aboutsummaryrefslogtreecommitdiffhomepage
path: root/src/core/SkGeometry.cpp
blob: 0d4a9c79d16fa5305fe469f8d2983014894a43b3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382

/*
 * Copyright 2006 The Android Open Source Project
 *
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */


#include "SkGeometry.h"
#include "Sk64.h"
#include "SkMatrix.h"

bool SkXRayCrossesLine(const SkXRay& pt, const SkPoint pts[2], bool* ambiguous) {
    if (ambiguous) {
        *ambiguous = false;
    }
    // Determine quick discards.
    // Consider query line going exactly through point 0 to not
    // intersect, for symmetry with SkXRayCrossesMonotonicCubic.
    if (pt.fY == pts[0].fY) {
        if (ambiguous) {
            *ambiguous = true;
        }
        return false;
    }
    if (pt.fY < pts[0].fY && pt.fY < pts[1].fY)
        return false;
    if (pt.fY > pts[0].fY && pt.fY > pts[1].fY)
        return false;
    if (pt.fX > pts[0].fX && pt.fX > pts[1].fX)
        return false;
    // Determine degenerate cases
    if (SkScalarNearlyZero(pts[0].fY - pts[1].fY))
        return false;
    if (SkScalarNearlyZero(pts[0].fX - pts[1].fX)) {
        // We've already determined the query point lies within the
        // vertical range of the line segment.
        if (pt.fX <= pts[0].fX) {
            if (ambiguous) {
                *ambiguous = (pt.fY == pts[1].fY);
            }
            return true;
        }
        return false;
    }
    // Ambiguity check
    if (pt.fY == pts[1].fY) {
        if (pt.fX <= pts[1].fX) {
            if (ambiguous) {
                *ambiguous = true;
            }
            return true;
        }
        return false;
    }
    // Full line segment evaluation
    SkScalar delta_y = pts[1].fY - pts[0].fY;
    SkScalar delta_x = pts[1].fX - pts[0].fX;
    SkScalar slope = SkScalarDiv(delta_y, delta_x);
    SkScalar b = pts[0].fY - SkScalarMul(slope, pts[0].fX);
    // Solve for x coordinate at y = pt.fY
    SkScalar x = SkScalarDiv(pt.fY - b, slope);
    return pt.fX <= x;
}

/** If defined, this makes eval_quad and eval_cubic do more setup (sometimes
    involving integer multiplies by 2 or 3, but fewer calls to SkScalarMul.
    May also introduce overflow of fixed when we compute our setup.
*/
#ifdef SK_SCALAR_IS_FIXED
    #define DIRECT_EVAL_OF_POLYNOMIALS
#endif

////////////////////////////////////////////////////////////////////////

#ifdef SK_SCALAR_IS_FIXED
    static int is_not_monotonic(int a, int b, int c, int d)
    {
        return (((a - b) | (b - c) | (c - d)) & ((b - a) | (c - b) | (d - c))) >> 31;
    }

    static int is_not_monotonic(int a, int b, int c)
    {
        return (((a - b) | (b - c)) & ((b - a) | (c - b))) >> 31;
    }
#else
    static int is_not_monotonic(float a, float b, float c)
    {
        float ab = a - b;
        float bc = b - c;
        if (ab < 0)
            bc = -bc;
        return ab == 0 || bc < 0;
    }
#endif

////////////////////////////////////////////////////////////////////////

static bool is_unit_interval(SkScalar x)
{
    return x > 0 && x < SK_Scalar1;
}

static int valid_unit_divide(SkScalar numer, SkScalar denom, SkScalar* ratio)
{
    SkASSERT(ratio);

    if (numer < 0)
    {
        numer = -numer;
        denom = -denom;
    }

    if (denom == 0 || numer == 0 || numer >= denom)
        return 0;

    SkScalar r = SkScalarDiv(numer, denom);
    if (SkScalarIsNaN(r)) {
        return 0;
    }
    SkASSERT(r >= 0 && r < SK_Scalar1);
    if (r == 0) // catch underflow if numer <<<< denom
        return 0;
    *ratio = r;
    return 1;
}

/** From Numerical Recipes in C.

    Q = -1/2 (B + sign(B) sqrt[B*B - 4*A*C])
    x1 = Q / A
    x2 = C / Q
*/
int SkFindUnitQuadRoots(SkScalar A, SkScalar B, SkScalar C, SkScalar roots[2])
{
    SkASSERT(roots);

    if (A == 0)
        return valid_unit_divide(-C, B, roots);

    SkScalar* r = roots;

#ifdef SK_SCALAR_IS_FLOAT
    float R = B*B - 4*A*C;
    if (R < 0 || SkScalarIsNaN(R)) {  // complex roots
        return 0;
    }
    R = sk_float_sqrt(R);
#else
    Sk64    RR, tmp;

    RR.setMul(B,B);
    tmp.setMul(A,C);
    tmp.shiftLeft(2);
    RR.sub(tmp);
    if (RR.isNeg())
        return 0;
    SkFixed R = RR.getSqrt();
#endif

    SkScalar Q = (B < 0) ? -(B-R)/2 : -(B+R)/2;
    r += valid_unit_divide(Q, A, r);
    r += valid_unit_divide(C, Q, r);
    if (r - roots == 2)
    {
        if (roots[0] > roots[1])
            SkTSwap<SkScalar>(roots[0], roots[1]);
        else if (roots[0] == roots[1])  // nearly-equal?
            r -= 1; // skip the double root
    }
    return (int)(r - roots);
}

#ifdef SK_SCALAR_IS_FIXED
/** Trim A/B/C down so that they are all <= 32bits
    and then call SkFindUnitQuadRoots()
*/
static int Sk64FindFixedQuadRoots(const Sk64& A, const Sk64& B, const Sk64& C, SkFixed roots[2])
{
    int na = A.shiftToMake32();
    int nb = B.shiftToMake32();
    int nc = C.shiftToMake32();

    int shift = SkMax32(na, SkMax32(nb, nc));
    SkASSERT(shift >= 0);

    return SkFindUnitQuadRoots(A.getShiftRight(shift), B.getShiftRight(shift), C.getShiftRight(shift), roots);
}
#endif

/////////////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////////////

static SkScalar eval_quad(const SkScalar src[], SkScalar t)
{
    SkASSERT(src);
    SkASSERT(t >= 0 && t <= SK_Scalar1);

