334f, 0.99999994f };
SkChopCubicAt(src, dst, tval, 2);
}
*/
void SkChopCubicAt(const SkPoint src[4], SkPoint dst[],
const SkScalar tValues[], int roots) {
#ifdef SK_DEBUG
{
for (int i = 0; i < roots - 1; i++)
{
SkASSERT(is_unit_interval(tValues[i]));
SkASSERT(is_unit_interval(tValues[i+1]));
SkASSERT(tValues[i] < tValues[i+1]);
}
}
#endif
if (dst) {
if (roots == 0) { // nothing to chop
memcpy(dst, src, 4*sizeof(SkPoint));
} else {
SkScalar t = tValues[0];
SkPoint tmp[4];
for (int i = 0; i < roots; i++) {
SkChopCubicAt(src, dst, t);
if (i == roots - 1) {
break;
}
dst += 3;
// have src point to the remaining cubic (after the chop)
memcpy(tmp, dst, 4 * sizeof(SkPoint));
src = tmp;
// watch out in case the renormalized t isn't in range
if (!valid_unit_divide(tValues[i+1] - tValues[i],
SK_Scalar1 - tValues[i], &t)) {
// if we can't, just create a degenerate cubic
dst[4] = dst[5] = dst[6] = src[3];
break;
}
}
}
}
}
void SkChopCubicAtHalf(const SkPoint src[4], SkPoint dst[7]) {
SkChopCubicAt(src, dst, 0.5f);
}
static void flatten_double_cubic_extrema(SkScalar coords[14]) {
coords[4] = coords[8] = coords[6];
}
/** Given 4 points on a cubic bezier, chop it into 1, 2, 3 beziers such that
the resulting beziers are monotonic in Y. This is called by the scan
converter. Depending on what is returned, dst[] is treated as follows:
0 dst[0..3] is the original cubic
1 dst[0..3] and dst[3..6] are the two new cubics
2 dst[0..3], dst[3..6], dst[6..9] are the three new cubics
If dst == null, it is ignored and only the count is returned.
*/
int SkChopCubicAtYExtrema(const SkPoint src[4], SkPoint dst[10]) {
SkScalar tValues[2];
int roots = SkFindCubicExtrema(src[0].fY, src[1].fY, src[2].fY,
src[3].fY, tValues);
SkChopCubicAt(src, dst, tValues, roots);
if (dst && roots > 0) {
// we do some cleanup to ensure our Y extrema are flat
flatten_double_cubic_extrema(&dst[0].fY);
if (roots == 2) {
flatten_double_cubic_extrema(&dst[3].fY);
}
}
return roots;
}
int SkChopCubicAtXExtrema(const SkPoint src[4], SkPoint dst[10]) {
SkScalar tValues[2];
int roots = SkFindCubicExtrema(src[0].fX, src[1].fX, src[2].fX,
src[3].fX, tValues);
SkChopCubicAt(src, dst, tValues, roots);
if (dst && roots > 0) {
// we do some cleanup to ensure our Y extrema are flat
flatten_double_cubic_extrema(&dst[0].fX);
if (roots == 2) {
flatten_double_cubic_extrema(&dst[3].fX);
}
}
return roots;
}
/** http://www.faculty.idc.ac.il/arik/quality/appendixA.html
Inflection means that curvature is zero.
Curvature is [F' x F''] / [F'^3]
So we solve F'x X F''y - F'y X F''y == 0
After some canceling of the cubic term, we get
A = b - a
B = c - 2b + a
C = d - 3c + 3b - a
(BxCy - ByCx)t^2 + (AxCy - AyCx)t + AxBy - AyBx == 0
*/
int SkFindCubicInflections(const SkPoint src[4], SkScalar tValues[]) {
SkScalar Ax = src[1].fX - src[0].fX;
SkScalar Ay = src[1].fY - src[0].fY;
SkScalar Bx = src[2].fX - 2 * src[1].fX + src[0].fX;
SkScalar By = src[2].fY - 2 * src[1].fY + src[0].fY;
SkScalar Cx = src[3].fX + 3 * (src[1].fX - src[2].fX) - src[0].fX;
SkScalar Cy = src[3].fY + 3 * (src[1].fY - src[2].fY) - src[0].fY;
return SkFindUnitQuadRoots(Bx*Cy - By*Cx,
Ax*Cy - Ay*Cx,
Ax*By - Ay*Bx,
tValues);
}
int SkChopCubicAtInflections(const SkPoint src[], SkPoint dst[10]) {
SkScalar tValues[2];
int count = SkFindCubicInflections(src, tValues);
if (dst) {
if (count == 0) {
memcpy(dst, src, 4 * sizeof(SkPoint));
} else {
SkChopCubicAt(src, dst, tValues, count);
}
}
return count + 1;
}
// See http://http.developer.nvidia.com/GPUGems3/gpugems3_ch25.html (from the book GPU Gems 3)
// discr(I) = d0^2 * (3*d1^2 - 4*d0*d2)
// Classification:
// discr(I) > 0 Serpentine
// discr(I) = 0 Cusp
// discr(I) < 0 Loop
// d0 = d1 = 0 Quadratic
// d0 = d1 = d2 = 0 Line
// p0 = p1 = p2 = p3 Point
static SkCubicType classify_cubic(const SkPoint p[4], const SkScalar d[3]) {
if (p[0] == p[1] && p[0] == p[2] && p[0] == p[3]) {
return kPoint_SkCubicType;
}
const SkScalar discr = d[0] * d[0] * (3.f * d[1] * d[1] - 4.f * d[0] * d[2]);
if (discr > SK_ScalarNearlyZero) {
return kSerpentine_SkCubicType;
} else if (discr < -SK_ScalarNearlyZero) {
return kLoop_SkCubicType;
} else {
if (0.f == d[0] && 0.f == d[1]) {
return (0.f == d[2] ? kLine_SkCubicType : kQuadratic_SkCubicType);
} else {
return kCusp_SkCubicType;
}
}
}
// Assumes the third component of points is 1.