#ifdef DIRECT_EVAL_OF_POLYNOMIALS
    SkScalar    C = src[0];
    SkScalar    A = src[4] - 2 * src[2] + C;
    SkScalar    B = 2 * (src[2] - C);
    return SkScalarMulAdd(SkScalarMulAdd(A, t, B), t, C);
#else
    SkScalar    ab = SkScalarInterp(src[0], src[2], t);
    SkScalar    bc = SkScalarInterp(src[2], src[4], t);
    return SkScalarInterp(ab, bc, t);
#endif
}

static SkScalar eval_quad_derivative(const SkScalar src[], SkScalar t)
{
    SkScalar A = src[4] - 2 * src[2] + src[0];
    SkScalar B = src[2] - src[0];

    return 2 * SkScalarMulAdd(A, t, B);
}

static SkScalar eval_quad_derivative_at_half(const SkScalar src[])
{
    SkScalar A = src[4] - 2 * src[2] + src[0];
    SkScalar B = src[2] - src[0];
    return A + 2 * B;
}

void SkEvalQuadAt(const SkPoint src[3], SkScalar t, SkPoint* pt, SkVector* tangent)
{
    SkASSERT(src);
    SkASSERT(t >= 0 && t <= SK_Scalar1);

    if (pt)
        pt->set(eval_quad(&src[0].fX, t), eval_quad(&src[0].fY, t));
    if (tangent)
        tangent->set(eval_quad_derivative(&src[0].fX, t),
                     eval_quad_derivative(&src[0].fY, t));
}

void SkEvalQuadAtHalf(const SkPoint src[3], SkPoint* pt, SkVector* tangent)
{
    SkASSERT(src);

    if (pt)
    {
        SkScalar x01 = SkScalarAve(src[0].fX, src[1].fX);
        SkScalar y01 = SkScalarAve(src[0].fY, src[1].fY);
        SkScalar x12 = SkScalarAve(src[1].fX, src[2].fX);
        SkScalar y12 = SkScalarAve(src[1].fY, src[2].fY);
        pt->set(SkScalarAve(x01, x12), SkScalarAve(y01, y12));
    }
    if (tangent)
        tangent->set(eval_quad_derivative_at_half(&src[0].fX),
                     eval_quad_derivative_at_half(&src[0].fY));
}

static void interp_quad_coords(const SkScalar* src, SkScalar* dst, SkScalar t)
{
    SkScalar    ab = SkScalarInterp(src[0], src[2], t);
    SkScalar    bc = SkScalarInterp(src[2], src[4], t);

    dst[0] = src[0];
    dst[2] = ab;
    dst[4] = SkScalarInterp(ab, bc, t);
    dst[6] = bc;
    dst[8] = src[4];
}

void SkChopQuadAt(const SkPoint src[3], SkPoint dst[5], SkScalar t)
{
    SkASSERT(t > 0 && t < SK_Scalar1);

    interp_quad_coords(&src[0].fX, &dst[0].fX, t);
    interp_quad_coords(&src[0].fY, &dst[0].fY, t);
}

void SkChopQuadAtHalf(const SkPoint src[3], SkPoint dst[5])
{
    SkScalar x01 = SkScalarAve(src[0].fX, src[1].fX);
    SkScalar y01 = SkScalarAve(src[0].fY, src[1].fY);
    SkScalar x12 = SkScalarAve(src[1].fX, src[2].fX);
    SkScalar y12 = SkScalarAve(src[1].fY, src[2].fY);

    dst[0] = src[0];
    dst[1].set(x01, y01);
    dst[2].set(SkScalarAve(x01, x12), SkScalarAve(y01, y12));
    dst[3].set(x12, y12);
    dst[4] = src[2];
}

/** Quad'(t) = At + B, where
    A = 2(a - 2b + c)
    B = 2(b - a)
    Solve for t, only if it fits between 0 < t < 1
*/
int SkFindQuadExtrema(SkScalar a, SkScalar b, SkScalar c, SkScalar tValue[1])
{
    /*  At + B == 0
        t = -B / A
    */
#ifdef SK_SCALAR_IS_FIXED
    return is_not_monotonic(a, b, c) && valid_unit_divide(a - b, a - b - b + c, tValue);
#else
    return valid_unit_divide(a - b, a - b - b + c, tValue);
#endif
}

static inline void flatten_double_quad_extrema(SkScalar coords[14])
{
    coords[2] = coords[6] = coords[4];
}

/*  Returns 0 for 1 quad, and 1 for two quads, either way the answer is
 stored in dst[]. Guarantees that the 1/2 quads will be monotonic.
 */
int SkChopQuadAtYExtrema(const SkPoint src[3], SkPoint dst[5])
{
    SkASSERT(src);
    SkASSERT(dst);

#if 0
    static bool once = true;
    if (once)
    {
        once = false;
        SkPoint s[3] = { 0, 26398, 0, 26331, 0, 20621428 };
        SkPoint d[6];

        int n = SkChopQuadAtYExtrema(s, d);
        SkDebugf("chop=%d, Y=[%x %x %x %x %x %x]\n", n, d[0].fY, d[1].fY, d[2].fY, d[3].fY, d[4].fY, d[5].fY);
    }
#endif

    SkScalar a = src[0].fY;
    SkScalar b = src[1].fY;
    SkScalar c = src[2].fY;

    if (is_not_monotonic(a, b, c))
    {
        SkScalar    tValue;
        if (valid_unit_divide(a - b, a - b - b + c, &tValue))
        {
            SkChopQuadAt(src, dst, tValue);
            flatten_double_quad_extrema(&dst[0].fY);
            return 1;
        }
        // if we get here, we need to force dst to be monotonic, even though
        // we couldn't compute a unit_divide value (probably underflow).
        b = SkScalarAbs(a - b) < SkScalarAbs(b - c) ? a : c;
    }
    dst[0].set(src[0].fX, a);
    dst[1].set(src[1].fX, b);
    dst[2].set(src[2].fX, c);
    return 0;
}

/*  Returns 0 for 1 quad, and 1 for two quads, either way the answer is
    stored in dst[]. Guarantees that the 1/2 quads will be monotonic.
 */
int SkChopQuadAtXExtrema(const SkPoint src[3], SkPoint dst[5])
{
    SkASSERT(src);
    SkASSERT(dst);

    SkScalar a = src[0].fX;
    SkScalar b = src[1].fX;
    SkScalar c = src[2].fX;

    if (is_not_monotonic(a, b, c)) {
        SkScalar tValue;
        if (valid_unit_divide(a - b, a - b - b + c, &tValue)) {
            SkChopQuadAt(src, dst, tValue);
            flatten_double_quad_extrema(&dst[0].fX);
            return 1;
        }
        // if we get here, we need to force dst to be monotonic, even though
        // we couldn't compute a unit_divide value (probably underflow).
        b = SkScalarAbs(a - b) < SkScalarAbs(b - c) ? a : c;
    }
    dst[0].set(a, src[0].fY);
    dst[1].set(b, src[1].fY);
    dst[2].set(c, src[2].fY);
    return 0;
}

//  F(t)    = a (1 - t) ^ 2 + 2 b t (1 - t) + c t ^ 2
//  F'(t)   = 2 (b - a) + 2 (a - 2b + c) t
//  F''(t)  = 2 (a - 2b + c)
//
//  A = 2 (b - a)
//  B = 2 (a - 2b + c)
//
//  Maximum curvature for a quadratic means solving
//  Fx' Fx'' + Fy' Fy'' = 0
//
//  t = - (Ax Bx + Ay By) / (Bx ^ 2 + By ^ 2)
//
int SkChopQuadAtMaxCurvature(const SkPoint src[3], SkPoint dst[5])
{
    SkScalar    Ax = src[1].fX - src[0].fX;
    SkScalar    Ay = src[1].fY - src[0].fY;
    SkScalar    Bx = src[0].fX - src[1].fX - src[1].fX + src[2].fX;
    SkScalar    By = src[0].fY - src[1].fY - src[1].fY + src[2].fY;
    SkScalar    t = 0;  // 0 means don't chop

#ifdef SK_SCALAR_IS_FLOAT
    (void)valid_unit_divide(-(Ax * Bx + Ay * By), Bx * Bx + By * By, &t);
#else
    // !!! should I use SkFloat here? seems like it
    Sk64    numer, denom, tmp;

    numer.setMul(Ax, -Bx);
    tmp.setMul(Ay, -By);
    numer.add(tmp);

    if (numer.isPos())  // do nothing if numer <= 0
    {
        denom.setMul(Bx, Bx);
        tmp.setMul(By, By);
        denom.add(tmp);
        SkASSERT(!denom.isNeg());
        if (numer < denom)
        {
            t = numer.getFixedDiv(denom);
            SkASSERT(t >= 0 && t <= SK_Fixed1);     // assert that we're numerically stable (ha!)
            if ((unsigned)t >= SK_Fixed1)           // runtime check for numerical stability
                t = 0;  // ignore the chop
        }
    }
#endif

    if (t == 0)
    {
        memcpy(dst, src, 3 * sizeof(SkPoint));
        return 1;
    }
    else
    {
        SkChopQuadAt(src, dst, t);
        return 2;
    }
}

#ifdef SK_SCALAR_IS_FLOAT
    #define SK_ScalarTwoThirds  (0.666666666f)
#else
    #define SK_ScalarTwoThirds  ((SkFixed)(43691))
#endif

void SkConvertQuadToCubic(const SkPoint src[3], SkPoint dst[4]) {
    const SkScalar scale = SK_ScalarTwoThirds;
    dst[0] = src[0];
    dst[1].set(src[0].fX + SkScalarMul(src[1].fX - src[0].fX, scale),
               src[0].fY + SkScalarMul(src[1].fY - src[0].fY, scale));
    dst[2].set(src[2].fX + SkScalarMul(src[1].fX - src[2].fX, scale),
               src[2].fY + SkScalarMul(src[1].fY - src[2].fY, scale));
    dst[3] = src[2];
}

////////////////////////////////////////////////////////////////////////////////////////
///// CUBICS // CUBICS // CUBICS // CUBICS // CUBICS // CUBICS // CUBICS // CUBICS /////
////////////////////////////////////////////////////////////////////////////////////////

static void get_cubic_coeff(const SkScalar pt[], SkScalar coeff[4])
{
    coeff[0] = pt[6] + 3*(pt[2] - pt[4]) - pt[0];
    coeff[1] = 3*(pt[4] - pt[2] - pt[2] + pt[0]);
    coeff[2] = 3*(pt[2] - pt[0]);
    coeff[3] = pt[0];
}

void SkGetCubicCoeff(const SkPoint pts[4], SkScalar cx[4], SkScalar cy[4])
{
    SkASSERT(pts);

    if (cx)
        get_cubic_coeff(&pts[0].fX, cx);
    if (cy)
        get_cubic_coeff(&pts[0].fY, cy);
}

static SkScalar eval_cubic(const SkScalar src[], SkScalar t)
{
    SkASSERT(src);
    SkASSERT(t >= 0 && t <= SK_Scalar1);

    if (t == 0)
        return src[0];

#ifdef DIRECT_EVAL_OF_POLYNOMIALS
    SkScalar D = src[0];
    SkScalar A = src[6] + 3*(src[2] - src[4]) - D;
    SkScalar B = 3*(src[4] - src[2] - src[2] + D);
    SkScalar C = 3*(src[2] - D);

    return SkScalarMulAdd(SkScalarMulAdd(SkScalarMulAdd(A, t, B), t, C), t, D);
#else
    SkScalar    ab = SkScalarInterp(src[0], src[2], t);
    SkScalar    bc = SkScalarInterp(src[2], src[4], t);
    SkScalar    cd = SkScalarInterp(src[4], src[6], t);
    SkScalar    abc = SkScalarInterp(ab, bc, t);
    SkScalar    bcd = SkScalarInterp(bc, cd, t);
    return SkScalarInterp(abc, bcd, t);
#endif
}