// Calcs p0 . (p1 x p2)
static SkScalar calc_dot_cross_cubic(const SkPoint& p0, const SkPoint& p1, const SkPoint& p2) {
const SkScalar xComp = p0.fX * (p1.fY - p2.fY);
const SkScalar yComp = p0.fY * (p2.fX - p1.fX);
const SkScalar wComp = p1.fX * p2.fY - p1.fY * p2.fX;
return (xComp + yComp + wComp);
}
// Calc coefficients of I(s,t) where roots of I are inflection points of curve
// I(s,t) = t*(3*d0*s^2 - 3*d1*s*t + d2*t^2)
// d0 = a1 - 2*a2+3*a3
// d1 = -a2 + 3*a3
// d2 = 3*a3
// a1 = p0 . (p3 x p2)
// a2 = p1 . (p0 x p3)
// a3 = p2 . (p1 x p0)
// Places the values of d1, d2, d3 in array d passed in
static void calc_cubic_inflection_func(const SkPoint p[4], SkScalar d[3]) {
SkScalar a1 = calc_dot_cross_cubic(p[0], p[3], p[2]);
SkScalar a2 = calc_dot_cross_cubic(p[1], p[0], p[3]);
SkScalar a3 = calc_dot_cross_cubic(p[2], p[1], p[0]);
// need to scale a's or values in later calculations will grow to high
SkScalar max = SkScalarAbs(a1);
max = SkMaxScalar(max, SkScalarAbs(a2));
max = SkMaxScalar(max, SkScalarAbs(a3));
max = 1.f/max;
a1 = a1 * max;
a2 = a2 * max;
a3 = a3 * max;
d[2] = 3.f * a3;
d[1] = d[2] - a2;
d[0] = d[1] - a2 + a1;
}
SkCubicType SkClassifyCubic(const SkPoint src[4], SkScalar d[3]) {
calc_cubic_inflection_func(src, d);
return classify_cubic(src, d);
}
template <typename T> void bubble_sort(T array[], int count) {
for (int i = count - 1; i > 0; --i)
for (int j = i; j > 0; --j)
if (array[j] < array[j-1])
{
T tmp(array[j]);
array[j] = array[j-1];
array[j-1] = tmp;
}
}
/**
* Given an array and count, remove all pair-wise duplicates from the array,
* keeping the existing sorting, and return the new count
*/
static int collaps_duplicates(SkScalar array[], int count) {
for (int n = count; n > 1; --n) {
if (array[0] == array[1]) {
for (int i = 1; i < n; ++i) {
array[i - 1] = array[i];
}
count -= 1;
} else {
array += 1;
}
}
return count;
}
#ifdef SK_DEBUG
#define TEST_COLLAPS_ENTRY(array) array, SK_ARRAY_COUNT(array)
static void test_collaps_duplicates() {
static bool gOnce;
if (gOnce) { return; }
gOnce = true;
const SkScalar src0[] = { 0 };
const SkScalar src1[] = { 0, 0 };
const SkScalar src2[] = { 0, 1 };
const SkScalar src3[] = { 0, 0, 0 };
const SkScalar src4[] = { 0, 0, 1 };
const SkScalar src5[] = { 0, 1, 1 };
const SkScalar src6[] = { 0, 1, 2 };
const struct {
const SkScalar* fData;
int fCount;
int fCollapsedCount;
} data[] = {
{ TEST_COLLAPS_ENTRY(src0), 1 },
{ TEST_COLLAPS_ENTRY(src1), 1 },
{ TEST_COLLAPS_ENTRY(src2), 2 },
{ TEST_COLLAPS_ENTRY(src3), 1 },
{ TEST_COLLAPS_ENTRY(src4), 2 },
{ TEST_COLLAPS_ENTRY(src5), 2 },
{ TEST_COLLAPS_ENTRY(src6), 3 },
};
for (size_t i = 0; i < SK_ARRAY_COUNT(data); ++i) {
SkScalar dst[3];
memcpy(dst, data[i].fData, data[i].fCount * sizeof(dst[0]));
int count = collaps_duplicates(dst, data[i].fCount);
SkASSERT(data[i].fCollapsedCount == count);
for (int j = 1; j < count; ++j) {
SkASSERT(dst[j-1] < dst[j]);
}
}
}
#endif
static SkScalar SkScalarCubeRoot(SkScalar x) {
return SkScalarPow(x, 0.3333333f);
}
/* Solve coeff(t) == 0, returning the number of roots that
lie withing 0 < t < 1.
coeff[0]t^3 + coeff[1]t^2 + coeff[2]t + coeff[3]
Eliminates repeated roots (so that all tValues are distinct, and are always
in increasing order.
*/
static int solve_cubic_poly(const SkScalar coeff[4], SkScalar tValues[3]) {
if (SkScalarNearlyZero(coeff[0])) { // we're just a quadratic
return SkFindUnitQuadRoots(coeff[1], coeff[2], coeff[3], tValues);
}
SkScalar a, b, c, Q, R;
{
SkASSERT(coeff[0] != 0);
SkScalar inva = SkScalarInvert(coeff[0]);
a = coeff[1] * inva;
b = coeff[2] * inva;
c = coeff[3] * inva;
}
Q = (a*a - b*3) / 9;
R = (2*a*a*a - 9*a*b + 27*c) / 54;
SkScalar Q3 = Q * Q * Q;
SkScalar R2MinusQ3 = R * R - Q3;
SkScalar adiv3 = a / 3;
SkScalar* roots = tValues;
SkScalar r;
if (R2MinusQ3 < 0) { // we have 3 real roots
SkScalar theta = SkScalarACos(R / SkScalarSqrt(Q3));
SkScalar neg2RootQ = -2 * SkScalarSqrt(Q);
r = neg2RootQ * SkScalarCos(theta/3) - adiv3;
if (is_unit_interval(r)) {
*roots++ = r;
}
r = neg2RootQ * SkScalarCos((theta + 2*SK_ScalarPI)/3) - adiv3;
if (is_unit_interval(r)) {
*roots++ = r;
}
r = neg2RootQ * SkScalarCos((theta - 2*SK_ScalarPI)/3) - adiv3;
if (is_unit_interval(r)) {
*roots++ = r;
}
SkDEBUGCODE(test_collaps_duplicates();)
// now sort the roots
int count = (int)(roots - tValues);
SkASSERT((unsigned)count <= 3);
bubble_sort(tValues, count);
count = collaps_duplicates(tValues, count);
roots = tValues + count; // so we compute the proper count below
} else { // we have 1 real root
SkScalar A = SkScalarAbs(R) + SkScalarSqrt(R2MinusQ3);
A = SkScalarCubeRoot(A);
if (R > 0) {
A = -A;
}
if (A != 0) {
A += Q / A;
}
r = A - adiv3;
if (is_unit_interval(r)) {
*roots++ = r;
}
}
return (int)(roots - tValues);
}
/* Looking for F' dot F'' == 0
A = b - a
B = c - 2b + a
C = d - 3c + 3b - a
F' = 3Ct^2 + 6Bt + 3A
F'' = 6Ct + 6B
F' dot F'' -> CCt^3 + 3BCt^2 + (2BB + CA)t + AB
*/
static void formulate_F1DotF2(const SkScalar src[], SkScalar coeff[4]) {
SkScalar a = src[2] - src[0];
SkScalar b = src[4] - 2 * src[2] + src[0];
SkScalar c = src[6] + 3 * (src[2] - src[4]) - src[0];
coeff[0] = c * c;
coeff[1] = 3 * b * c;
coeff[2] = 2 * b * b + c * a;
coeff[3] = a * b;
}
/* Looking for F' dot F'' == 0
A = b - a
B = c - 2b + a
C = d - 3c + 3b - a
F' = 3Ct^2 + 6Bt + 3A
F'' = 6Ct + 6B
F' dot F'' -> CCt^3 + 3BCt^2 + (2BB + CA)t + AB
*/
int SkFindCubicMaxCurvature(const SkPoint src[4], SkScalar tValues[3]) {
SkScalar coeffX[4], coeffY[4];
int i;
formulate_F1DotF2(&src[0].fX, coeffX);
formulate_F1DotF2(&src[0].fY, coeffY);
for (i = 0; i < 4; i++) {
coeffX[i] += coeffY[i];
}
SkScalar t[3];
int count = solve_cubic_poly(coeffX, t);
int maxCount = 0;
// now remove extrema where the curvature is zero (mins)
// !!!! need a test for this !!!!