/** return At^2 + Bt + C
*/
static SkScalar eval_quadratic(SkScalar A, SkScalar B, SkScalar C, SkScalar t)
{
    SkASSERT(t >= 0 && t <= SK_Scalar1);

    return SkScalarMulAdd(SkScalarMulAdd(A, t, B), t, C);
}

static SkScalar eval_cubic_derivative(const SkScalar src[], SkScalar t)
{
    SkScalar A = src[6] + 3*(src[2] - src[4]) - src[0];
    SkScalar B = 2*(src[4] - 2 * src[2] + src[0]);
    SkScalar C = src[2] - src[0];

    return eval_quadratic(A, B, C, t);
}

static SkScalar eval_cubic_2ndDerivative(const SkScalar src[], SkScalar t)
{
    SkScalar A = src[6] + 3*(src[2] - src[4]) - src[0];
    SkScalar B = src[4] - 2 * src[2] + src[0];

    return SkScalarMulAdd(A, t, B);
}

void SkEvalCubicAt(const SkPoint src[4], SkScalar t, SkPoint* loc, SkVector* tangent, SkVector* curvature)
{
    SkASSERT(src);
    SkASSERT(t >= 0 && t <= SK_Scalar1);

    if (loc)
        loc->set(eval_cubic(&src[0].fX, t), eval_cubic(&src[0].fY, t));
    if (tangent)
        tangent->set(eval_cubic_derivative(&src[0].fX, t),
                     eval_cubic_derivative(&src[0].fY, t));
    if (curvature)
        curvature->set(eval_cubic_2ndDerivative(&src[0].fX, t),
                       eval_cubic_2ndDerivative(&src[0].fY, t));
}

/** Cubic'(t) = At^2 + Bt + C, where
    A = 3(-a + 3(b - c) + d)
    B = 6(a - 2b + c)
    C = 3(b - a)
    Solve for t, keeping only those that fit betwee 0 < t < 1
*/
int SkFindCubicExtrema(SkScalar a, SkScalar b, SkScalar c, SkScalar d, SkScalar tValues[2])
{
#ifdef SK_SCALAR_IS_FIXED
    if (!is_not_monotonic(a, b, c, d))
        return 0;
#endif

    // we divide A,B,C by 3 to simplify
    SkScalar A = d - a + 3*(b - c);
    SkScalar B = 2*(a - b - b + c);
    SkScalar C = b - a;

    return SkFindUnitQuadRoots(A, B, C, tValues);
}

static void interp_cubic_coords(const SkScalar* src, SkScalar* dst, SkScalar t)
{
    SkScalar    ab = SkScalarInterp(src[0], src[2], t);
    SkScalar    bc = SkScalarInterp(src[2], src[4], t);
    SkScalar    cd = SkScalarInterp(src[4], src[6], t);
    SkScalar    abc = SkScalarInterp(ab, bc, t);
    SkScalar    bcd = SkScalarInterp(bc, cd, t);
    SkScalar    abcd = SkScalarInterp(abc, bcd, t);

    dst[0] = src[0];
    dst[2] = ab;
    dst[4] = abc;
    dst[6] = abcd;
    dst[8] = bcd;
    dst[10] = cd;
    dst[12] = src[6];
}

void SkChopCubicAt(const SkPoint src[4], SkPoint dst[7], SkScalar t)
{
    SkASSERT(t > 0 && t < SK_Scalar1);

    interp_cubic_coords(&src[0].fX, &dst[0].fX, t);
    interp_cubic_coords(&src[0].fY, &dst[0].fY, t);
}

/*  http://code.google.com/p/skia/issues/detail?id=32

    This test code would fail when we didn't check the return result of
    valid_unit_divide in SkChopCubicAt(... tValues[], int roots). The reason is
    that after the first chop, the parameters to valid_unit_divide are equal
    (thanks to finite float precision and rounding in the subtracts). Thus
    even though the 2nd tValue looks < 1.0, after we renormalize it, we end
    up with 1.0, hence the need to check and just return the last cubic as
    a degenerate clump of 4 points in the sampe place.

    static void test_cubic() {
        SkPoint src[4] = {
            { 556.25000, 523.03003 },
            { 556.23999, 522.96002 },
            { 556.21997, 522.89001 },
            { 556.21997, 522.82001 }
        };
        SkPoint dst[10];
        SkScalar tval[] = { 0.33333334f, 0.99999994f };
        SkChopCubicAt(src, dst, tval, 2);
    }
 */

void SkChopCubicAt(const SkPoint src[4], SkPoint dst[], const SkScalar tValues[], int roots)
{
#ifdef SK_DEBUG
    {
        for (int i = 0; i < roots - 1; i++)
        {
            SkASSERT(is_unit_interval(tValues[i]));
            SkASSERT(is_unit_interval(tValues[i+1]));
            SkASSERT(tValues[i] < tValues[i+1]);
        }
    }
#endif

    if (dst)
    {
        if (roots == 0) // nothing to chop
            memcpy(dst, src, 4*sizeof(SkPoint));
        else
        {
            SkScalar    t = tValues[0];
            SkPoint     tmp[4];

            for (int i = 0; i < roots; i++)
            {
                SkChopCubicAt(src, dst, t);
                if (i == roots - 1)
                    break;

                dst += 3;
                // have src point to the remaining cubic (after the chop)
                memcpy(tmp, dst, 4 * sizeof(SkPoint));
                src = tmp;

                // watch out in case the renormalized t isn't in range
                if (!valid_unit_divide(tValues[i+1] - tValues[i],
                                       SK_Scalar1 - tValues[i], &t)) {
                    // if we can't, just create a degenerate cubic
                    dst[4] = dst[5] = dst[6] = src[3];
                    break;
                }
            }
        }
    }
}

void SkChopCubicAtHalf(const SkPoint src[4], SkPoint dst[7])
{
    SkScalar x01 = SkScalarAve(src[0].fX, src[1].fX);
    SkScalar y01 = SkScalarAve(src[0].fY, src[1].fY);
    SkScalar x12 = SkScalarAve(src[1].fX, src[2].fX);
    SkScalar y12 = SkScalarAve(src[1].fY, src[2].fY);
    SkScalar x23 = SkScalarAve(src[2].fX, src[3].fX);
    SkScalar y23 = SkScalarAve(src[2].fY, src[3].fY);

    SkScalar x012 = SkScalarAve(x01, x12);
    SkScalar y012 = SkScalarAve(y01, y12);
    SkScalar x123 = SkScalarAve(x12, x23);
    SkScalar y123 = SkScalarAve(y12, y23);

    dst[0] = src[0];
    dst[1].set(x01, y01);
    dst[2].set(x012, y012);
    dst[3].set(SkScalarAve(x012, x123), SkScalarAve(y012, y123));
    dst[4].set(x123, y123);
    dst[5].set(x23, y23);
    dst[6] = src[3];
}

static void flatten_double_cubic_extrema(SkScalar coords[14])
{
    coords[4] = coords[8] = coords[6];
}