for (i = 0; i < count; i++) {
// if (not_min_curvature())
if (t[i] > 0 && t[i] < SK_Scalar1) {
tValues[maxCount++] = t[i];
}
}
return maxCount;
}
int SkChopCubicAtMaxCurvature(const SkPoint src[4], SkPoint dst[13],
SkScalar tValues[3]) {
SkScalar t_storage[3];
if (tValues == NULL) {
tValues = t_storage;
}
int count = SkFindCubicMaxCurvature(src, tValues);
if (dst) {
if (count == 0) {
memcpy(dst, src, 4 * sizeof(SkPoint));
} else {
SkChopCubicAt(src, dst, tValues, count);
}
}
return count + 1;
}
#include "../pathops/SkPathOpsCubic.h"
typedef int (SkDCubic::*InterceptProc)(double intercept, double roots[3]) const;
static bool cubic_dchop_at_intercept(const SkPoint src[4], SkScalar intercept, SkPoint dst[7],
InterceptProc method) {
SkDCubic cubic;
double roots[3];
int count = (cubic.set(src).*method)(intercept, roots);
if (count > 0) {
SkDCubicPair pair = cubic.chopAt(roots[0]);
for (int i = 0; i < 7; ++i) {
dst[i] = pair.pts[i].asSkPoint();
}
return true;
}
return false;
}
bool SkChopMonoCubicAtY(SkPoint src[4], SkScalar y, SkPoint dst[7]) {
return cubic_dchop_at_intercept(src, y, dst, &SkDCubic::horizontalIntersect);
}
bool SkChopMonoCubicAtX(SkPoint src[4], SkScalar x, SkPoint dst[7]) {
return cubic_dchop_at_intercept(src, x, dst, &SkDCubic::verticalIntersect);
}
///////////////////////////////////////////////////////////////////////////////
/* Find t value for quadratic [a, b, c] = d.
Return 0 if there is no solution within [0, 1)
*/
static SkScalar quad_solve(SkScalar a, SkScalar b, SkScalar c, SkScalar d) {
// At^2 + Bt + C = d
SkScalar A = a - 2 * b + c;
SkScalar B = 2 * (b - a);
SkScalar C = a - d;
SkScalar roots[2];
int count = SkFindUnitQuadRoots(A, B, C, roots);
SkASSERT(count <= 1);
return count == 1 ? roots[0] : 0;
}
/* given a quad-curve and a point (x,y), chop the quad at that point and place
the new off-curve point and endpoint into 'dest'.
Should only return false if the computed pos is the start of the curve
(i.e. root == 0)
*/
static bool truncate_last_curve(const SkPoint quad[3], SkScalar x, SkScalar y,
SkPoint* dest) {
const SkScalar* base;
SkScalar value;
if (SkScalarAbs(x) < SkScalarAbs(y)) {
base = &quad[0].fX;
value = x;
} else {
base = &quad[0].fY;
value = y;
}
// note: this returns 0 if it thinks value is out of range, meaning the
// root might return something outside of [0, 1)
SkScalar t = quad_solve(base[0], base[2], base[4], value);
if (t > 0) {
SkPoint tmp[5];
SkChopQuadAt(quad, tmp, t);
dest[0] = tmp[1];
dest[1].set(x, y);
return true;
} else {
/* t == 0 means either the value triggered a root outside of [0, 1)
For our purposes, we can ignore the <= 0 roots, but we want to
catch the >= 1 roots (which given our caller, will basically mean
a root of 1, give-or-take numerical instability). If we are in the
>= 1 case, return the existing offCurve point.
The test below checks to see if we are close to the "end" of the
curve (near base[4]). Rather than specifying a tolerance, I just
check to see if value is on to the right/left of the middle point
(depending on the direction/sign of the end points).
*/
if ((base[0] < base[4] && value > base[2]) ||
(base[0] > base[4] && value < base[2])) // should root have been 1
{
dest[0] = quad[1];
dest[1].set(x, y);
return true;
}
}
return false;
}
static const SkPoint gQuadCirclePts[kSkBuildQuadArcStorage] = {
// The mid point of the quadratic arc approximation is half way between the two
// control points. The float epsilon adjustment moves the on curve point out by
// two bits, distributing the convex test error between the round rect
// approximation and the convex cross product sign equality test.
#define SK_MID_RRECT_OFFSET \
(SK_Scalar1 + SK_ScalarTanPIOver8 + FLT_EPSILON * 4) / 2
{ SK_Scalar1, 0 },
{ SK_Scalar1, SK_ScalarTanPIOver8 },
{ SK_MID_RRECT_OFFSET, SK_MID_RRECT_OFFSET },
{ SK_ScalarTanPIOver8, SK_Scalar1 },
{ 0, SK_Scalar1 },
{ -SK_ScalarTanPIOver8, SK_Scalar1 },
{ -SK_MID_RRECT_OFFSET, SK_MID_RRECT_OFFSET },
{ -SK_Scalar1, SK_ScalarTanPIOver8 },
{ -SK_Scalar1, 0 },
{ -SK_Scalar1, -SK_ScalarTanPIOver8 },
{ -SK_MID_RRECT_OFFSET, -SK_MID_RRECT_OFFSET },
{ -SK_ScalarTanPIOver8, -SK_Scalar1 },
{ 0, -SK_Scalar1 },
{ SK_ScalarTanPIOver8, -SK_Scalar1 },
{ SK_MID_RRECT_OFFSET, -SK_MID_RRECT_OFFSET },
{ SK_Scalar1, -SK_ScalarTanPIOver8 },
{ SK_Scalar1, 0 }
#undef SK_MID_RRECT_OFFSET
};
int SkBuildQuadArc(const SkVector& uStart, const SkVector& uStop,
SkRotationDirection dir, const SkMatrix* userMatrix,
SkPoint quadPoints[]) {
// rotate by x,y so that uStart is (1.0)
SkScalar x = SkPoint::DotProduct(uStart, uStop);
SkScalar y = SkPoint::CrossProduct(uStart, uStop);
SkScalar absX = SkScalarAbs(x);
SkScalar absY = SkScalarAbs(y);
int pointCount;
// check for (effectively) coincident vectors
// this can happen if our angle is nearly 0 or nearly 180 (y == 0)
// ... we use the dot-prod to distinguish between 0 and 180 (x > 0)
if (absY <= SK_ScalarNearlyZero && x > 0 &&
((y >= 0 && kCW_SkRotationDirection == dir) ||
(y <= 0 && kCCW_SkRotationDirection == dir))) {
// just return the start-point
quadPoints[0].set(SK_Scalar1, 0);
pointCount = 1;
} else {
if (dir == kCCW_SkRotationDirection) {
y = -y;
}
// what octant (quadratic curve) is [xy] in?
int oct = 0;
bool sameSign = true;
if (0 == y) {
oct = 4; // 180
SkASSERT(SkScalarAbs(x + SK_Scalar1) <= SK_ScalarNearlyZero);
} else if (0 == x) {
SkASSERT(absY - SK_Scalar1 <= SK_ScalarNearlyZero);
oct = y > 0 ? 2 : 6; // 90 : 270
} else {
if (y < 0) {
oct += 4;
}
if ((x < 0) != (y < 0)) {
oct += 2;
sameSign = false;
}
if ((absX < absY) == sameSign) {
oct += 1;
}
}
int wholeCount = oct << 1;
memcpy(quadPoints, gQuadCirclePts, (wholeCount + 1) * sizeof(SkPoint));
const SkPoint* arc = &gQuadCirclePts[wholeCount];
if (truncate_last_curve(arc, x, y, &quadPoints[wholeCount + 1])) {
wholeCount += 2;
}
pointCount = wholeCount + 1;
}
// now handle counter-clockwise and the initial unitStart rotation
SkMatrix matrix;
matrix.setSinCos(uStart.fY, uStart.fX);
if (dir == kCCW_SkRotationDirection) {
matrix.preScale(SK_Scalar1, -SK_Scalar1);
}
if (userMatrix) {
matrix.postConcat(*userMatrix);
}
matrix.mapPoints(quadPoints, pointCount);
return pointCount;
}
///////////////////////////////////////////////////////////////////////////////
//
// NURB representation for conics. Helpful explanations at:
//
// http://citeseerx.ist.psu.edu/viewdoc/
// download?doi=10.1.1.44.5740&rep=rep1&type=ps
// and
// http://www.cs.mtu.edu/~shene/COURSES/cs3621/NOTES/spline/NURBS/RB-conics.html
//
// F = (A (1 - t)^2 + C t^2 + 2 B (1 - t) t w)
// ------------------------------------------
// ((1 - t)^2 + t^2 + 2 (1 - t) t w)
//
// = {t^2 (P0 + P2 - 2 P1 w), t (-2 P0 + 2 P1 w), P0}
// ------------------------------------------------
// {t^2 (2 - 2 w), t (-2 + 2 w), 1}
//
static SkScalar conic_eval_pos(const SkScalar src[], SkScalar w, SkScalar t) {
SkASSERT(src);
SkASSERT(t >= 0 && t <= SK_Scalar1);
SkScalar src2w = SkScalarMul(src[2], w);
SkScalar C = src[0];
SkScalar A = src[4] - 2 * src2w + C;
SkScalar B = 2 * (src2w - C);
SkScalar numer = SkScalarMulAdd(SkScalarMulAdd(A, t, B), t, C);
B = 2 * (w - SK_Scalar1);
C = SK_Scalar1;
A = -B;
SkScalar denom = SkScalarMulAdd(SkScalarMulAdd(A, t, B), t, C);
return numer / denom;
}
// F' = 2 (C t (1 + t (-1 + w)) - A (-1 + t) (t (-1 + w) - w) + B (1 - 2 t) w)
//
// t^2 : (2 P0 - 2 P2 - 2 P0 w + 2 P2 w)
// t^1 : (-2 P0 + 2 P2 + 4 P0 w - 4 P1 w)
// t^0 : -2 P0 w + 2 P1 w
//
// We disregard magnitude, so we can freely ignore the denominator of F', and
// divide the numerator by 2
//
// coeff[0] for t^2
// coeff[1] for t^1
// coeff[2] for t^0
//
static void conic_deriv_coeff(const SkScalar src[],
SkScalar w,
SkScalar coeff[3]) {
const SkScalar P20 = src[4] - src[0];
const SkScalar P10 = src[2] - src[0];
const SkScalar wP10 = w * P10;
coeff[0] = w * P20 - P20;
coeff[1] = P20 - 2 * wP10;
coeff[2] = wP10;
}
static SkScalar conic_eval_tan(const SkScalar coord[], SkScalar w, SkScalar t) {
SkScalar coeff[3];
conic_deriv_coeff(coord, w, coeff);
return t * (t * coeff[0] + coeff[1]) + coeff[2];
}
static bool conic_find_extrema(const SkScalar src[], SkScalar w, SkScalar* t) {
SkScalar coeff[3];
conic_deriv_coeff(src, w, coeff);
SkScalar tValues[2];
int roots = SkFindUnitQuadRoots(coeff[0], coeff[1], coeff[2], tValues);
SkASSERT(0 == roots || 1 == roots);
if (1 == roots) {
*t = tValues[0];
return true;
}
return false;
}
struct SkP3D {
SkScalar fX, fY, fZ;
void set(SkScalar x, SkScalar y, SkScalar z) {
fX = x; fY = y; fZ = z;
}
void projectDown(SkPoint* dst) const {
dst->set(fX / fZ, fY / fZ);
}
};
// We only interpolate one dimension at a time (the first, at +0, +3, +6).