/** Given 4 points on a cubic bezier, chop it into 1, 2, 3 beziers such that
    the resulting beziers are monotonic in Y. This is called by the scan converter.
    Depending on what is returned, dst[] is treated as follows
    0   dst[0..3] is the original cubic
    1   dst[0..3] and dst[3..6] are the two new cubics
    2   dst[0..3], dst[3..6], dst[6..9] are the three new cubics
    If dst == null, it is ignored and only the count is returned.
*/
int SkChopCubicAtYExtrema(const SkPoint src[4], SkPoint dst[10]) {
    SkScalar    tValues[2];
    int         roots = SkFindCubicExtrema(src[0].fY, src[1].fY, src[2].fY,
                                           src[3].fY, tValues);

    SkChopCubicAt(src, dst, tValues, roots);
    if (dst && roots > 0) {
        // we do some cleanup to ensure our Y extrema are flat
        flatten_double_cubic_extrema(&dst[0].fY);
        if (roots == 2) {
            flatten_double_cubic_extrema(&dst[3].fY);
        }
    }
    return roots;
}

int SkChopCubicAtXExtrema(const SkPoint src[4], SkPoint dst[10]) {
    SkScalar    tValues[2];
    int         roots = SkFindCubicExtrema(src[0].fX, src[1].fX, src[2].fX,
                                           src[3].fX, tValues);

    SkChopCubicAt(src, dst, tValues, roots);
    if (dst && roots > 0) {
        // we do some cleanup to ensure our Y extrema are flat
        flatten_double_cubic_extrema(&dst[0].fX);
        if (roots == 2) {
            flatten_double_cubic_extrema(&dst[3].fX);
        }
    }
    return roots;
}

/** http://www.faculty.idc.ac.il/arik/quality/appendixA.html

    Inflection means that curvature is zero.
    Curvature is [F' x F''] / [F'^3]
    So we solve F'x X F''y - F'y X F''y == 0
    After some canceling of the cubic term, we get
    A = b - a
    B = c - 2b + a
    C = d - 3c + 3b - a
    (BxCy - ByCx)t^2 + (AxCy - AyCx)t + AxBy - AyBx == 0
*/
int SkFindCubicInflections(const SkPoint src[4], SkScalar tValues[])
{
    SkScalar    Ax = src[1].fX - src[0].fX;
    SkScalar    Ay = src[1].fY - src[0].fY;
    SkScalar    Bx = src[2].fX - 2 * src[1].fX + src[0].fX;
    SkScalar    By = src[2].fY - 2 * src[1].fY + src[0].fY;
    SkScalar    Cx = src[3].fX + 3 * (src[1].fX - src[2].fX) - src[0].fX;
    SkScalar    Cy = src[3].fY + 3 * (src[1].fY - src[2].fY) - src[0].fY;
    int         count;

#ifdef SK_SCALAR_IS_FLOAT
    count = SkFindUnitQuadRoots(Bx*Cy - By*Cx, Ax*Cy - Ay*Cx, Ax*By - Ay*Bx, tValues);
#else
    Sk64    A, B, C, tmp;

    A.setMul(Bx, Cy);
    tmp.setMul(By, Cx);
    A.sub(tmp);

    B.setMul(Ax, Cy);
    tmp.setMul(Ay, Cx);
    B.sub(tmp);

    C.setMul(Ax, By);
    tmp.setMul(Ay, Bx);
    C.sub(tmp);

    count = Sk64FindFixedQuadRoots(A, B, C, tValues);
#endif

    return count;
}

int SkChopCubicAtInflections(const SkPoint src[], SkPoint dst[10])
{
    SkScalar    tValues[2];
    int         count = SkFindCubicInflections(src, tValues);

    if (dst)
    {
        if (count == 0)
            memcpy(dst, src, 4 * sizeof(SkPoint));
        else
            SkChopCubicAt(src, dst, tValues, count);
    }
    return count + 1;
}

template <typename T> void bubble_sort(T array[], int count)
{
    for (int i = count - 1; i > 0; --i)
        for (int j = i; j > 0; --j)
            if (array[j] < array[j-1])
            {
                T   tmp(array[j]);
                array[j] = array[j-1];
                array[j-1] = tmp;
            }
}

#include "SkFP.h"

// newton refinement
#if 0
static SkScalar refine_cubic_root(const SkFP coeff[4], SkScalar root)
{
    //  x1 = x0 - f(t) / f'(t)

    SkFP    T = SkScalarToFloat(root);
    SkFP    N, D;

    // f' = 3*coeff[0]*T^2 + 2*coeff[1]*T + coeff[2]
    D = SkFPMul(SkFPMul(coeff[0], SkFPMul(T,T)), 3);
    D = SkFPAdd(D, SkFPMulInt(SkFPMul(coeff[1], T), 2));
    D = SkFPAdd(D, coeff[2]);

    if (D == 0)
        return root;

    // f = coeff[0]*T^3 + coeff[1]*T^2 + coeff[2]*T + coeff[3]
    N = SkFPMul(SkFPMul(SkFPMul(T, T), T), coeff[0]);
    N = SkFPAdd(N, SkFPMul(SkFPMul(T, T), coeff[1]));
    N = SkFPAdd(N, SkFPMul(T, coeff[2]));
    N = SkFPAdd(N, coeff[3]);

    if (N)
    {
        SkScalar delta = SkFPToScalar(SkFPDiv(N, D));

        if (delta)
            root -= delta;
    }
    return root;
}
#endif

/**
 *  Given an array and count, remove all pair-wise duplicates from the array,
 *  keeping the existing sorting, and return the new count
 */
static int collaps_duplicates(float array[], int count) {
    for (int n = count; n > 1; --n) {
        if (array[0] == array[1]) {
            for (int i = 1; i < n; ++i) {
                array[i - 1] = array[i];
            }
            count -= 1;
        } else {
            array += 1;
        }
    }
    return count;
}

#ifdef SK_DEBUG

#define TEST_COLLAPS_ENTRY(array)   array, SK_ARRAY_COUNT(array)

static void test_collaps_duplicates() {
    static bool gOnce;
    if (gOnce) { return; }
    gOnce = true;
    const float src0[] = { 0 };
    const float src1[] = { 0, 0 };
    const float src2[] = { 0, 1 };
    const float src3[] = { 0, 0, 0 };
    const float src4[] = { 0, 0, 1 };
    const float src5[] = { 0, 1, 1 };
    const float src6[] = { 0, 1, 2 };
    const struct {
        const float* fData;
        int fCount;
        int fCollapsedCount;
    } data[] = {
        { TEST_COLLAPS_ENTRY(src0), 1 },
        { TEST_COLLAPS_ENTRY(src1), 1 },
        { TEST_COLLAPS_ENTRY(src2), 2 },
        { TEST_COLLAPS_ENTRY(src3), 1 },
        { TEST_COLLAPS_ENTRY(src4), 2 },
        { TEST_COLLAPS_ENTRY(src5), 2 },
        { TEST_COLLAPS_ENTRY(src6), 3 },
    };
    for (size_t i = 0; i < SK_ARRAY_COUNT(data); ++i) {
        float dst[3];
        memcpy(dst, data[i].fData, data[i].fCount * sizeof(dst[0]));
        int count = collaps_duplicates(dst, data[i].fCount);
        SkASSERT(data[i].fCollapsedCount == count);
        for (int j = 1; j < count; ++j) {
            SkASSERT(dst[j-1] < dst[j]);
        }
    }
}
#endif

#if defined _WIN32 && _MSC_VER >= 1300  && defined SK_SCALAR_IS_FIXED // disable warning : unreachable code if building fixed point for windows desktop
#pragma warning ( disable : 4702 )
#endif

/*  Solve coeff(t) == 0, returning the number of roots that
    lie withing 0 < t < 1.
    coeff[0]t^3 + coeff[1]t^2 + coeff[2]t + coeff[3]

    Eliminates repeated roots (so that all tValues are distinct, and are always
    in increasing order.
*/
static int solve_cubic_polynomial(const SkFP coeff[4], SkScalar tValues[3])
{
#ifndef SK_SCALAR_IS_FLOAT
    return 0;   // this is not yet implemented for software float
#endif

    if (SkScalarNearlyZero(coeff[0]))   // we're just a quadratic
    {
        return SkFindUnitQuadRoots(coeff[1], coeff[2], coeff[3], tValues);
    }

    SkFP    a, b, c, Q, R;

    {
        SkASSERT(coeff[0] != 0);

        SkFP inva = SkFPInvert(coeff[0]);
        a = SkFPMul(coeff[1], inva);
        b = SkFPMul(coeff[2], inva);
        c = SkFPMul(coeff[3], inva);
    }
    Q = SkFPDivInt(SkFPSub(SkFPMul(a,a), SkFPMulInt(b, 3)), 9);
//  R = (2*a*a*a - 9*a*b + 27*c) / 54;
    R = SkFPMulInt(SkFPMul(SkFPMul(a, a), a), 2);
    R = SkFPSub(R, SkFPMulInt(SkFPMul(a, b), 9));
    R = SkFPAdd(R, SkFPMulInt(c, 27));
    R = SkFPDivInt(R, 54);

    SkFP Q3 = SkFPMul(SkFPMul(Q, Q), Q);
    SkFP R2MinusQ3 = SkFPSub(SkFPMul(R,R), Q3);
    SkFP adiv3 = SkFPDivInt(a, 3);

    SkScalar*   roots = tValues;
    SkScalar    r;

    if (SkFPLT(R2MinusQ3, 0))   // we have 3 real roots
    {
#ifdef SK_SCALAR_IS_FLOAT
        float theta = sk_float_acos(R / sk_float_sqrt(Q3));
        float neg2RootQ = -2 * sk_float_sqrt(Q);

        r = neg2RootQ * sk_float_cos(theta/3) - adiv3;
        if (is_unit_interval(r))
            *roots++ = r;

        r = neg2RootQ * sk_float_cos((theta + 2*SK_ScalarPI)/3) - adiv3;
        if (is_unit_interval(r))
            *roots++ = r;

        r = neg2RootQ * sk_float_cos((theta - 2*SK_ScalarPI)/3) - adiv3;
        if (is_unit_interval(r))
            *roots++ = r;

        SkDEBUGCODE(test_collaps_duplicates();)

        // now sort the roots
        int count = (int)(roots - tValues);
        SkASSERT((unsigned)count <= 3);
        bubble_sort(tValues, count);
        count = collaps_duplicates(tValues, count);
        roots = tValues + count;    // so we compute the proper count below
#endif
    }
    else                // we have 1 real root
    {
        SkFP A = SkFPAdd(SkFPAbs(R), SkFPSqrt(R2MinusQ3));
        A = SkFPCubeRoot(A);
        if (SkFPGT(R, 0))
            A = SkFPNeg(A);

        if (A != 0)
            A = SkFPAdd(A, SkFPDiv(Q, A));
        r = SkFPToScalar(SkFPSub(A, adiv3));
        if (is_unit_interval(r))
            *roots++ = r;
    }

    return (int)(roots - tValues);
}

/*  Looking for F' dot F'' == 0

    A = b - a
    B = c - 2b + a
    C = d - 3c + 3b - a

    F' = 3Ct^2 + 6Bt + 3A
    F'' = 6Ct + 6B

    F' dot F'' -> CCt^3 + 3BCt^2 + (2BB + CA)t + AB
*/
static void formulate_F1DotF2(const SkScalar src[], SkFP coeff[4])
{
    SkScalar    a = src[2] - src[0];
    SkScalar    b = src[4] - 2 * src[2] + src[0];
    SkScalar    c = src[6] + 3 * (src[2] - src[4]) - src[0];

    SkFP    A = SkScalarToFP(a);
    SkFP    B = SkScalarToFP(b);
    SkFP    C = SkScalarToFP(c);

    coeff[0] = SkFPMul(C, C);
    coeff[1] = SkFPMulInt(SkFPMul(B, C), 3);
    coeff[2] = SkFPMulInt(SkFPMul(B, B), 2);
    coeff[2] = SkFPAdd(coeff[2], SkFPMul(C, A));
    coeff[3] = SkFPMul(A, B);
}

// EXPERIMENTAL: can set this to zero to accept all t-values 0 < t < 1
//#define kMinTValueForChopping (SK_Scalar1 / 256)
#define kMinTValueForChopping   0