static void p3d_interp(const SkScalar src[7], SkScalar dst[7], SkScalar t) {
SkScalar ab = SkScalarInterp(src[0], src[3], t);
SkScalar bc = SkScalarInterp(src[3], src[6], t);
dst[0] = ab;
dst[3] = SkScalarInterp(ab, bc, t);
dst[6] = bc;
}
static void ratquad_mapTo3D(const SkPoint src[3], SkScalar w, SkP3D dst[]) {
dst[0].set(src[0].fX * 1, src[0].fY * 1, 1);
dst[1].set(src[1].fX * w, src[1].fY * w, w);
dst[2].set(src[2].fX * 1, src[2].fY * 1, 1);
}
void SkConic::evalAt(SkScalar t, SkPoint* pt, SkVector* tangent) const {
SkASSERT(t >= 0 && t <= SK_Scalar1);
if (pt) {
pt->set(conic_eval_pos(&fPts[0].fX, fW, t),
conic_eval_pos(&fPts[0].fY, fW, t));
}
if (tangent) {
tangent->set(conic_eval_tan(&fPts[0].fX, fW, t),
conic_eval_tan(&fPts[0].fY, fW, t));
}
}
void SkConic::chopAt(SkScalar t, SkConic dst[2]) const {
SkP3D tmp[3], tmp2[3];
ratquad_mapTo3D(fPts, fW, tmp);
p3d_interp(&tmp[0].fX, &tmp2[0].fX, t);
p3d_interp(&tmp[0].fY, &tmp2[0].fY, t);
p3d_interp(&tmp[0].fZ, &tmp2[0].fZ, t);
dst[0].fPts[0] = fPts[0];
tmp2[0].projectDown(&dst[0].fPts[1]);
tmp2[1].projectDown(&dst[0].fPts[2]); dst[1].fPts[0] = dst[0].fPts[2];
tmp2[2].projectDown(&dst[1].fPts[1]);
dst[1].fPts[2] = fPts[2];
// to put in "standard form", where w0 and w2 are both 1, we compute the
// new w1 as sqrt(w1*w1/w0*w2)
// or
// w1 /= sqrt(w0*w2)
//
// However, in our case, we know that for dst[0]:
// w0 == 1, and for dst[1], w2 == 1
//
SkScalar root = SkScalarSqrt(tmp2[1].fZ);
dst[0].fW = tmp2[0].fZ / root;
dst[1].fW = tmp2[2].fZ / root;
}
static Sk2s times_2(const Sk2s& value) {
return value + value;
}
SkPoint SkConic::evalAt(SkScalar t) const {
Sk2s p0 = from_point(fPts[0]);
Sk2s p1 = from_point(fPts[1]);
Sk2s p2 = from_point(fPts[2]);
Sk2s tt(t);
Sk2s ww(fW);
Sk2s one(1);
Sk2s p1w = p1 * ww;
Sk2s C = p0;
Sk2s A = p2 - times_2(p1w) + p0;
Sk2s B = times_2(p1w - C);
Sk2s numer = quad_poly_eval(A, B, C, tt);
B = times_2(ww - one);
A = Sk2s(0)-B;
Sk2s denom = quad_poly_eval(A, B, one, tt);
return to_point(numer / denom);
}
SkVector SkConic::evalTangentAt(SkScalar t) const {
Sk2s p0 = from_point(fPts[0]);
Sk2s p1 = from_point(fPts[1]);
Sk2s p2 = from_point(fPts[2]);
Sk2s ww(fW);
Sk2s p20 = p2 - p0;
Sk2s p10 = p1 - p0;
Sk2s C = ww * p10;
Sk2s A = ww * p20 - p20;
Sk2s B = p20 - C - C;
return to_vector(quad_poly_eval(A, B, C, Sk2s(t)));
}
static SkScalar subdivide_w_value(SkScalar w) {
return SkScalarSqrt(SK_ScalarHalf + w * SK_ScalarHalf);
}
static Sk2s twice(const Sk2s& value) {
return value + value;
}
void SkConic::chop(SkConic * SK_RESTRICT dst) const {
Sk2s scale = Sk2s(SkScalarInvert(SK_Scalar1 + fW));
SkScalar newW = subdivide_w_value(fW);
Sk2s p0 = from_point(fPts[0]);
Sk2s p1 = from_point(fPts[1]);
Sk2s p2 = from_point(fPts[2]);
Sk2s ww(fW);
Sk2s wp1 = ww * p1;
Sk2s m = (p0 + twice(wp1) + p2) * scale * Sk2s(0.5f);
dst[0].fPts[0] = fPts[0];
dst[0].fPts[1] = to_point((p0 + wp1) * scale);
dst[0].fPts[2] = dst[1].fPts[0] = to_point(m);
dst[1].fPts[1] = to_point((wp1 + p2) * scale);
dst[1].fPts[2] = fPts[2];
dst[0].fW = dst[1].fW = newW;
}
/*
* "High order approximation of conic sections by quadratic splines"
* by Michael Floater, 1993