/*  Looking for F' dot F'' == 0

    A = b - a
    B = c - 2b + a
    C = d - 3c + 3b - a

    F' = 3Ct^2 + 6Bt + 3A
    F'' = 6Ct + 6B

    F' dot F'' -> CCt^3 + 3BCt^2 + (2BB + CA)t + AB
*/
int SkFindCubicMaxCurvature(const SkPoint src[4], SkScalar tValues[3])
{
    SkFP    coeffX[4], coeffY[4];
    int     i;

    formulate_F1DotF2(&src[0].fX, coeffX);
    formulate_F1DotF2(&src[0].fY, coeffY);

    for (i = 0; i < 4; i++)
        coeffX[i] = SkFPAdd(coeffX[i],coeffY[i]);

    SkScalar    t[3];
    int         count = solve_cubic_polynomial(coeffX, t);
    int         maxCount = 0;

    // now remove extrema where the curvature is zero (mins)
    // !!!! need a test for this !!!!
    for (i = 0; i < count; i++)
    {
        // if (not_min_curvature())
        if (t[i] > kMinTValueForChopping && t[i] < SK_Scalar1 - kMinTValueForChopping)
            tValues[maxCount++] = t[i];
    }
    return maxCount;
}

int SkChopCubicAtMaxCurvature(const SkPoint src[4], SkPoint dst[13], SkScalar tValues[3])
{
    SkScalar    t_storage[3];

    if (tValues == NULL)
        tValues = t_storage;

    int count = SkFindCubicMaxCurvature(src, tValues);

    if (dst)
    {
        if (count == 0)
            memcpy(dst, src, 4 * sizeof(SkPoint));
        else
            SkChopCubicAt(src, dst, tValues, count);
    }
    return count + 1;
}

bool SkXRayCrossesMonotonicCubic(const SkXRay& pt, const SkPoint cubic[4], bool* ambiguous) {
    if (ambiguous) {
        *ambiguous = false;
    }

    // Find the minimum and maximum y of the extrema, which are the
    // first and last points since this cubic is monotonic
    SkScalar min_y = SkMinScalar(cubic[0].fY, cubic[3].fY);
    SkScalar max_y = SkMaxScalar(cubic[0].fY, cubic[3].fY);

    if (pt.fY == cubic[0].fY
        || pt.fY < min_y
        || pt.fY > max_y) {
        // The query line definitely does not cross the curve
        if (ambiguous) {
            *ambiguous = (pt.fY == cubic[0].fY);
        }
        return false;
    }

    bool pt_at_extremum = (pt.fY == cubic[3].fY);

    SkScalar min_x =
        SkMinScalar(
            SkMinScalar(
                SkMinScalar(cubic[0].fX, cubic[1].fX),
                cubic[2].fX),
            cubic[3].fX);
    if (pt.fX < min_x) {
        // The query line definitely crosses the curve
        if (ambiguous) {
            *ambiguous = pt_at_extremum;
        }
        return true;
    }

    SkScalar max_x =
        SkMaxScalar(
            SkMaxScalar(
                SkMaxScalar(cubic[0].fX, cubic[1].fX),
                cubic[2].fX),
            cubic[3].fX);
    if (pt.fX > max_x) {
        // The query line definitely does not cross the curve
        return false;
    }

    // Do a binary search to find the parameter value which makes y as
    // close as possible to the query point. See whether the query
    // line's origin is to the left of the associated x coordinate.

    // kMaxIter is chosen as the number of mantissa bits for a float,
    // since there's no way we are going to get more precision by
    // iterating more times than that.
    const int kMaxIter = 23;
    SkPoint eval;
    int iter = 0;
    SkScalar upper_t;
    SkScalar lower_t;
    // Need to invert direction of t parameter if cubic goes up
    // instead of down
    if (cubic[3].fY > cubic[0].fY) {
        upper_t = SK_Scalar1;
        lower_t = SkFloatToScalar(0);
    } else {
        upper_t = SkFloatToScalar(0);
        lower_t = SK_Scalar1;
    }
    do {
        SkScalar t = SkScalarAve(upper_t, lower_t);
        SkEvalCubicAt(cubic, t, &eval, NULL, NULL);
        if (pt.fY > eval.fY) {
            lower_t = t;
        } else {
            upper_t = t;
        }
    } while (++iter < kMaxIter
             && !SkScalarNearlyZero(eval.fY - pt.fY));
    if (pt.fX <= eval.fX) {
        if (ambiguous) {
            *ambiguous = pt_at_extremum;
        }
        return true;
    }
    return false;
}

int SkNumXRayCrossingsForCubic(const SkXRay& pt, const SkPoint cubic[4], bool* ambiguous) {
    int num_crossings = 0;
    SkPoint monotonic_cubics[10];
    int num_monotonic_cubics = SkChopCubicAtYExtrema(cubic, monotonic_cubics);
    if (ambiguous) {
        *ambiguous = false;
    }
    bool locally_ambiguous;
    if (SkXRayCrossesMonotonicCubic(pt, &monotonic_cubics[0], &locally_ambiguous))
        ++num_crossings;
    if (ambiguous) {
        *ambiguous |= locally_ambiguous;
    }
    if (num_monotonic_cubics > 0)
        if (SkXRayCrossesMonotonicCubic(pt, &monotonic_cubics[3], &locally_ambiguous))
            ++num_crossings;
    if (ambiguous) {
        *ambiguous |= locally_ambiguous;
    }
    if (num_monotonic_cubics > 1)
        if (SkXRayCrossesMonotonicCubic(pt, &monotonic_cubics[6], &locally_ambiguous))
            ++num_crossings;
    if (ambiguous) {
        *ambiguous |= locally_ambiguous;
    }
    return num_crossings;
}

////////////////////////////////////////////////////////////////////////////////

/*  Find t value for quadratic [a, b, c] = d.
    Return 0 if there is no solution within [0, 1)
*/
static SkScalar quad_solve(SkScalar a, SkScalar b, SkScalar c, SkScalar d)
{
    // At^2 + Bt + C = d
    SkScalar A = a - 2 * b + c;
    SkScalar B = 2 * (b - a);
    SkScalar C = a - d;

    SkScalar    roots[2];
    int         count = SkFindUnitQuadRoots(A, B, C, roots);

    SkASSERT(count <= 1);
    return count == 1 ? roots[0] : 0;
}

/*  given a quad-curve and a point (x,y), chop the quad at that point and return
    the new quad's offCurve point. Should only return false if the computed pos
    is the start of the curve (i.e. root == 0)
*/
static bool quad_pt2OffCurve(const SkPoint quad[3], SkScalar x, SkScalar y, SkPoint* offCurve)
{
    const SkScalar* base;
    SkScalar        value;

    if (SkScalarAbs(x) < SkScalarAbs(y)) {
        base = &quad[0].fX;
        value = x;
    } else {
        base = &quad[0].fY;
        value = y;
    }

    // note: this returns 0 if it thinks value is out of range, meaning the
    // root might return something outside of [0, 1)
    SkScalar t = quad_solve(base[0], base[2], base[4], value);

    if (t > 0)
    {
        SkPoint tmp[5];
        SkChopQuadAt(quad, tmp, t);
        *offCurve = tmp[1];
        return true;
    } else {
        /*  t == 0 means either the value triggered a root outside of [0, 1)
            For our purposes, we can ignore the <= 0 roots, but we want to
            catch the >= 1 roots (which given our caller, will basically mean
            a root of 1, give-or-take numerical instability). If we are in the
            >= 1 case, return the existing offCurve point.

            The test below checks to see if we are close to the "end" of the
            curve (near base[4]). Rather than specifying a tolerance, I just
            check to see if value is on to the right/left of the middle point
            (depending on the direction/sign of the end points).
        */
        if ((base[0] < base[4] && value > base[2]) ||
            (base[0] > base[4] && value < base[2]))   // should root have been 1
        {
            *offCurve = quad[1];
            return true;
        }
    }
    return false;
}

#ifdef SK_SCALAR_IS_FLOAT

// Due to floating point issues (i.e., 1.0f - SK_ScalarRoot2Over2 !=
// SK_ScalarRoot2Over2 - SK_ScalarTanPIOver8) a cruder root2over2
// approximation is required to make the quad circle points convex. The
// root of the problem is that with the root2over2 value in SkScalar.h
// the arcs really are ever so slightly concave. Some alternative fixes
// to this problem (besides just arbitrarily pushing out the mid-point as
// is done here) are:
//    Adjust all the points (not just the middle) to both better approximate
//             the curve and remain convex
//    Switch over to using cubics rather then quads
//    Use a different method to create the mid-point (e.g., compute
//             the two side points, average them, then move it out as needed
#define SK_ScalarRoot2Over2_QuadCircle    0.7072f

#else
    #define SK_ScalarRoot2Over2_QuadCircle    SK_FixedRoot2Over2
#endif


static const SkPoint gQuadCirclePts[kSkBuildQuadArcStorage] = {
    { SK_Scalar1,                      0                                  },
    { SK_Scalar1,                      SK_ScalarTanPIOver8                },
    { SK_ScalarRoot2Over2_QuadCircle,  SK_ScalarRoot2Over2_QuadCircle     },
    { SK_ScalarTanPIOver8,             SK_Scalar1                         },

    { 0,                               SK_Scalar1                         },
    { -SK_ScalarTanPIOver8,            SK_Scalar1                         },
    { -SK_ScalarRoot2Over2_QuadCircle, SK_ScalarRoot2Over2_QuadCircle     },
    { -SK_Scalar1,                     SK_ScalarTanPIOver8                },

    { -SK_Scalar1,                     0                                  },
    { -SK_Scalar1,                     -SK_ScalarTanPIOver8               },
    { -SK_ScalarRoot2Over2_QuadCircle, -SK_ScalarRoot2Over2_QuadCircle    },
    { -SK_ScalarTanPIOver8,            -SK_Scalar1                        },

    { 0,                               -SK_Scalar1                        },
    { SK_ScalarTanPIOver8,             -SK_Scalar1                        },
    { SK_ScalarRoot2Over2_QuadCircle,  -SK_ScalarRoot2Over2_QuadCircle    },
    { SK_Scalar1,                      -SK_ScalarTanPIOver8               },

    { SK_Scalar1,                      0                                  }
};

int SkBuildQuadArc(const SkVector& uStart, const SkVector& uStop,
                   SkRotationDirection dir, const SkMatrix* userMatrix,
                   SkPoint quadPoints[])
{
    // rotate by x,y so that uStart is (1.0)
    SkScalar x = SkPoint::DotProduct(uStart, uStop);
    SkScalar y = SkPoint::CrossProduct(uStart, uStop);

    SkScalar absX = SkScalarAbs(x);
    SkScalar absY = SkScalarAbs(y);

    int pointCount;

    // check for (effectively) coincident vectors
    // this can happen if our angle is nearly 0 or nearly 180 (y == 0)
    // ... we use the dot-prod to distinguish between 0 and 180 (x > 0)
    if (absY <= SK_ScalarNearlyZero && x > 0 &&
        ((y >= 0 && kCW_SkRotationDirection == dir) ||
         (y <= 0 && kCCW_SkRotationDirection == dir))) {

        // just return the start-point
        quadPoints[0].set(SK_Scalar1, 0);
        pointCount = 1;
    } else {
        if (dir == kCCW_SkRotationDirection)
            y = -y;

        // what octant (quadratic curve) is [xy] in?
        int oct = 0;
        bool sameSign = true;

        if (0 == y)
        {
            oct = 4;        // 180
            SkASSERT(SkScalarAbs(x + SK_Scalar1) <= SK_ScalarNearlyZero);
        }
        else if (0 == x)
        {
            SkASSERT(absY - SK_Scalar1 <= SK_ScalarNearlyZero);
            if (y > 0)
                oct = 2;    // 90
            else
                oct = 6;    // 270
        }
        else
        {
            if (y < 0)
                oct += 4;
            if ((x < 0) != (y < 0))
            {
                oct += 2;
                sameSign = false;
            }
            if ((absX < absY) == sameSign)
                oct += 1;
        }

        int wholeCount = oct << 1;
        memcpy(quadPoints, gQuadCirclePts, (wholeCount + 1) * sizeof(SkPoint));

        const SkPoint* arc = &gQuadCirclePts[wholeCount];
        if (quad_pt2OffCurve(arc, x, y, &quadPoints[wholeCount + 1]))
        {
            quadPoints[wholeCount + 2].set(x, y);
            wholeCount += 2;
        }
        pointCount = wholeCount + 1;
    }

    // now handle counter-clockwise and the initial unitStart rotation
    SkMatrix    matrix;
    matrix.setSinCos(uStart.fY, uStart.fX);
    if (dir == kCCW_SkRotationDirection) {
        matrix.preScale(SK_Scalar1, -SK_Scalar1);
    }
    if (userMatrix) {
        matrix.postConcat(*userMatrix);
    }
    matrix.mapPoints(quadPoints, pointCount);
    return pointCount;
}