*/
#define AS_QUAD_ERROR_SETUP \
SkScalar a = fW - 1; \
SkScalar k = a / (4 * (2 + a)); \
SkScalar x = k * (fPts[0].fX - 2 * fPts[1].fX + fPts[2].fX); \
SkScalar y = k * (fPts[0].fY - 2 * fPts[1].fY + fPts[2].fY);
void SkConic::computeAsQuadError(SkVector* err) const {
AS_QUAD_ERROR_SETUP
err->set(x, y);
}
bool SkConic::asQuadTol(SkScalar tol) const {
AS_QUAD_ERROR_SETUP
return (x * x + y * y) <= tol * tol;
}
// Limit the number of suggested quads to approximate a conic
#define kMaxConicToQuadPOW2 5
int SkConic::computeQuadPOW2(SkScalar tol) const {
if (tol < 0 || !SkScalarIsFinite(tol)) {
return 0;
}
AS_QUAD_ERROR_SETUP
SkScalar error = SkScalarSqrt(x * x + y * y);
int pow2;
for (pow2 = 0; pow2 < kMaxConicToQuadPOW2; ++pow2) {
if (error <= tol) {
break;
}
error *= 0.25f;
}
// float version -- using ceil gives the same results as the above.
if (false) {
SkScalar err = SkScalarSqrt(x * x + y * y);
if (err <= tol) {
return 0;
}
SkScalar tol2 = tol * tol;
if (tol2 == 0) {
return kMaxConicToQuadPOW2;
}
SkScalar fpow2 = SkScalarLog2((x * x + y * y) / tol2) * 0.25f;
int altPow2 = SkScalarCeilToInt(fpow2);
if (altPow2 != pow2) {
SkDebugf("pow2 %d altPow2 %d fbits %g err %g tol %g\n", pow2, altPow2, fpow2, err, tol);
}
pow2 = altPow2;
}
return pow2;
}
static SkPoint* subdivide(const SkConic& src, SkPoint pts[], int level) {
SkASSERT(level >= 0);
if (0 == level) {
memcpy(pts, &src.fPts[1], 2 * sizeof(SkPoint));
return pts + 2;
} else {
SkConic dst[2];
src.chop(dst);
--level;
pts = subdivide(dst[0], pts, level);
return subdivide(dst[1], pts, level);
}
}
int SkConic::chopIntoQuadsPOW2(SkPoint pts[], int pow2) const {
SkASSERT(pow2 >= 0);
*pts = fPts[0];
SkDEBUGCODE(SkPoint* endPts =) subdivide(*this, pts + 1, pow2);
SkASSERT(endPts - pts == (2 * (1 << pow2) + 1));
return 1 << pow2;
}
bool SkConic::findXExtrema(SkScalar* t) const {
return conic_find_extrema(&fPts[0].fX, fW, t);
}
bool SkConic::findYExtrema(SkScalar* t) const {
return conic_find_extrema(&fPts[0].fY, fW, t);
}
bool SkConic::chopAtXExtrema(SkConic dst[2]) const {
SkScalar t;
if (this->findXExtrema(&t)) {
this->chopAt(t, dst);
// now clean-up the middle, since we know t was meant to be at
// an X-extrema
SkScalar value = dst[0].fPts[2].fX;
dst[0].fPts[1].fX = value;
dst[1].fPts[0].fX = value;
dst[1].fPts[1].fX = value;
return true;
}
return false;
}
bool SkConic::chopAtYExtrema(SkConic dst[2]) const {
SkScalar t;
if (this->findYExtrema(&t)) {
this->chopAt(t, dst);
// now clean-up the middle, since we know t was meant to be at
// an Y-extrema
SkScalar value = dst[0].fPts[2].fY;
dst[0].fPts[1].fY = value;
dst[1].fPts[0].fY = value;
dst[1].fPts[1].fY = value;
return true;
}
return false;
}
void SkConic::computeTightBounds(SkRect* bounds) const {
SkPoint pts[4];
pts[0] = fPts[0];
pts[1] = fPts[2];
int count = 2;
SkScalar t;
if (this->findXExtrema(&t)) {
this->evalAt(t, &pts[count++]);
}
if (this->findYExtrema(&t)) {
this->evalAt(t, &pts[count++]);
}
bounds->set(pts, count);
}
void SkConic::computeFastBounds(SkRect* bounds) const {
bounds->set(fPts, 3);
}
#if 0 // unimplemented
bool SkConic::findMaxCurvature(SkScalar* t) const {
// TODO: Implement me
return false;
}
#endif
SkScalar SkConic::TransformW(const SkPoint pts[], SkScalar w,
const SkMatrix& matrix) {
if (!matrix.hasPerspective()) {
return w;
}
SkP3D src[3], dst[3];
ratquad_mapTo3D(pts, w, src);
matrix.mapHomogeneousPoints(&dst[0].fX, &src[0].fX, 3);
// w' = sqrt(w1*w1/w0*w2)
SkScalar w0 = dst[0].fZ;
SkScalar w1 = dst[1].fZ;
SkScalar w2 = dst[2].fZ;
w = SkScalarSqrt((w1 * w1) / (w0 * w2));
return w;
}
int SkConic::BuildUnitArc(const SkVector& uStart, const SkVector& uStop, SkRotationDirection dir,
const SkMatrix* userMatrix, SkConic dst[kMaxConicsForArc]) {
// rotate by x,y so that uStart is (1.0)
SkScalar x = SkPoint::DotProduct(uStart, uStop);
SkScalar y = SkPoint::CrossProduct(uStart, uStop);
SkScalar absY = SkScalarAbs(y);
// check for (effectively) coincident vectors
// this can happen if our angle is nearly 0 or nearly 180 (y == 0)
// ... we use the dot-prod to distinguish between 0 and 180 (x > 0)
if (absY <= SK_ScalarNearlyZero && x > 0 && ((y >= 0 && kCW_SkRotationDirection == dir) ||
(y <= 0 && kCCW_SkRotationDirection == dir))) {
return 0;
}
if (dir == kCCW_SkRotationDirection) {
y = -y;
}
// We decide to use 1-conic per quadrant of a circle. What quadrant does [xy] lie in?
// 0 == [0 .. 90)
// 1 == [90 ..180)
// 2 == [180..270)
// 3 == [270..360)
//
int quadrant = 0;
if (0 == y) {
quadrant = 2; // 180
SkASSERT(SkScalarAbs(x + SK_Scalar1) <= SK_ScalarNearlyZero);
} else if (0 == x) {
SkASSERT(absY - SK_Scalar1 <= SK_ScalarNearlyZero);
quadrant = y > 0 ? 1 : 3; // 90 : 270
} else {
if (y < 0) {
quadrant += 2;
}
if ((x < 0) != (y < 0)) {
quadrant += 1;
}
}
const SkPoint quadrantPts[] = {
{ 1, 0 }, { 1, 1 }, { 0, 1 }, { -1, 1 }, { -1, 0 }, { -1, -1 }, { 0, -1 }, { 1, -1 }
};
const SkScalar quadrantWeight = SK_ScalarRoot2Over2;
int conicCount = quadrant;
for (int i = 0; i < conicCount; ++i) {
dst[i].set(&quadrantPts[i * 2], quadrantWeight);
}
// Now compute any remaing (sub-90-degree) arc for the last conic
const SkPoint finalP = { x, y };
const SkPoint& lastQ = quadrantPts[quadrant * 2]; // will already be a unit-vector
const SkScalar dot = SkVector::DotProduct(lastQ, finalP);
SkASSERT(0 <= dot && dot <= SK_Scalar1 + SK_ScalarNearlyZero);
if (dot < 1) {
SkVector offCurve = { lastQ.x() + x, lastQ.y() + y };
// compute the bisector vector, and then rescale to be the off-curve point.
// we compute its length from cos(theta/2) = length / 1, using half-angle identity we get
// length = sqrt(2 / (1 + cos(theta)). We already have cos() when to computed the dot.
// This is nice, since our computed weight is cos(theta/2) as well!
//
const SkScalar cosThetaOver2 = SkScalarSqrt((1 + dot) / 2);
offCurve.setLength(SkScalarInvert(cosThetaOver2));
dst[conicCount].set(lastQ, offCurve, finalP, cosThetaOver2);
conicCount += 1;
}
// now handle counter-clockwise and the initial unitStart rotation
SkMatrix matrix;
matrix.setSinCos(uStart.fY, uStart.fX);
if (dir == kCCW_SkRotationDirection) {
matrix.preScale(SK_Scalar1, -SK_Scalar1);
}
if (userMatrix) {
matrix.postConcat(*userMatrix);
}
for (int i = 0; i < conicCount; ++i) {
matrix.mapPoints(dst[i].fPts, 3);
}
return conicCount;
}
|